射电天文阵列的高可扩展性分布式dbf处理系统及方法

文档序号:9886450阅读:735来源:国知局
射电天文阵列的高可扩展性分布式dbf处理系统及方法
【技术领域】
[0001]本发明涉及数字信号处理领域,具体地,涉及一种射电天文阵列的高可扩展性分布式DBF处理系统及方法。
【背景技术】
[0002]射电天文学的观测对象为广阔宇宙中天体福射的微弱电磁波信号,因此射电天文观测需要不断提升观测分辨率和观测灵敏度,这就需要增加射电天文阵列的天线口径;同时为了提高观测范围和巡天速度,需要增加射电天文阵列形成波束的个数。因此,射电天文阵列在向着大规模、长距离、分布式、多波束的方向发展;随着阵列规模和波束数目的提升,也对射电天文阵列的信号处理能力提出了更高的要求。
[0003]数字波束形成(Digital Beam Forming,DBF)技术是阵列信号处理的一个重要研究方向,在无线通信、雷达、射电天文等方面都有广泛的应用。与传统的模拟波束形成相比,数字波束形成具有更灵活的波束控制、较高的信号增益、较强的干扰抑制能力以及较高的空间分辨率等优点。
[0004]经过对现有技术文献的检索发现,Marco de Vos等在“Proceedings of theIEEE”(2009,1431-1437)上发表的 “The LOFAR Telescope: System Architecture andSignal Processing”,提出了采用基于数字信道化的宽带多波束DBF处理方法。在该方法中,首先对各个阵元采集的宽带信号进行数字信道化处理,得到若干窄带信号;然后针对从各个阵元获得的窄带信号、进行窄带波束形成。这种方法同时实现了射电天文信号处理中的DBF和频谱分析运算,降低了整个信号处理的运算复杂度。但是文中提出的方案采用了集中式的采集和处理架构,将采集通道和对应的DBF处理单元集成在一起,并采用级联的方式实现多个通道的DBF处理;这种集中式的架构受到采集和处理单元的处理能力和传输带宽的限制,很难对波束形成数量等系统关键性指标进行拓展。

【发明内容】

[0005]针对现有技术中的缺陷,本发明的目的是提供一种射电天文阵列的高可扩展性分布式DBF处理系统及方法。
[0006]根据本发明提供的射电天文阵列的高可扩展性分布式DBF处理系统,其特征在于,包括:N个采集分机和M个处理分机,其中N、M为大于零的自然数;
[0007]所述采集分机,用于采集P个天线通道的数据,并将每个天线通道采集的数据划分为M个窄带子频段数据后传输至对应的M个处理分机,其中P为大于零的自然数;
[0008]所述处理分机,用于接收各个采集分机相同频段的窄带子频段数据,处理后得到Q个独立的窄带波束,其中Q为大于零的自然数。
[0009]优选地,所述采集分机包括:多通道采集模块、数字信道化模块、多光口发送模块;其中,
[0010]所述多通道采集模块,用于对P个天线通道的射频信号进行采集,得到采集数据;[0011 ]所述数字信道化模块,用于将采集数据进行数字处理,并把每个天线通道的采集数据划分为K个窄带子信道数据;对P个通道中每个通道的K个窄带子信道的数据进行分组合并,得到M个子频段数据;
[0012]所述多光口发送模块,用于将M个子频段数据分别发送至M个处理分机。
[0013]优选地,所述处理分机包括:多光口接收模块、窄带DBF模块;其中,
[0014]所述多光口接收模块,用于接收各个采集分机发送的子频段数据;
[0015]所述窄带DBF模块,用于将接收的子频段数据进行处理,即对各个天线通道中相同频率的窄带子信道数据进行加权求和,得到独立的Q个波束处理结果。
[0016]根据本发明提供的射电天文阵列的高可扩展性分布式DBF处理方法,包括如下步骤:
[0017]数据采集步骤:采集P干个天线通道的数据,并将每个天线通道采集的数据划分为M个窄带子频段数据;
[0018]数据处理步骤:接收M个窄带子频段数据中各个相同频段的窄带子频段数据,处理后得到Q个独立的波束。
[0019]优选地,所述数据采集步骤包括:
[0020]步骤Al:对P个天线通道的射频信号进行采集,得到采集数据;
[0021 ]步骤A2:将采集数据进行数字处理,并把每个天线通道的采集数据划分为K个窄带子信道数据;对P个通道中每个通道的K个窄带子信道数据进行分组合并,得到M个子频段数据。
[0022]优选地,所述数据处理步骤包括:
[0023]步骤B1:接收各个子频段数据;
[0024]步骤B2:将接收的子频段数据进行处理,即对各个天线通道中相同频率的窄带子信道数据进行加权求和,得到独立的Q个波束处理结果。
[0025]与现有技术相比,本发明具有如下的有益效果:
[0026]1、本发明提供的射电天文阵列的高可扩展性分布式DBF处理系统采用分布式的采集架构,可以实现模数转换器(Analog-to-digital converter,ADC)前置,能够更加灵活的对天线阵列进行通道拓展、适应更灵活的布阵方式,满足射电天文阵列大规模、长距离、分布式的布阵需求。
[0027]2、本发明提供的射电天文阵列的高可扩展性分布式DBF处理系统采用分布式的处理架构,可以通过增加处理分机、实现处理能力的提升,也可以通过灵活的频段分配、实现波束拓展,适合射电天文阵列宽带、多波束的处理需求。
[0028]3、本发明提供的射电天文阵列的高可扩展性分布式DBF处理系统采用分布式的传输架构,可以灵活的对传输频段进行调整、分配,并且可以根据天线通道和波束形成数量的拓展需求、对传输能力进行拓展,在拓扑结构上具有很高的灵活性和可扩展性。
【附图说明】
[0029]通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
[0030]图1为本发明提供的射电天文阵列的高可扩展性分布式DBF处理系统的结构示意图;
[0031]图2为本发明提供的射电天文阵列的高可扩展性分布式DBF处理系统的实施例结构图。
【具体实施方式】
[0032]下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
[0033]根据本发明提供的射电天文阵列的高可扩展性分布式DBF处理系统及方法。该系统实现了对通道采集、数据传输和DBF信号处理的完全解耦。在采集端,利用数字信道化处理、将宽带信号划分为多个窄带子信道;并对子信道进行灵活的分组合并,划分成若干子频段进行传输。在处理端,对接收到的多通道子频段信号进行窄带多波束DBF处理,最终获得窄带形式的多波束处理结果。
[0034]本发明中的DBF处理架构采用分布式的系统设计,实现了对采集、传输、处理的解耦,突破了集中式的系统架构中处理能力和传输带宽的限制,支持宽带、多通道、多波束的系统实现,而且具有配置灵活、高可扩展性的特点,非常适合大规模射电天文望远镜阵列使用。
[0035]具体地,如图1所示,本发明中的系统包括:N个采集分机和M个处理分机,每个采集分机对P个天线通道信号进行数据采集,并将每个天线通道的采集数据划分为M个窄带子频段数据,最后通过光口将所有通道对应的窄带子频段数据发送到处理分机。每个处理分机接收各个采集分机相同频段的窄带子频段数据,然后经过窄带DBF模块进行处理,得到Q个独立的波束处理结果。
[0036]所述采集分机包括:多通道采集模块、数字信道化模块、多光口发送模块,用于对多个天线通道进行数据采集,并进行频域切分处理、将采集的宽带信号数据划分成若干个窄带子频段数据,发送给处理分机;具体地:
[0037]多通道采集模块,用于对P个天线通道的射频信号进行采集,得到数字化的采集数据;
[0038]数字信道化模块,用于将采集数据进行数字处理,并把每个天线通道的采集数据划分为K个窄带子信道数据;对P个通道、每通道K个窄带子信道的数据进行分组合并,得到M个子频段数据;
[0039]多光口发送模块,用于将M个子频段数据分别发送至M个处理分机。
[0040]所述处理分机包括:多光口接收模块、窄带DBF模块,用于对接收的各个采集分机的子频段数据进行窄带DBF处理,得到独立的Q个波束处理结果;具体地:
[0041 ]多光口接收模块,用于接收各个采集分机发送的子频段数据;
[0042]窄带DBF模块,用于将接收的子频段数据通过窄带DBF模块进行处理,对各个天线通道中相同频率的窄带子信道数据进行加权求和,得到独立的Q个波束处理结果。
[0043]更进一步地,如图2所示,采用针对64个天线阵元的射电天文阵列,实现对50-200MHz信号的宽带DBF,同时生成16个独立波束。具体地,在本实施例中包括了两个采集分机四个处理分机,并采用高速模拟数字转换器(Analog-to-digital converter,ADC)和大规模可编程门阵列(Field programmable gate arra
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1