一种平衡散热的多模功率放大器及其应用

文档序号:9914103阅读:637来源:国知局
一种平衡散热的多模功率放大器及其应用
【技术领域】
[0001 ]本发明涉及射频功率放大器,具体的说是一种高效率高线性度的兼容3G及4G应用的能够平衡散热的多模功率放大器及其应用。
【背景技术】
[0002]射频发射前端模块是射频终端器件实现信号传输的关键元器件。当前随着全球无线通信用户的快速增长及用户对无线通信的更高端的体验需求,市场对无线通信的带宽的需求快速增长。为了解决这种市场需求,全球开放出来的专用无线通信频段越来越多并且越来越拥挤。频段利用率高的调制解调方式,例如:3G的宽带码分多址(Wideband CodeDivis1n Multiple Access ,WCDMA),带码分多址(Code Divis1n Multiple Access ,CDMA),时分同步码分多址(Time Divis1n Synchronous Code Divis1n MultipleAccess,TD-SCDMA),以及逐渐取代3G技术成为市场主流的4G技术的Long term evolut1n,LTE包括成对频谱模式(Frequency domain duplexing,FDD)及非成对频谱模式(Timedomain dupleXing,TDD)。这些频段利用率高的各种调制解调方式都对无线通信终端提出更高的要求,例如:高质量的语音通话,减少数据通信中的错误,快速的语音数据传输的切换,等等。对于射频发射前端的主力元器件射频功率放大器及其模块来说,就意味着在新的频段利用率高的调制解调方式下,功率放大器必须具有较高的线性度来保障射频信号能够放大传输并且能够尽量少信号失真。一般功率放大器的高线性度意味着降低其输出功率来减少输出晶体管器件的非线性谐波的产生,这导致了功率放大器不能工作在其高输出功率以及最高效率区间。此外由于无线移动终端与基站的距离远近变化会导致基站对接收信号强度需求变化,一般在远距离需要高功率时射频功率放大器效率较高,在较近距离需要较低功率时功率放大器效率较低。较低的放大器效率会导致手机发热,严重影响手机续航时间。因此,多模功率放大器需要为射频功率放大器的偏置电路设计至少两种或两种以上的模式使得在不同输出功率下,射频功率放大器都有较高的效率。
[0003]市场现有的射频多模功率放大器以及包含该多模功率放大器的射频前端模块主要有以下两种。图1显示的三路功率放大器102/106/109分别代表高功率/中功率/低功率的射频放大通路中的放大器单元,104/108/111分别代表三路各自的射频开关。高功率输出时,102/104开通,射频信号能经过102放大并且通过输出匹配电路103最优化的传输到射频开关104后传输到天线。中功率输出时,106/108开通,射频信号能经过106放大并且通过输出匹配电路107最优化的传输到射频开关108后传输到天线。低功率输出时,109/111开通,射频信号能经过109放大并且通过输出匹配电路110最优化的传输到射频开关111后传输到天线。三种输出通路各自独立,所以可以各自优化以达到在不同输出功率下的最佳性能。三种通路其中优化的参数包括功率放大器102/106/109以及射频开关104/108/111均可采用不同设计,输出匹配电路103/107/110均可以分别为不同功率输出设计优化到不同的匹配阻抗。在既定输出功率时,功率模式控制电路提供偏置电压开通一路通路,其中包括功率放大器PA及相应通路的射频开关SW,同时关闭另外两路通路。但是该方案因为采用三个功率放大器以及三个射频开关芯片,大大增加了模块的面积以及产品的成本。这种电路的集成性能较低,不能满足手机部件小型化的需求,已经逐渐被市场淘汰。
[0004]图2显示的是市场常见的无射频开关高低双模功率放大器及其模块,202及203代表高功率射频放大通路中的第一级以及第二级放大器,204及205代表低功率的射频放大通路中的第一级以及第二级放大器,206/207/208分别代表阻抗匹配单元。高功率输出时,202/203开通,射频信号能经过202/203级联放大并且通过输出匹配电路206/207及输出匹配电路209最优化的传输到天线。低功率输出时,204/205开通,射频信号能经过204/205级联放大并且通过输出匹配电路206/208及输出匹配电路209最优化的传输到天线。这高低两种功率输出通路并非各自独立,所以不能如同图1的方案能够可以各自功率通路优化以达到在不同输出功率下的最佳性能,设计中不但要考虑到开通路的负载优化,还需要考虑到关闭路电路的存在对开通路的负载影响。第二种方案是种无射频开关的设计,相比于第一种方案,其优势是芯片面积小,成本低,已经成为市场同类产品的主流。但是由于采用了至少两个一级放大器和至少两个二级放大器放大器来实现多功率的控制,放大器芯片没有得到较好的重复利用。
[0005]以上两种方案的功率放大器一般采用GaAsHBT的工艺,功率模式控制电路通常是CMOS工艺,输出匹配电路可以采用无源分立元件或半导体无源器件。第一种方案中的射频开关通常是采用GaAs pHEMT工艺或是SOI技术。
[0006]市场现有功率放大器的输出级放大电路接地设计一般如图3所示。图3中301,302,……,30(N-1),30N到331,332,……,33(N_1),33N(其中N是整数)显示了所有的基本放大电路单元,每个基本放大单元可以由单晶体管组成也可能由多个更小的基本放大单元并联组成。341-344代表功率放大器芯片上的地GND,在GaAs HBT或是pHEMT工艺里是通过晶圆衬底的晶圆贯通接地TWV,在LDMOS工艺里是深度掺杂的半导体,在CMOS工艺里可能是通过晶圆衬底的晶圆贯通接地TWV也可能是通过bond pad飞线到基板上的地线。351,352,……,35(K-1),35K(其中K是整数)代表了放大器射频输出的芯片上焊盘bond pad,输出放大电路的电压连接以及射频输出都是通过这K个芯片上焊盘bond pad飞线连接到放大器的负载输出匹配网络。放大电路中的N个基本放大单元并联通过HBT的发射极或是pHEMT/LDMOS/CMOS的栅极连接到地GND形成一个N单元的阵列。一般有至少4个这样的阵列连接方法如图3所示,这至少四个阵列共同组成放大器输出级放大电路。地GND分成两组,341/342为一组,343/344为另一组,每组分别连接两个阵列的每个基本放大单元的发射极或栅极。两组地GND的位置与351-35K的射频输出芯片上焊盘bond pad成垂直方向。每个阵列中基本放大单元的集电极或漏级通过芯片工艺中的金属连接到射频输出的芯片上焊盘bond pad 351-35K如图3所示。这种连接方法普遍用于饱和放大器的设计之中,也应用于一些线性放大器的设计。但是这种设计方案的缺点是由于四阵列基本放大单元分成两组,导致各个基本放大单元到地的电感以及导热很不均衡,引起射频信号经过四阵列基本放大单元放大后的相值也难以保持一致,从而导致功率放大器的线性度以及效率难以达到优化。
[0007]另一种市场常见的线性功率放大器的电路接地设计一般如图4所示。图4中401,402,……,40 (P-1),40P(其中P是整数)是市场常见的线性功率放大器输出级放大电路中的基本放大单元,每个单元可以由单晶体管组成也可能由多
当前第1页1 2 3 4 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1