半导体装置、智能功率模块及电力转换装置的利记博彩app

文档序号:12181791阅读:402来源:国知局
半导体装置、智能功率模块及电力转换装置的利记博彩app

本发明涉及半导体装置、智能功率模块及电力转换装置,更具体地说,涉及电力用半导体装置、利用了该电力用半导体装置的智能功率模块及电力转换装置。



背景技术:

通常,IPM(Intelligent Power Module、智能功率模块)搭载有IGBT(Insulated Gate Bipolar Transistor、绝缘栅双极晶体管)、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)、FWDi(Free Wheeling Diode、续流二极管)等功率半导体元件。另外,IPM具有对功率半导体元件的驱动进行控制的功能。并且,在IPM具有发送功率半导体元件的温度、电流值等信息的传感器部。IPM具有使用传感器部发送的信号而保护功率半导体元件免受过热、过电流等影响的功能。如上所述具有功率半导体装置的驱动的控制功能及保护功能的IPM被封装化,被使用于逆变器装置的逆转换部等(例如,参照专利文献1)。

专利文献1:日本特开平6-303778号公报

在现有的IPM中,功率半导体元件、传感器部、功率半导体元件的驱动的控制电路以及保护动作的控制电路一体化地收容于封装件内。因此,在针对驱动或者保护动作的控制而变更规格时,需要以IPM为单位地进行变更,花费精力。



技术实现要素:

本发明就是为了解决上述的问题而提出的,第1目的在于得到一种使针对功率半导体元件的驱动或者保护动作的控制作出的规格变更变得容易的半导体装置。

第2目的在于得到一种使用了本发明涉及的半导体装置的IPM。

第3目的在于得到一种使用了本发明涉及的半导体装置或者IPM的电力转换装置。

本发明涉及的半导体装置具有:功率半导体元件;所述功率半导体元件的主电极端子;传感器部,其发出与所述功率半导体元件的物理状态相对应的信号;传感器用信号端子,其与所述传感器部连接;驱动用端子,其供给用于对所述功率半导体元件进行驱动的电力;以及壳体,其收容所述功率半导体元件、所述主电极端子、所述传感器部、所述传感器用信号端子以及所述驱动用端子,所述传感器用信号端子以及所述驱动用端子设置为能够从所述壳体的外部进行接线。

发明的效果

在本发明的半导体装置设置有功率半导体元件和传感器部。功率半导体的驱动用端子以及与传感器部连接的传感器用信号端子设置为能够从壳体的外部进行接线。通过将控制基板与本发明的半导体装置连接,从而构成IPM。控制基板对功率半导体元件的驱动及保护动作进行控制。半导体装置与控制基板通过传感器用信号端子及驱动用端子而进行连接。由于半导体装置与控制基板分开构成,因此能够独立地设计控制基板。因此,在进行驱动及保护动作的规格变更时,仅变更控制基板即可。从而,与以IPM为单位地进行规格变更的情况相比,规格的变更变得容易。

附图说明

图1是本发明的实施方式1涉及的半导体装置及控制基板的剖视图。

图2是表示将本发明的实施方式1涉及的半导体装置及控制基板构成为IPM的例子的斜视图。

图3是由本发明的实施方式1涉及的半导体装置及控制基板构成的IPM的电路图。

图4是表示将本发明的实施方式1涉及的半导体装置的电路图和控制基板的电路图分离后的状态的图。

图5是本发明的实施方式1涉及的传感器部的电路图。

图6是由本发明的实施方式1涉及的半导体装置及控制基板构成的IPM的剖视图。

图7是本发明的实施方式1涉及的半导体装置的剖视图。

图8(a)是表示在将对比例涉及的半导体装置和控制基板连接的状态下,功率半导体元件与控制基板之间的配线距离的剖视图。图8(b)是表示在将本发明的实施方式1涉及的半导体装置和控制基板连接的状态下,功率半导体元件与控制基板之间的配线距离的剖视图。

图9(a)是表示在将对比例涉及的半导体装置和控制基板连接的状态下,驱动用端子及传感器用信号端子的绝缘距离的剖视图。图9(b)是表示在将本发明的实施方式1涉及的半导体装置和控制基板连接的状态下,驱动用端子及传感器用信号端子的绝缘距离的剖视图。

图10是将本发明的实施方式2涉及的半导体装置和控制基板连接的状态的剖视图。

图11是本发明的实施方式3涉及的半导体装置的剖视图。

图12是将本发明的实施方式3涉及的半导体装置和控制基板连接的状态的剖视图。

图13是本发明的实施方式4涉及的半导体装置的剖视图。

图14是本发明的实施方式4涉及的半导体装置的剖视图。

图15(a)是表示利用焊料将本发明涉及的半导体装置和控制基板连接的状态的剖视图。图15(b)是表示利用连接器将本发明涉及的半导体装置和控制基板连接的状态的剖视图。图15(c)是将本发明的实施方式4涉及的半导体装置和控制基板连接的状态的剖视图。

图16是本发明的实施方式5涉及的半导体装置的剖视图。

图17是本发明的实施方式6涉及的半导体装置的剖视图。

图18(a)是表示利用封装树脂将本发明的实施方式6涉及的半导体装置填充至壳体的上表面部的高度为止的状态的剖视图。图18(b)是表示利用封装树脂将本发明的实施方式6的变形例涉及的半导体装置填充至母端子125的上端的高度为止的状态的剖视图。

图19是本发明的实施方式7涉及的半导体装置的剖视图。

图20是本发明的实施方式8涉及的半导体装置的剖视图。

图21是本发明的实施方式9涉及的电力转换装置的俯视图。

标号的说明

46、46-1~46-7功率半导体元件,56主电极端子,47、47-1~47-7传感器部,200、201、202、203、204、205、206、207传感器用信号端子,220、221、222、223、224、226、227驱动用端子,36壳体,30半导体装置,104上表面部,44配线图案,123压配合端子,125母端子,126封装树脂,32、132控制基板,64外部输入输出用控制信号端子,66、66-1~66-7集成电路,70智能功率模块,134电力转换装置。

具体实施方式

参照附图,对本发明的实施方式涉及的半导体装置进行说明。对相同或对应的结构要素标注相同的标号,有时省略重复的说明。

实施方式1.

图1是本发明的实施方式1涉及的半导体装置30及控制基板32的剖视图。在半导体装置30,在基座板34之上配置壳体36。在壳体36的内侧,配线图案38通过焊料40而与基座板34接合。在配线图案38的上表面配置绝缘基板42。在绝缘基板42的上表面配置配线图案44。功率半导体元件46及传感器部47通过焊料48而与配线图案44的上表面进行接合。传感器部47发出与功率半导体元件46的温度相对应的信号以及与流过功率半导体元件46的电流相对应的信号。

在壳体36的内侧,传感器用信号端子200、驱动用端子220以及主电极端子56配置于绝缘基板42的外侧。在传感器用信号端子200、驱动用端子220、主电极端子56与绝缘基板42之间设置有一定的空间。在这里,设置有多个传感器用信号端子200、驱动用端子220以及主电极端子56,但在图1中由于重叠而绘制为1根端子。传感器用信号端子200与传感器部47连接。驱动用端子220供给用于对功率半导体元件46进行驱动的电力。功率半导体元件46与主电极端子56通过电力配线用键合导线58而进行连接。功率半导体元件46与传感器用信号端子200、驱动用端子220通过信号配线用键合导线60而进行连接。

控制基板32具有印刷基板62。在印刷基板62的上表面具有外部输入输出用控制信号端子64、集成电路66以及控制电路部件68。

图2是表示由本实施方式中的半导体装置30及控制基板32构成IPM 70的例子的斜视图。在半导体装置30的上部配置控制基板32。半导体装置30与控制基板32经由传感器用信号端子200及驱动用端子220而进行连接。并且,通过在控制基板32的上部配置盖部72,从而构成IPM 70。

图3是本实施方式中的IPM 70的电路图。在图1中为了方便而仅绘制出1个功率半导体元件46,但在本发明中可以设置多个功率半导体元件46。在图3中,示出功率半导体元件46为7个的情况下的电路图。

在这里,将7个功率半导体元件46分别设为功率半导体元件46-1~46-7。另外,在图1中针对功率半导体元件46而设置了传感器部47,在图3中则是针对功率半导体元件46-1~46-7而分别设置传感器部47-1~47-7。另外,在图1中设置有集成电路66,在图3中则是设置7个集成电路66-1~66-7。另外,在图3中电阻68-1~68-7相当于上述的控制电路部件68。此外,也可以搭载电容器作为控制电路部件68。

在图3中,功率半导体元件46-1~46-7为IGBT。功率半导体元件46-1~46-6分别进行接线,构成了3相逆变器电路。在图3所示的电路图的右端配置的P、U、V、W、N以及B相当于上述的主电极端子56。P表示逆变器电源,N表示逆变器接地,U、V以及W表示逆变器输出。

功率半导体元件46-7是为了防止P与N之间的电位由于逆变器减速时的再生电流而上升这一情况所设置的。B为功率半导体元件46-7的集电极电极。另外,在功率半导体元件46-1~46-7分别具有FWDi。

传感器部47-1~47-7由温度传感器部72-1~72-7及电流传感器部74-1~74-7构成。温度传感器部72-1~72-7发出与功率半导体元件46-1~46-7的温度相对应的信号。另外,电流传感器部74-1~74-7发出与流过功率半导体元件46-1~46-7的电流相对应的信号。

另外,在集成电路66-1~66-7中,作为端子而分别具有Vcc、Fo、IN、GND、OUT、OT以及SC。Vcc为电源端子。Fo为错误输出端子。IN为功率半导体元件46-1~46-7的驱动信号的输入端子。GND为基准电源端子。OUT为对功率半导体元件的驱动进行控制的端子,与功率半导体元件46-1~46-7的栅极连接。OT为针对过热的保护功能的控制端子,与温度传感器部72-1~72-7连接。SC为针对过电流的保护功能的控制端子,与电流传感器部74-1~74-7连接。另外,SC通过电阻68-1~68-7而与GND连接。

在图3所示的电路图的左端配置的VUP1、VVP1、VWP1、VN1、UFo、VFo、WFo、Fo、UP、VP、WP、UN、VN、WN、Br、VUPC、VVPC、VWPC以及VNC相当于上述的外部输入输出用控制信号端子64。VUP1、VVP1、VWP1、VN1为电源端子,分别与集成电路66-1~66-7的Vcc连接。UFo、VFo、WFo、Fo为错误输出端子,分别与集成电路66-1~66-7的Fo连接。UP、VP、WP、UN、VN、WN、Br为功率半导体元件46-1~46-7的驱动信号的输入端子,分别与集成电路66-1~66-7的IN连接。VUPC、VVPC、VWPC、VNC为基准电源端子,分别与集成电路66-1~66-7的GND连接。

图4针对本实施方式中的IPM 70而示出将半导体装置30的电路图和控制基板32的电路图分离后的状态。电路图80为半导体装置30的电路图,电路图82为控制基板32的电路图。在电路图80中,端子G相当于驱动用端子220。另外,端子A、K以及S相当于传感器用信号端子200。另外,端子E为基准电源端子。通过端子G、A、K、S、E分别与电路图82的端子G、A、K、S、E进行连接,从而构成IPM 70的电路。

此外,在图3及图4中电阻68-1~68-7搭载于控制基板32侧,但也可以搭载于半导体装置30侧。

图5是本实施方式中的传感器部47的电路图的另一个例子。为了方便,在图5中提取出图3及图4所示的3相逆变器电路之中功率半导体元件46-1和46-4的部分。在图3及图4中,作为传感器部47-1~47-7而搭载有温度传感器部72-1~72-7和电流传感器部74-1~74-7,但也可以进一步具有发出与施加于半导体装置30各部分的电压相对应的信号的电压传感器部90。

电压传感器部90具有第1电压传感器部92、第2电压传感器部94以及第3电压传感器部96。第1电压传感器部92发出与功率半导体元件46-1和46-4的集电极-发射极间的电压相对应的信号。第2电压传感器部94发出与向在配线之上搭载的分流电阻98的两端施加的电压相对应的信号。第3电压传感器部96发出与P和N之间的电压相对应的信号。此外,也可以不搭载分流电阻98。在该情况下,第2电压传感器部94发出与向配线之上的2点间施加的电压相对应的信号。

图6是由本实施方式中的半导体装置30及控制基板32构成的IPM 70的剖视图。半导体装置30与控制基板32经由传感器用信号端子200及驱动用端子220而进行连接。关于传感器用信号端子200、驱动用端子220与控制基板32的接合方法,存在焊接、利用连接器进行的连接、超声波接合以及熔接。

在现有的IPM中,功率半导体元件、传感器部、功率半导体元件的驱动的控制电路以及保护动作的控制电路一体化地收容于封装件内。在IPM中,针对驱动的控制电路以及保护动作的控制电路而频繁地发生规格变更。但是,在现有的结构中,当针对这些控制电路而变更规格时,需要以IPM为单位地进行变更,需要较长的开发期。

在本实施方式中,半导体装置30与控制基板32分开构成,能够独立地设计控制基板32。因此,在进行驱动及保护动作的规格变更时,仅变更控制基板32即可。从而,与以IPM为单位地进行规格变更的情况相比,规格的变更变得容易。另外,由于使频繁地进行规格变更的控制基板32独立,因此能够使半导体装置30标准化。从而,能够实现开发期的缩短。

另外,由于本实施方式中的半导体装置30与控制基板32分开构成,因此如果从用户侧考虑,还能够仅使用半导体装置30。本实施方式中的半导体装置30设置为,传感器用信号端子200及驱动用端子220能够从壳体36的外部进行接线。因此,用户能够使用传感器用信号端子200及驱动用端子220而自由地设计控制电路。

另外,在现有的IPM的情况下,用户需要配合已固定的IPM的端子而设计用户侧的装置。在本实施方式中,用户能够自由地设计控制基板32。因此,能够自由地配置IPM的外部输入输出用控制信号端子64等。从而,用户侧的装置的布局自由度提高。

在用户使用仅搭载功率半导体元件的半导体模块的情况下,用户能够自由地设计传感器部、驱动的控制电路以及保护动作的控制电路。在这里,为了实现高速的响应,优选传感器部配置于功率半导体元件的附近。但是,在由用户设置传感器部的情况下,有时因为布局的制约而难以将传感器部配置于功率半导体元件的附近。因此,存在未实现可靠的保护动作的情况。

在半导体装置30具有传感器部47。因此,与使用仅搭载功率半导体元件的半导体模块的情况相比,使用了半导体装置30的情况下能够实现可靠的保护动作及驱动的控制。

图7是本实施方式涉及的半导体装置30的剖视图。下面,参照图7,说明本实施方式的端子构造涉及的特征。在本实施方式中,如箭头100所示,传感器用信号端子200及驱动用端子220配置于壳体36的内侧。并且,如箭头102所示,传感器用信号端子200及驱动用端子220的上端处于比壳体36的上表面部104低的位置。

图8(a)表示将本实施方式涉及的半导体装置30的对比例和控制基板32连接的状态的剖视图。图8(a)所示的半导体装置30具有埋入于壳体36侧面的传感器用信号端子201及驱动用端子221。传感器用信号端子201及驱动用端子221的上端处于比壳体36的上表面部104高的位置。箭头106表示控制基板32与功率半导体元件46之间的配线距离。

与此相对,图8(b)是将本实施方式涉及的半导体装置30和控制基板32连接的状态的剖视图。箭头108表示控制基板32与功率半导体元件46之间的配线距离。如果将箭头108和图8(a)中的箭头106进行对比,则在本实施方式中控制基板32与功率半导体元件46之间的配线距离较短。

通过使从控制基板32至功率半导体元件46为止的配线距离变短,具有降低阻抗、减少外来噪声以及使响应高速化的效果。因此,能够使功率半导体元件46的驱动及保护动作的控制变得可靠。

图9(a)是在上述的对比例中,利用箭头110表示传感器用信号端子201、驱动用端子221与壳体36的外部之间的绝缘距离的图。图9(b)是在上述的本实施方式中,利用箭头112表示传感器用信号端子200、驱动用端子220与壳体36的外部之间的绝缘距离的图。

如果将箭头112和图9(a)中的箭头110进行对比,则在本实施方式中,传感器用信号端子200、驱动用端子220与壳体36的外部之间的绝缘距离较长。由此能够确保耐压性。

实施方式2.

图10是将本实施方式涉及的半导体装置30和控制基板32连接的状态的剖视图。在本实施方式中,半导体装置30具有传感器用信号端子202及驱动用端子222。如箭头114所示,传感器用信号端子202及驱动用端子222的上端处于比壳体36的上表面部104高的位置。

在本实施方式中,传感器用信号端子202及驱动用端子222的上端伸出至壳体36之外。因此,能够将控制基板32配置于从半导体装置30的正上方偏移后的位置。另外,能够使控制基板32的大小比壳体大。因而,控制基板32的布局及大小的自由度提高。

实施方式3.

图11是本实施方式涉及的半导体装置30的剖视图。本实施方式涉及的半导体装置30与实施方式1的情况相同,具有多个传感器用信号端子203及驱动用端子223。在传感器用信号端子203及驱动用端子223之中,一部分的上端比壳体36的上表面部104低,一部分的上端比壳体36的上表面部104高。在这里,在图11中由于传感器用信号端子203及驱动用端子223重叠而仅绘制出2根。

图12是向本实施方式涉及的半导体装置30连接有2个控制基板120、121的状态的剖视图。为了降低阻抗,将需要使与功率半导体元件46的配线距离变短的电路搭载于第1控制基板120。另外,将为了与外部进行接线因而布局不具有自由度的电路搭载于第2控制基板121。

在传感器用信号端子203及驱动用端子223之中,与第1控制基板120连接的端子设置为上端比上表面部104低。在传感器用信号端子203及驱动用端子223之中,与第2控制基板121连接的端子设置为上端比上表面部104高。因而,第1控制基板120配置于壳体36的内部。另外,第2控制基板121配置于壳体36的上部。由此,在本实施方式中,能够将多个控制基板120、121连接至半导体装置30。因此,能够兼顾阻抗的降低及布局自由度的提高。另外,通过提高布局的自由度,能够实现用户侧的装置的小型化。

实施方式4.

图13是本实施方式涉及的半导体装置30的剖视图。在本实施方式中,半导体装置30具有传感器用信号端子204及驱动用端子224。传感器用信号端子204及驱动用端子224的一部分或者全部由压配合端子123构成。

图14示出将本实施方式涉及的半导体装置30之中的特别是以下部分提取出的情况下的剖视图,即,传感器用信号端子204及驱动用端子224的上端配置于壳体36的内侧,该上端比壳体36的上表面部104低。这样,在传感器用信号端子204及驱动用端子224收容于壳体36的内侧的情况下,与这些端子从壳体36的上表面伸出至外部的情况相比,控制基板32的连接变得困难。本实施方式在图14所示的传感器用信号端子204及驱动用端子224收容于壳体36的内侧的情况下效果高。关于这些,下面会使用本实施方式涉及的图15(c)及对比例涉及的图15(a)、(b)而进行说明。

图15(c)是表示将图14所示的半导体装置30与控制基板32连接的状态的剖视图。在本实施方式中,传感器用信号端子204及驱动用端子224由压配合端子123构成。压配合端子123能够通过将压配合端子123压入至设置于控制基板32的通孔而进行连接。因此,在本实施方式中,能够容易地将传感器用信号端子204、驱动用端子224与控制基板32连接。另外,压配合端子123在连接时无需焊料等连接介质。因此,能够节约控制基板32的空间。

图15(a)为将半导体装置30与控制基板32连接的状态下的相对于本实施方式的对比例。在图15(a)中,利用焊料122将控制基板32与传感器用信号端子200、驱动用端子220连接。传感器用信号端子200及驱动用端子220配置于壳体36的内侧,它们的上端比壳体36的上表面部104低。在该情况下,难以利用焊料进行连接,生产性差。

图15(b)为将半导体装置30与控制基板32连接的状态下的相对于本实施方式的其他对比例。在图15(b)中,传感器用信号端子200、驱动用端子220与控制基板32通过连接器124而进行连接。如果使用连接器124,则连接变得容易。但是,需要在控制基板32设置搭载连接器124的空间。因此,在控制基板32难以实现空间的节约。另外,由于在连接器124的内部存在配线,因此如果使用连接器124,则配线距离变长。

实施方式5.

图16是本实施方式涉及的半导体装置30的剖视图。在本实施方式中,半导体装置30具有传感器用信号端子205,该传感器用信号端子205将从配线图案44取出的信号输出。传感器用信号端子205通过信号配线用键合导线60而与配线图案44连接。在配线图案44搭载有功率半导体元件46。根据配线图案44,例如能够从功率半导体元件46的背面取出信号。

因此,通过将传感器用信号端子205与控制基板32连接,从而在控制基板32能够从难以从功率半导体元件46的表面侧接触到的部位取出信号。因而,在由本实施方式涉及的半导体装置30和控制基板32构成IPM 70的情况下,能够实现保护功能的增加。

特别在功率半导体元件46为IGBT的情况下,功率半导体元件46的背面成为集电极。因此,配线图案44与集电极连接。因而,配线图案44成为发出与集电极的电位相对应的信号的传感器部。因此,在IPM 70能够具有针对集电极电位的保护功能。

此外,在上述的例子中,设为通过配线图案44而从功率半导体元件46的背面取出信号,通过传感器用信号端子205而将该信号发送至控制基板32,但不限定于此。经由配线图案而发送至控制基板32的信号可以为与功率半导体元件46的状态相关的任意信号。

实施方式6.

图17是本实施方式涉及的半导体装置30的剖视图。在本实施方式中,半导体装置30具有传感器用信号端子206及驱动用端子226。传感器用信号端子206及驱动用端子226由母端子125构成。另外,母端子125的上端与壳体36的上表面部104为相同的高度。

图18(a)是表示利用封装树脂126将本实施方式涉及的半导体装置30填充至壳体36的上表面部104的高度为止的状态的剖视图。母端子125能够通过将控制基板32侧的连接部分插入至母端子125而与控制基板32进行连接。因此,母端子125能够设置为不从壳体36的上表面凸出。因而,能够抑制组装中的传感器用信号端子206及驱动用端子226的折断及弯曲。

图18(b)为本实施方式的变形例。传感器用信号端子206及驱动用端子226也可以为,它们的上端比壳体36的上表面部104的高度低。通过将传感器用信号端子206及驱动用端子226设为母端子125,能够使封装树脂126和端子的上表面对齐。因而,能够抑制组装中的传感器用信号端子206及驱动用端子226的折断及弯曲的发生。

实施方式7.

图19是本实施方式涉及的半导体装置30的剖视图。在本实施方式中,传感器用信号端子207及驱动用端子227配置于配线图案44之上。根据本实施方式的结构,与实施方式1的情况相比,能够使传感器用信号端子207及驱动用端子227更接近功率半导体元件46。因此,能够实现阻抗的降低及高速的响应。另外,将传感器用信号端子207及驱动用端子227引出的位置的自由度提高。因此,控制基板32的布局的自由度提高。另外,由于能够削减用于对在绝缘基板42的周围设置的端子进行配置的空间,因此能够实现半导体装置30的小型化。

实施方式8.

图20是本实施方式涉及的半导体装置30的剖视图。在本实施方式中,利用封装树脂126填充壳体36的内部。填充的方法有,利用硬质树脂将内部配线封装的直接灌注构造、以及通过传递模塑树脂而实现的填充。另外,在本实施方式中,半导体装置30具有传感器用信号端子204及驱动用端子224。传感器用信号端子204及驱动用端子224由压配合端子123构成。

通过利用封装树脂126填充壳体36的内部,从而半导体装置30的强度提高。另外,通过将功率半导体元件46、电力配线用键合导线58以及信号配线用键合导线60牢固地进行固定,从而可靠性寿命提高。另外,在将压配合端子123与控制基板32连接时,会对端子施加力。在该情况下,需要将传感器用信号端子204及驱动用端子224的根部牢固地进行固定。此时,通过封装树脂126而实现的填充特别地有效。

在本实施方式中,传感器用信号端子204及驱动用端子224由压配合端子123构成,但也可以设置其他形状的端子。

实施方式9.

图21是本实施方式涉及的电力转换装置134的俯视图。电力转换装置134具有:实施方式1~8的半导体装置30、使用了半导体装置30的2个IPM 70、以及4个3相逆变器130。向半导体装置30连接有用户准备的控制基板132。半导体装置30、IPM 70以及3相逆变器130连接至母线136。电力转换装置134构成逆变器装置。

根据现有的结构,为了实现希望的布局,需要对母线136复杂地进行绕引。但是,如果对母线136进行绕引,则电感增加。如果电感增加,则导致电压浪涌的增加。另一方面,如果为了抑制电压浪涌而追加缓冲电路,则需要配置缓冲电路的空间,成为电力转换装置134的小型化的阻碍。

通过在电力转换装置134使用实施方式1~8的半导体装置30,从而控制基板32、132的配置的自由度提高。另外,由于能够将控制基板32、132独立于半导体装置30而进行设计,因此能够自由地配置控制基板32、132的外部输入输出用控制信号端子64的位置。因此,对于半导体装置30以及搭载有使用了半导体装置30的IPM 70的电力转换装置134,装置的布局的自由度提高。因而,能够实现电力转换装置134的小型化。

另外,当前,能够搭载于电力转换装置134的功率半导体元件46的数量由于布局的制约而受到限制。但是,如果采用的是半导体装置30或者是使用了半导体装置30的IPM 70,则布局的自由度提高。因此,可以增加能够搭载于电力转换装置134的功率半导体元件46。从而,能够提高电力转换装置134的功能。

此外,电力转换装置134除了逆变器装置之外,还可以为转换器装置、伺服放大器或者电源单元。

实施方式10.

在本实施方式中,实施方式1~9的半导体装置30、IPM 70以及电力转换装置134所具有的功率半导体元件46由宽带隙半导体形成。宽带隙半导体为碳化硅、氮化镓类材料或者金刚石。

宽带隙半导体由于高速通断时的损失少以及耐高温,因此多使用于比硅器件所用的条件更高频、高速通断的用途。因此,特别是浪涌电压变大这一情况成为了课题。

如上所述,如果使用实施方式1~8的半导体装置30,则布局的自由度提高。因而,能够适当地配置母线136及缓冲电路。因此,在由宽带隙半导体形成的半导体装置30、IPM 70以及电力转换装置134中,能够抑制浪涌电压。

另外,关于宽带隙半导体,来自宽带隙半导体的辐射噪声大这一情况成为了问题。在实施方式3及4的半导体装置30中,能够以将半导体装置30与控制基板32分离的形式进行布局。因而,能够避免控制基板32受到来自宽带隙半导体的辐射噪声的影响。

此外,也可以使图3、图4以及图5所示的FWDi由宽带隙半导体形成。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1