电路的电流方向是相同的,在电磁感应原理的作用下,转子49相对定子40沿顺时针方向旋转,则马达4整体表现为顺时针方向旋转,对应的风扇3也相应顺时针方向旋转,此时吹吸装置I处于吹模式。当需要切换吹吸装置I的模式时,只需要操作控制开关91移动至第二操作位置,如图30所示,弓丨脚2和引脚I导通同时引脚6和引脚5导通,此时定子40所在电路的电流方向产生了改变,而转子49所在电路的电流方向并没有变化,因而转子49相对定子40沿逆时针方向旋转,马达4和风扇3均相应沿逆时针方向旋转,此时吹吸装置I处于吸模式。当然,对于本领域技术人员容易想到的是,在控制开关91移动至不同的操作位置的时候,使经过定子40的电流不变,而使转子49的电流方向改变。总之,在控制开关91移动至不同位置时,使经过转子49和定子40其中之一的电流方向产生改变即可。因此控制吹吸装置切换吹吸模式的方法是操作控制开关91从使轴流风扇第一方向旋转的第一操作位置移动到使轴流风扇沿第二方向旋转的第二操作位置。而在切换过程中,风管2连接主体10的位置保持不变。在优选的实施例中,控制开关91还可以具有不同于第一、第二操作位置的第三操作位置。在该操作位置,如图31所示,引脚102和引脚105并没有与其他引脚连接,因此连接定子40和转子49的电路并没有导通,也就是说,马达4并不会转动,处在停机的状态。因此控制开关91可以控制马达4在三种状态之间进行切换,分别是正转状态、停机状态和反转状态。另外,如图29至图31所示,在定子40或/和转子49所在的电路上还可以设置联动安全机构8的安全开关84。当安全开关84未被触发时,无论控制开关91处于哪个操作位置,整个电路都处在断路状态,马达4始终不会启动。只有当安全开关84被触发时,控制开关91才能发挥控制电路的作用。
[0231]另外,如图2、图6和图7所示,吹吸装置I还包括粉碎机构6。由于风扇3或/和马达4均位于气流通道55内,在吸模式下,树枝叶等体积较大的物体会随同空气从管口21进入到主体10,因此会对风扇3或/和马达4造成损害,影响吹吸装置I的使用寿命。因此设置粉碎机构6的目的是对体积较大的吸入物进行粉碎,转化成体积较小、重量较轻的物体经过风扇3,减少重量较大的物体高速撞击风扇3而造成风扇3的损坏。因此粉碎机构6设置在风扇3和管口21之间的位置,在本实施例中,粉碎机构6设置在主体10内靠近接口 11的位置,使得在吸模式下待粉碎物从管口 21进入主体10后,先通过粉碎机构6再通过风扇3。在本实施例中,涵道5位于粉碎机构6与风扇3之间,风扇3和粉碎机构6分别位于涵道5的相对的各一侧,也就是说粉碎机构6比涵道5更靠近管口 21。粉碎机构6、涵道5与风扇3依次沿直线排列设置。涵道5位于风扇3的远离第一开口 12的一侧。粉碎机构6可被驱动的围绕一旋转轴线旋转而产生粉碎效果。在本实施例中,粉碎机构6可被马达4驱动而进行旋转。吹吸装置I包括了连接风扇3和粉碎机构6的传动机构7。传动机构7使得粉碎机构6作旋转运动。在本实施例中,粉碎机构6的旋转轴线与风扇3的转动轴线重合设置。当然,粉碎机构6的旋转轴线与风扇3的转动轴线也可以平行设置或者成一定锐角设置。由于本实施例中的风扇3也受马达4的驱动,因此马达4可同时驱动风扇3和粉碎机构6—起旋转。在优选的实施例中,风扇3和粉碎机构6可同步转动。风扇3沿第一方向旋转时,粉碎机构6同样沿第一方向旋转;风扇3沿第二方向旋转时,粉碎机构6相应沿第二方向旋转。当粉碎机构6转动时,粉碎机构6高速旋转形成大致垂直轴线41的切割平面,在吹模式下并不会影响空气流通;而在吸模式下,空气和待粉碎物都会通过该切割平面,其中,空气可以无损耗的通过该切割平面,而待粉碎物通过该切割平面时会被切割成细小物体,然后再通过风扇3,从而达到保护风扇3的目的,而且利于收集。如图2和图8所示,传动机构7为沿纵向延伸的传动轴71 ο传动轴71可围绕轴线41旋转,当然转动轴71也可以通过一些偏心结构使得传动轴71不围绕轴线41旋转。传动轴71的一端连接风扇3,另一端则连接粉碎机构6,从而使得风扇3与粉碎机构6—起同步运动。传动轴71连接风扇3的一端通过扁方或者花键等结构连接风扇3的连接孔33。由于马达轴42和传动轴71分别位于风扇3的两侧,因此马达4的马达轴42从连接孔33的一侧连接风扇3,而连接粉碎机构6的传动轴71从连接孔33的另一侧连接风扇3。在本实施例中,传动轴71与马达轴42并非直接连接,而是通过风扇3的传递实现两者的联动。而把粉碎机构6安装到传动轴71上后,传动轴71的该端还设有防滑结构74,防滑结构74的作用是防止粉碎机构6相对传动轴71轴向移动。在本实施例中,防滑结构74是可插入传动轴71上的插孔的插销。另外,防滑结构74还包括垫片等。由于马达4和粉碎机构6位于涵道5的相对两侧,因此传动轴71会穿过涵道5,从而把马达4与粉碎机构6连接起来。在本实施例中,传动轴71沿轴向穿过涵道5的导流体51中空的内部。如图6所示,在传动轴71和导流体51之间还设有用于支撑传动轴71的支撑轴承72。传动轴71能够相对支撑轴承72可旋转的支撑。支撑轴承72的数量可以是一个或多个。在本实施例中,支撑轴承72的数量为两个,且沿传动轴71的延伸方向间隔一定距离设置。而在其他实施例中,由于传动机构7可选择地切断风扇3传递给粉碎机构6的传动,如此当风扇3转动时,粉碎机构6可不转动。在该实施例中,传动机构7包括与马达轴42离合的离合器。当离合器可选择地与马达轴42动力连接时,风扇3与粉碎机构6—起转动,当离合器可选择地与马达轴42脱开动力连接时,风扇3仍然可以转动,而粉碎机构6则不转动。
[0232]如图2和图7所示的实施例中,风扇3与涵道5位于马达4的同一侧,换句话说,马达4和涵道5分别位于风扇3的两侧。在该实施例中,传动轴71的一端并非直接连接马达轴42,而是连接风扇3。在本实施例中,风扇3的连接孔33为扁方形的通孔。该通孔分别以扁方形式连接传动轴71和马达轴42。尽管传动轴71和马达轴42并非直接连接,但是该两者通过分别与风扇3的配接,还是能够实现同步的运动。当然,还可以在连接孔33内设置花键结构,传动轴71和马达轴42分别通过各自花键配合连接风扇3。在其他实施例中,传动轴71和马达轴42也可以套接、行星齿轮、外啮合齿轮等常见传动形式直接配接。由于风扇3位于涵道5的纵向后侧,粉碎机构6位于涵道5的纵向前侧,传动轴71穿过涵道5的导流体51并连接粉碎机构6。当然,在其他的实施例中,马达4也可以位于涵道5中,即马达4和涵道5位于风扇3的同一侧。另夕卜,由于粉碎机构6相较于涵道5更靠近纵向前端,为了不减少进入涵道5的空气量,粉碎机构6必须与涵道5之间保持一定的纵向间隔。其中,粉碎机构6与涵道5的静叶片52之间的最短距离为0.5?50mm。更优选地,粉碎机构6与涵道5的静叶片52之间的最短距离为10?20mm。进一步地,该最短距离为12mm或13mm。
[0233]如图2所示的实施例中,粉碎机构6包括切割刀片。切割刀片由合金金属材料制成,具有一定的硬度,对高速通过的物体进行切割。该切割刀片可以围绕粉碎机构6的旋转轴线转动。而在本实施例中,粉碎机构6的旋转轴线与轴线41重合。也可以把旋转轴线与轴线41设置成平行或者成一定角度相交。切割刀片沿垂直于旋转轴线的纵向延伸,其包括位于切割刀片中部的安装部61、沿安装部61的相反方向纵向延伸的两个工作部62,工作部62包括用于切割物体的切割部63。工作部62关于切割刀片的中心对称设置。安装部61用于与传动机构7连接,其包括安装孔64。安装孔64的形状可以是扁方形的,也可以具有花键结构或其他传动结构,以便与传动轴71动力连接。当然安装部61也可以采用多个形配的安装孔形式。另外,安装部61还包括把安装孔64固定在传动轴71上的定位件65。定位件65可以是常见的卡簧、销、螺母等。每个工作部62都包括位于切割刀片的纵向末端的端部67以及位于安装部61和端部67之间的侧边68。由于切割刀片的安装部61和端部67具有一定的纵向宽度,因此每个工作部62具有相对设置的两个侧边68,第一侧边681和第二侧边682。第一侧边681和第二侧边682均沿纵向延伸。切割部63位于其中一个侧边上,例如第一侧边681上。切割部63可以是刀刃也可以是锯齿,用于粉碎待粉碎物。切割部63当然可以设置成位于两个侧边68上。甚至位于端部67。在其中的一个实施例中,切割部63仅设置在第一侧边681上,切割刀片的第二侧边682相对第一侧边681呈卷曲设置。也就是说,切割刀片的第二侧边682沿纵向以及垂直纵向的横向上弯曲设置。从而使得第二侧边682能够形成空气提升部分,使得位于空气提升部分下游区域的空气负压降低,减少涡旋。当然在其他实施例中,切割刀片也可以整体基本呈平面设置,并没有形成卷曲。值得注意的是,粉碎机构6可以包含不止一个切割刀片,可以包括多个切割刀片。该多个切割刀片沿着粉碎机构6的轴线方向间隔一定距离的布置。在最佳的实施例中,粉碎机构6包括了两个沿轴线方向间隔设置的切割刀片。该两个切割刀片的结构是相同的,并且都受到马达4的驱动而具有一定相位差的同步转动。当然,切割刀片还可以具有不同的形状。在如图11所示的另外一个实施例中,切割刀片的每个工作部62的第一侧边681和第二侧边682相对倾斜设置,并且该两条侧边倾斜形成的夹角为一锐角,使得切割刀片从安装部61到端部67的纵向宽度逐渐变窄。这样设计的好处使切割刀片占据的空间减少,从而让出更多的空间使气流通过。在优选的实施例中,切割刀片在风管2的截面上的投影面积占到整个风管2的截面面积比小于1/2时,气流的通过效果更佳。在更优选地实施例中,投影面积与截面面积之比为1/3或1/4。在图12所示的另一个实施例中,切割刀片的每个工作部62的第一侧边681和第二侧边682均呈弧形设置,并且该两条侧边的弧度不同,使得整个切割刀片大致呈S型。
[0234]在如图13和图14所示的实施例中,粉碎机构6还包括刀盘600以及设置在刀盘600上的刀片601。该粉碎机构6同样可以被马达4驱动而旋转。当然,粉碎机构6不被马达4驱动时停止旋转。刀盘600在本实施例中为圆盘形状。刀片601设置在圆盘的边缘。刀盘600的中央设有连接传动机构7的连接部602。传动机构7带动刀盘600围绕传动机构7的轴线旋转。当然旋转方向可以是沿一个方向的旋转也可以是沿正反两不同方向的旋转。在刀盘600的边缘设置若干个安装孔603,刀片601通过安装孔603与刀盘600配接。如图13所示,刀片601设有枢转柱604。枢转柱604穿过刀片601所在的平面,同时枢转柱604穿过安装孔603并可以与安装孔603的侧壁配合。安装孔603的面积大于安装柱604的截面积,当刀盘600受到传动机构7的驱动而做旋转运动时,位于刀盘600边缘的刀片601由于离心力作用而沿刀盘600的径向向外甩出。刀片601能够伸出刀盘600而进行切割。当刀片601遇到比较坚硬的物体时,刀片601与物体碰撞而使安装柱604在安装孔603内产生位移,从而使刀片601收回伸出刀盘600,如图13中的虚线所示,这样可以避免刀片601的磨损。在本实施例中,刀盘600上设有两组刀片601。当然刀盘600也可以设有多组刀片,例如3组、4组等。
[0235]如图15和图16所不的另一实施例中,粉碎机构6包括至少一组对称设置的刀片601。当然,粉碎机构6也可以包括若干组刀片601,例如2组、3组甚至更多。另外粉碎机构6还包括伸缩件605。刀片601安装到伸缩件605上。如图15和图16所示,伸缩件605可带动刀片601在收缩状态和展开状态之间切换。如图15所示,刀片601向外张开,此时处于展开状态,刀片601张开时可以起到粉碎的作用。如图16所示,刀片601向内收缩,此时处于收缩状态。伸缩件605以可移动的方式带动刀片601张开或收缩。如图15和图16所示,伸缩件605可移动地连接传动机构7。传动机构7带动伸缩件605沿轴向移动。具体地,如图15所示,当传动机构7沿一方向转动时,伸缩件605受到该方向的转动作用而朝纵向前端移动,此时刀片601处于展开状态。而对应的吹吸装置I正好处于吸模式状态下,展开的刀片601能够进行粉碎作用。如图16所示,当传动机构7沿另一方向转动时,伸缩件605受到作用而朝纵向后端移动,此时刀片601处于收缩状态。收缩的刀片601能够减少刀片601占据的横截面积,从而保证足够的空气流通面积。而对应的吹吸装置I正好处于吹模式状态下。也就是说,当吹吸装置I处于吸模式时,刀片601展开,从而进行粉碎。当吹吸装置I处于吹模式时,刀片601收缩,从而增加过风面积。
[0236]在另外的实施例中,粉碎机构6包括由柔性材料制成的打草绳。当传动机构7带动粉碎机构6围绕其轴线高速旋转时,由于离心力的作用,打草绳沿径向延伸,从而起到类似切割刀片的作用。如此设计打草绳同样起到粉碎效果。
[0237]即使有粉碎机构6的粉碎作用,粉碎的细小颗粒在通过马达4时仍然会对马达4造成损害。在某些极端的条件下,吸模式时吸入的气流可能会携带少量的水渍和水汽。该水渍和水汽所产生的潮湿也会对马达4产生明显的影响。为此,本发明的吹吸装置I还对马达4进行优化设计,使得马达4与气流通道55隔离设置。在如图2所示的一个实施例中,马达4位于气流通道55中,吹吸装置I包括一位于外壳14内部的马达罩44。马达罩44内部形成密闭的内部空间,马达4即处于内部空间中,而气流通道位于马达罩44外。因此马达罩44把马达4与气流通道55隔离开。气流从位于马达罩44与外壳14之间的气流通道55通过,而马达4始终位于马达罩44内不会受到影响。气流通道55中的杂质或者水汽不会影响到位于马达罩44内的马达4。在如图18的另外个一个实施例中,马达4直接设置在气流通道55外,从而避免气流通道55中的杂质或者水汽对其的影响。因此在该实施例中,马达4也可以不设置密封的马达罩44。如图10所示,马达罩44可以包括两个可相互固定连接的半壳,当然在其他实施例中,马达罩44也可以一体形成。另外,马达罩44由于包裹马达4,马达罩44位于风扇3的靠近第一开口 12的一侧。
[0238]为了对位于马达罩44内的马达4产生理想的冷却效果,吹吸装置I的内部还设有冷却通道,冷却通道用于引导冷却气流通过马达4从而达到冷却效果。在本实施例中,冷却气流使用的冷却通道与风扇3产生的气流使用的气流通道相对独立设置。如此可以保证冷却气流和风扇3产生的气流相互独立运行移动,互不干扰。为此,如图1、图4和图5所示,冷却通道具有设置在外壳14上的进气口 141和出气口 142。进气口 141和出气口 142相对独立设置,进气口 141和出气口 142与外壳14上的接口 11和第一开口 12设置位置不同。进气口 141和出气口 142分别与马达罩44连通。具体地,在吹模式下,如图4所示,冷却空气从进气口 141进入马达罩44内部并对马达4进行冷却,然后离开马达罩44并经出气口 142回到外界,如图4中的空心箭头所示。而风扇3产生的气流从第一开口 12进入主体10,然后从风管2的管口 21吹出,如图4中的单线箭头所示。而在吸模式下,空气连同异物从风管2的管口 21吸入气流通道,然后从第一开口 12排出,如图5中的单线箭头所示。而冷却空气仍然从进气口 141进入马达罩44,并带着马达4工作产生的热量从出气口 142回到外界,如图5中的空心箭头所示。在本实施例中,进气口 141和出气口 142均位于外壳14的纵向中段。进气口 141和出气口 142围绕周向均匀分布在外壳14上。进气口 141和出气口 142大致呈栅格状开口设置。进气口 141和出气口 142相对沿纵向前后分布。进气口 141相对出气口 142更靠近外壳14的纵向前端,出气口142相当进气口 141更靠近外壳14的纵向后端。在优选的实施例中,如图2所示,吹吸装置I还包括设置于马达罩44内的冷却风扇43。冷却风扇43可受马达4的驱动而旋转产生冷却气流。冷却风扇43连接于马达4的马达轴42。冷却风扇43优选地位于马达4的纵向后端。
[0239]如图10所示,马达罩44上设有容纳马达轴42穿出的传动接口45,从而方便位于马达罩44内部的马达4与位于马达罩44外部的风扇3连接。传动接口 45沿轴线41方向设置。该传动接口 45的截面积较小,仅可以容纳马达轴42穿过,这样又不影响马达罩44的密封性。马达罩44优选地是由左右两个半壳固定连接形成。该两个半壳通过固定螺栓或其他常见的固定方式固定连接。另外,冷却风扇43也位于马达罩44的内部。
[0240]由于进气口141和出气口 142都设置于外壳14上,而马达罩44位于外壳14的内部。为了保证两者之间的畅通连接,马达罩44上还设有冷却入口 441和冷却出口 442。冷却入口441与进气口 141连通,而同时冷却出口 442与出气口 142连通。
[0241 ] 在本实施例中,冷却出口 442和出气口 142大小和位置对应设置。优选地,马达罩44上的冷却出口 442对准外壳14上的出气口 142。使得冷却空气从冷却出口 442排出马达罩44后直接通过出气口 142排向外界。如图9和图10所示,马达罩44包括若干从罩体表面向外凸出的凸起部48。凸起部48的端部可以直接抵接到外壳14的内表面。外壳14内部的凸起部48外围则仍然为风扇3产生的气流流通的部分。冷却出口 442位于凸起部48的端部。而在外壳14受到凸起部48抵接的位置正好设有出气口 142。若干个出气口 142和冷却出口 442沿周向布置。在本实施例中,马达罩44大致沿纵向延伸。而凸起部48沿垂直于纵向的径向延伸。换句话说,凸起部48沿轴线41的周向均匀分布。本实施例中的凸起部48数量为4个,相邻两个凸起部48之间的夹角为90度。当然凸起部48的数量也可以3、5、6等。如图9所示,空气在通过凸起部48时,空气从凸起部48和壳体14之间的间隙通过,该部分的间隙构成气流通道55的一部分。而由于在吸模式下,马达罩44及凸起部48位于风扇3的下游区域,并且空气从凸起部48的周围通过,因此凸起部48也可以起到类似导