,因此毛细换热管通过反射膜的热传递而向上传导的少量热量/冷量也被封闭在吊顶板壳体内所填充的保温隔热材料中,进一步减少了热量/冷量的向上散失,不仅如此,反射膜的上方与吊顶板壳体顶面板之间所填充的保温隔热材料除了起到隔热作用之外,还同时形成了对反射膜和毛细换热管的向下挤压,使得毛细换热管与导热材料板上沟槽的槽壁更加紧密的贴合接触,进一步保证了毛细管换热管与导热材料板之间良好的接触传热性能。
[0020]5、本发明的毛细管网辐射换热吊顶板采用了模块化的结构,可以直接用于吊顶铺装形成多种形式的吊顶铺装结构,安装方便,且排布形式灵活多样,可以应用于不同的建筑场景中。
【附图说明】
[0021]图1为本发明毛细管网辐射换热吊顶板一种具体实施结构的俯视透视图。
[0022]图2为图1所示毛细管网辐射换热吊顶板的A-A剖视图。
[0023]图3为图1所示毛细管网辐射换热吊顶板中毛细导热管在导热材料板上的贴设结构局部放大图。
[0024]图4为图1所示毛细管网辐射换热吊顶板的B-B剖视图。
[0025]图5为本发明毛细管网辐射换热吊顶板另一种具体实施结构的俯视透视图。
[0026]图6为本发明毛细管网辐射换热吊顶板所铺装形成的一种吊顶铺装结构示意图。
[0027]图7为本发明毛细管网辐射换热吊顶板所铺装形成的另一种吊顶铺装结构。
[0028]图8为本发明毛细管网辐射换热吊顶板所铺装形成的再一种吊顶铺装结构。
[0029]图9为本发明毛细管网辐射换热吊顶板与现有技术辐射吊顶板在冬季供热时的竖向边界温度分布对比模拟图。
[0030]图10为本发明毛细管网辐射换热吊顶板与现有技术辐射吊顶板在冬季供热时的中部边界温度分布对比模拟图。
[0031]图11为本发明毛细管网辐射换热吊顶板与现有技术辐射吊顶板在夏季供冷时的竖向边界温度分布对比模拟图。
[0032]图12为本发明毛细管网辐射换热吊顶板与现有技术辐射吊顶板在夏季供冷时的中部边界温度分布对比模拟图。
【具体实施方式】
[0033]现有技术中,辐射吊顶板中毛细管网与导热材料板之间导热效率较为有限,是影响其换热能效的一个重要因素;通过技术分析发现,造成其导热效率受限的主要原因在于,由于毛细管通常是横截面为圆形的管道(因为圆形截面毛细管道的制造工艺较为成熟,制造成本相对较低),而现有技术的辐射吊顶板中,与毛细管网相配合的导热材料板通常为平板,导热材料板与毛细管的直接接触仅为线接触,接触传热性能较差,更多的依靠毛细管向周边热辐射后将热量传导至导热材料板,不仅增加了毛细管与导热材料板之间热传导过程中热量/冷量的消耗,而且在供暖时也增加了毛细管向外传导的热能在辐射板内聚集,从而更易引发内部器件老化、使用寿命缩短的问题。
[0034]针对于此,本发明提供了一种毛细管网辐射换热吊顶板,通过结构的改进而提升其换热能效。图1示出了本发明毛细管网辐射换热吊顶板一种具体实施结构的俯视透视图;图2示出了图1所示毛细管网福射换热吊顶板的A-A剖视图;图3示出了图1所示毛细管网福射换热吊顶板中毛细导热管在导热材料板上的贴设结构局部放大图;图4示出了图1所示毛细管网辐射换热吊顶板的B-B剖视图。如图卜4所示,本发明的毛细管网辐射换热吊顶板包括整体呈扁平的长方体状且具有中空腔室的吊顶板壳体100,吊顶板壳体100的底面板为导热材料板101;所述中空腔室内位于导热材料板101上并行排列地分布贴设有若干用于供换热介质流动的毛细导热管102,且导热材料板101上与毛细导热管102相接触位置处形成向下凹陷且与毛细导热管的下侧管壁形状相匹配的沟槽103,使得毛细导热管102的下侧管壁陷入所述沟槽103中且与沟槽103的槽壁相贴合接触,所述毛细导热管102凸出于所述沟槽部分的管壁位置处以及导热材料板101朝向中空腔室的一面上位于沟槽之间的间隔位置处均紧贴敷设有反射膜104,且反射膜104的上方与吊顶板壳体顶面板之间的间隙空间内填充有保温隔热材料105;吊顶板壳体100的中空腔室内还沿侧壁横向设置有供水导流管106和回水导流管107,导热材料板101上各毛细导热管102的两端分别与所述供水导流管106和回水导流管107相连通,供水导流管106的一端和回水导流管107的一端分别从吊顶板壳体同侧的侧面板或两个相对的侧面板穿出,且分别在相应侧面板上形成用于连接供水管道的供水接口 108和用于连接回水管道的回水接口 109;所述吊顶板壳体100上相邻于供水接口 108所在侧面板的两个相对的侧面板上的对应位置处还设置有能够相互匹配连接的连接结构IlOo
[0035]可以看到,在本发明的毛细管网辐射换热吊顶板中,采用了整体呈扁平长方体状的吊顶板壳体形成了对毛细换热管的闭合封装结构,之所以吊顶板壳体设计为扁平长方体状是为了便于模块化吊顶铺装。吊顶板壳体的底面板为导热材料板,作为其辐射换热面,并且与现有技术相比,毛细导热管在导热材料板上的贴设结构方式发生了明显的变化,即导热材料板101上与毛细导热管102相接触位置处形成向下凹陷且与毛细导热管102的下侧管壁形状相匹配的沟槽103,使得毛细导热管102的下侧管壁陷入所述沟槽103中且与沟槽103的槽壁相贴合接触,具体应用时,若毛细换热管的横截面为圆形,则可以设计导热材料板101上沟槽103的槽壁横截面呈与毛细导热管102的下侧管壁相匹配贴合的圆弧形,如图3所示,这样以来,便大幅增加了毛细导热管与导热材料板之间的直接接触传热面积,减少了二者之间热传导过程中热量/冷量的消耗,增强了毛细导热管与导热材料板之间的导热效率,并且毛细换热管陷入沟槽的深度可以达到毛细换热管外径尺寸的40%?50%,以使得在便于将毛细导热管配合安装在导热材料板上的同时,保证毛细导热管与导热材料板之间的直接接触传热面积得以尽可能的增加;当然,若毛细换热管的横截面为其它形状(例如矩形等),则导热材料板上沟槽的槽壁横截面相应采用与毛细导热管的下侧管壁相匹配贴合的形状设计;另一方面,导热材料板上的沟槽可以通过冲压成型,这样以来不仅使得导热材料板101的成型工艺较为简单,而且冲压后在导热材料板101上表面形成沟向下凹陷的沟槽103位置处在导热材料板的下表面相应形成了向下凸起的棱条,如图4所示,从而增加了导热材料板下表面的换热接触面积,并且在下凸棱条处的热辐射射线呈现局部的发散放射状态,使得导热材料板也具备了更好的对外换热效果,同时,导热材料板下表面的下凸棱条也有助于对空间噪声形成不同方向的散射,达到降低室内环境噪声污染的效果;借助上述两方面热传导性能的改善,已足以使得本发明毛细管网辐射换热吊顶板的换热能效得到较大的提升。
[0036]而在本发明毛细管网辐射换热吊顶板中,其结构及性能的改进还不仅仅体现在上述两个方面。虽然毛细导热管陷入沟槽部分的下侧管壁与导热材料板直接接触,但毛细导热管凸出于沟槽部分的管壁位置处暴露于导热材料板上方的空间,会造成毛细换热管热量/冷量的向上散失;此外,由于从加工工艺上来讲,不可能保证毛细换热管与导热材料板上的沟槽之间绝对的无缝贴合,在部分区域不可避免的存在未紧密贴合的间隙,而这些间隙空间若与导热材料板和毛细换热管的上部空间相连通,也将导致毛细换热管向下传播的热量/冷量向上方散失。针对于此,如图2和图3所示,在本发明毛细管网辐射换热吊顶板中,在毛细导热管102凸出于所述沟槽103部分的管壁位置处以及导热材料板101朝向中空腔室的一面上位于沟槽之间的间隔位置处均紧贴敷设了反射膜104,通过反射膜,不仅形成了对毛细换热管所散发热量/冷量的向下反射,同时还隔绝了毛细换热管与沟槽之间的间隙位置处与上部空间的连通,从而尽可能的减少毛细换热管热量/冷量的向上散失;此外,由于吊顶板壳体100对毛细换热管102的包围形成了相对闭合的封装空间,且在反射膜104的上方与吊顶板壳体顶面板之间的间隙空间内还填充了保温隔热材料105,因此毛细换热管102通过反射膜的热传递而向上传