本发明涉及具备成为车轮的驱动力源的旋转电机以及控制该旋转电机的逆变器装置的车辆用驱动装置。
背景技术:
在美国专利申请公开第2014/0202279号说明书(us2014/0202279a1)(专利文献1)示出了混合动力车所优选的变速装置(transmission10)(例如fig.1,fig.2)。在该变速装置包含有旋转电机(motor/generator56,58)以及驱动旋转电机的逆变器(powerinvertermodule30)。旋转电机以及逆变器收容于由外壳(casing12)、接合于外壳的盖(lid36)形成的收容空间内。在盖形成有开口部(firstopening52,secondopening84),从这些开口部向外部突出形成与逆变器电连接的连接端子(firstjunction38,connectionplug88)。这些连接端子被布线部件(firstcableharness50,wireharness86)连接于电源装置、控制装置等配置于变速装置的外部的其他装置。另外,进行用于对逆变器进行冷却的制冷剂的供给以及排出的流路通过外壳的平台(platform26)进入收容空间内,在收容空间内连接于逆变器(例如参照fig.4)。
在专利文献1的变速装置中,制冷剂的流路经由外壳的壁连接于在外壳中配置的逆变器,因此实施密封的位置增多。其结果,存在构造变得复杂、制造成本增高的可能性。
专利文献1:美国专利申请公开第2014/0202279号说明书
技术实现要素:
鉴于上述情况,在具备成为车轮的驱动力源的旋转电机以及控制该旋转电机的逆变器装置的车辆用驱动装置中,期望抑制实施密封的位置的个数的构造。
作为一个方式,鉴于上述情况的车辆用驱动装置为一种在被壳体外壁围起的空间内置成为车轮的驱动力源的旋转电机以及控制该旋转电机的逆变器装置的车辆用驱动装置,其具备:
至少收容上述旋转电机的主体壳体、
接合于上述主体壳体的逆变器壳体、以及
接合于上述逆变器壳体的逆变器壳体罩,
在至少由上述逆变器壳体围起的空间形成有收容上述逆变器装置的逆变器收容室,
将上述旋转电机与上述逆变器装置电连接的连接端子被配置于上述逆变器收容室内,
上述壳体外壁由作为上述主体壳体的外壁形成部的第一外壁形成部、作为上述逆变器壳体的外壁形成部的第二外壁形成部以及上述逆变器壳体罩形成,
将对上述逆变器装置进行冷却的液体制冷剂的供给口以及排出口形成于上述第二外壁形成部。
根据本结构,在第二外壁形成部设置有液体制冷剂的供给口以及排出口,换言之,在收容成为冷却对象的逆变器装置的逆变器壳体直接形成有供给口以及排出口。因此,需要密封的位置被限定。例如,在专利文献1中,供给口以及排出口通过外壳的平台(platform26)进入收容空间内,在收容空间内连接于逆变器装置。因此,与本结构相比,密封位置至少增多在外壳的外部空间与收容空间的边界部分需要密封的数量。如上,根据本结构,在具备成为车轮的驱动力源的旋转电机以及控制该旋转电机的逆变器装置的车辆用驱动装置中,能够实现逆变器装置的维护较容易,并且抑制了实施密封的位置的个数的构造。
车辆用驱动装置的进一步的特征与优点通过参见以下的关于参照附图说明的实施方式的记载而变得明确。
附图说明
图1是表示车辆用驱动装置的简要结构的框图。
图2是驱动旋转电机的电气系统的示意性电路框图。
图3是车辆用驱动装置的外观立体图。
图4是车辆用驱动装置的分解立体图。
图5是图3的v-v剖面的局部放大图。
图6是图3的vi-vi剖面的局部放大图。
图7是从上方观察车辆用驱动装置的示意性俯视图。
具体实施方式
以下,参照附图对车辆用驱动装置的实施方式进行说明。在本实施方式中,如图1所示,以作为车辆的车轮的驱动力源具备内燃机e以及旋转电机mg双方的车辆(混合动力车辆)的车辆用驱动装置1(混合动力车辆用驱动装置)为例进行说明。车辆用驱动装置1构成为所谓的单马达并联式的混合动力车辆用的驱动装置。在以下的说明中,涉及各部件的方向、位置等的用词是也包含具有在制造上能够允许的误差所引起的差异的状态的概念。另外,各部件的方向表示在将它们组装于车辆用驱动装置1的状态下的方向。
内燃机e是通过汽油、轻油、乙醇、天然气等烃类的燃料、氢气等的爆燃来输出动力的热机。旋转电机mg是通过多相交流(例如三相交流)来进行动作的旋转电机(motor/generator),,可发挥作为电动机或是发电机的功能。如后文中参照图2叙述的那样,旋转电机mg从高压直流电源bh接受电力的供给进行动力运行,或者将通过内燃机e的扭矩、车辆的惯性力发出的电力供给至高压直流电源bh(再生)。均能够成为车轮w的驱动力源的内燃机e与旋转电机mg经由作为驱动力源连结装置的离合器cl被驱动连结。
此外,“驱动连结”是指两个旋转构件被连结为能够传递驱动力的状态。具体而言,“驱动连结”包含该两个旋转构件以一体地旋转的方式被连结的状态,或者该两个旋转构件被连结为能够经由一个或者两个以上的传动部件传递驱动力的状态。作为上述的传动部件,包含将旋转以同速或者变速的方式传递的各种部件,例如,包含轴、齿轮机构、带、链等。另外,作为上述的传动部件,也可以包含选择性地传递旋转以及驱动力的卡合装置,例如摩擦卡合装置、啮合式卡合装置等。
在本实施方式中,车辆用驱动装置1还具备变速装置tm、反转齿轮机构cg、差动齿轮装置df。即,如图1所示,在车辆用驱动装置1的连结内燃机e与车轮w的动力传递路径(即,连结输入轴i与输出轴o的动力传递路径)中,从内燃机e的一侧按顺序设置有离合器cl、旋转电机mg、变速装置tm、反转齿轮机构cg、差动齿轮装置df(输出用差动齿轮装置)。在本实施方式中,从离合器cl至差动齿轮装置df的装置收容于后述的壳体2(驱动装置壳体)内。
如图1所示,输入轴i驱动连结于与旋转电机mg一同作为车轮w的驱动力源发挥功能的内燃机e。例如,在内燃机e的输出轴(曲轴等)驱动连结有输入轴i。内燃机e的输出轴与输入轴i也可以经由减振器等被驱动连结。作为驱动力源连结装置的离合器cl选择性地驱动连结输入轴i(内燃机e)与旋转电机mg。即,离合器cl驱动连结、断开两个驱动力源、内燃机e与旋转电机mg。例如,离合器cl由油压驱动式的摩擦卡合装置、电磁驱动式的摩擦卡合装置、啮合式的卡合装置等构成。另外,离合器cl例如也可以为变矩器的锁止离合器。
旋转电机mg与输入轴i配置为同轴。旋转电机mg具有固定于壳体2的定子以及以能够自如旋转的方式支承于该定子的径向内侧的转子。定子包含定子铁芯以及卷绕于定子铁芯的定子线圈,转子包含转子铁芯以及配置于转子铁芯的永久磁铁。旋转电机mg的转子以与中间轴m一体旋转的方式被驱动连结。该中间轴m也可以为变速装置tm的输入轴(变速输入轴)。
变速装置tm与输入轴i以及旋转电机mg配置为同轴。变速装置tm为了形成多个变速级,能够构成为具有有级变速机构,该有级变速机构具备行星齿轮机构等齿轮机构以及多个卡合装置(离合器、制动器等)。或者,变速装置tm也可以具有在两个带轮(滑轮)架设带、链,使带轮的直径变化,从而能够进行连续的变速的变速机构(无级变速机构(cvt:continuouslyvariabletransmission))。另外,变速装置tm也可以为变速比被固定的齿轮机构。即,变速装置tm对输入轴的旋转进行变速并传递至输出轴,并且在变速比可变的情况下,只要具有构成为能够变更该变速比的变速机构,则其方式也可以为任意。此外,变速比是在变速装置tm中形成各变速级的情况下的、输入轴的旋转速度相对于输出轴的旋转速度的比(=输入轴的旋转速度/输出轴的旋转速度)。变速装置tm使输入中间轴m的旋转以及扭矩与各时刻的变速比对应地变速,并且进行扭矩转换,进而传递至该变速装置tm的输出部件(变速输出部件)亦即变速输出齿轮go。
变速输出齿轮go驱动连结于反转齿轮机构cg。反转齿轮机构cg的旋转轴心被配置为与输入轴i等呈平行状,且不同轴。此外,“平行状”意味着平行的状态,或者实际上视为平行的状态(例如以5°以下的角度并行的状态)。例如,反转齿轮机构cg具有分别形成于共通的轴部件的两个齿轮。一方的齿轮与变速装置tm的变速输出齿轮go啮合,另一方的齿轮与差动齿轮装置df的差动输入齿轮gi啮合。
差动齿轮装置df的旋转轴心被配置为与输入轴i等以及反转齿轮机构cg呈平行状,且不同轴。差动齿轮装置df经由作为输出部件的输出轴o驱动连结于车轮w。差动齿轮装置df构成为包含相互啮合的多个伞齿轮,将输入至差动输入齿轮gi的旋转以及扭矩分配传递至左右两个输出轴o(即,左右两个车轮w)。由此,车辆用驱动装置1能够使内燃机e以及旋转电机mg的至少一方的扭矩传递至车轮w而使车辆行走。
如图2所示,通过多相交流(此处为三相交流)进行动作的旋转电机mg经由逆变器3与高压直流电源bh(电池、电容器等)电连接。高压直流电源bh的电源电压例如为200~400[v]。高压直流电源bh是镍氢电池、锂离子电池等二次电池(电池)、双电层电容器等。高压直流电源bh能够经由逆变器3向旋转电机mg供给电力,并且能够积蓄旋转电机mg发电而获得的电力。在逆变器3与高压直流电源bh之间具备使逆变器3的直流侧的正负两极间电压(直流链电压vdc)平滑化的平滑电容器(直流链电容器c)。直流链电容器c使与旋转电机mg的消耗电力的变动对应地变动的直流电压(直流链电压vdc)稳定化。
在直流电力与交流电力之间转换电力的逆变器3将直流电力转换成多相(此处为三相)的交流电力并供给至旋转电机mg,并且将旋转电机mg发出的交流电力转换成直流电力供给至高压直流电源bh。逆变器3与旋转电机mg经由连接端子8被连接。逆变器3构成为具有多个开关元件30。在开关元件30优选应用igbt(insulatedgatebipolartransistor)、功率mosfet(metaloxidesemiconductorfieldeffecttransistor)、sic-mosfet(siliconcarbide-metaloxidesemiconductorfet)、sic-sit(sic-staticinductiontransistor)等功率半导体元件。如图2所示,在本实施方式中,作为开关元件30使用igbt。
众所周知,逆变器3由具有与多相的每一相对应的臂的电桥电路构成。换句话说,如图2所示,在逆变器3的直流正极侧与直流负极侧之间以串联的方式连接有两个开关元件30而构成一个臂。在三相交流的情况下,该串联电路(一个臂)被进行三线(三相)并联连接。换句话说,构成一组串联电路(臂)与和旋转电机mg的u相、v相、w相对应的定子线圈的每一线圈对应的电桥电路。此外,在各开关元件30以从负极朝向正极的方向(从下层侧朝向上层侧的方向)为正向,并列地具备续流二极管。在本实施方式中,构成为具有开关元件30以及续流二极管的三相臂的逆变器3作为ipm(intelligentpowermodule)32(参照图5、图6)被模块化为一个封装。
逆变器3被逆变器控制装置80控制。逆变器控制装置80将微型计算机等的逻辑电路构建为核心部件。在本实施方式中,逆变器控制装置80在基板31(参照图5、图6)上构成,与逆变器3一同收容于逆变器收容室51(参照图4~图6)。即,在本实施方式中,至少具有逆变器3与逆变器控制装置80来构成逆变器装置100。逆变器控制装置80从比上述的高压直流电源bh更低压的例如12~24[v]左右的电源电压的低压直流电源bl被供给电力。
例如,逆变器控制装置80基于经由can(controllerareanetwork)等从车辆ecu(electroniccontrolunit)90(车辆控制单元)等其他控制装置等被作为请求信号提供的旋转电机mg的目标扭矩,进行使用了矢量控制法的电流反馈控制,而经由逆变器3对旋转电机mg进行控制。配置于壳体2(驱动装置壳体)的外部空间的电气装置(低压直流电源bl、车辆ecu90等)与逆变器控制装置80经由外部连接端子33被连接。即,外部连接端子33具有将电源供给线以及通信线连接的功能。逆变器控制装置80为了电流反馈控制而构成为具有各种功能部,各功能部通过微型计算机等的硬件与软件(程序)的协作而被实现。电流反馈控制为公知技术,因此此处省略详细的说明。
此外,在旋转电机mg的各相的定子线圈流过的实际电流由电流传感器39检测,逆变器控制装置80取得该检测结果。由于三相的交流电流平衡,瞬时值始终成为零(振幅中心),因此也可以仅检测三相内的两相的电流,剩余的一相通过运算取得。另外,旋转电机mg的转子的各时刻的磁极位置、旋转速度例如由分解器等旋转传感器38检测,逆变器控制装置80取得该检测结果。
如上所述,在本实施方式中,车辆用驱动装置1构成为:设置于连结内燃机e与车轮w的动力传递路径的车辆用驱动传递装置、具体而言离合器cl、旋转电机mg、变速装置tm、反转齿轮机构cg、差动齿轮装置df收容于壳体2(驱动装置壳体)内。此处,“收容于壳体2内”是指“内置于被壳体2的壳体外壁2a围起的空间”。
图3的立体图示出了车辆用驱动装置1的外观。另外,图4是车辆用驱动装置1的局部的分解立体图。如后文中说明的那样,车辆用驱动装置1针对控制旋转电机mg的逆变器3的收容具有特征的构造。因此,车辆用驱动装置1只要至少将成为车轮w的驱动力源的旋转电机mg以及控制该旋转电机mg的逆变器3内置于被壳体外壁2a围起的空间即可,不限定于本实施方式的方式。
如图3以及图4所示,本实施方式的车辆用驱动装置1具备:至少收容旋转电机mg的主体壳体4、接合于主体壳体4的逆变器壳体5以及接合于逆变器壳体5的逆变器壳体罩6。换句话说,车辆用驱动装置1的壳体2(驱动装置壳体)至少由主体壳体4、逆变器壳体5、逆变器壳体罩6构成。具体而言,车辆用驱动装置1的最外侧、换句话说在外部露出的部分亦即壳体外壁2a至少由作为主体壳体4的外壁形成部的第一外壁形成部4w、作为逆变器壳体5的外壁形成部的第二外壁形成部5w、逆变器壳体罩6形成。逆变器壳体罩6形成为底部平坦的托盘状,突出的一侧的大致整个面成为外壁形成部。也可以将逆变器壳体罩6的突出的一侧称为第三外壁形成部。此外,壳体2也可以构成为还具有其他的部件,在该情况下,该其他的部件的外壁形成部可以构成壳体外壁2a的一部分。
例如,在专利文献1的构造中,相当于逆变器壳体5的部位(powerinvertermodule30)被相互接合的外壳(casing12)与盖(lid36)完全包围。根据上述的构造,例如在组装形成车辆用驱动装置1后或将车辆用驱动装置1搭载于车辆后,在需要更换逆变器3的情况下,需要在使外壳(casing12)与盖(lid36)分离后,从中取出与逆变器(3)对应的部位(powerinvertermodule30)。但是,在本实施方式的车辆用驱动装置1中,逆变器壳体5的一部分(第二外壁形成部5w)构成壳体外壁2a。因此,在车辆用驱动装置1的最外侧配置有逆变器3。因此,通过逆变器壳体5与主体壳体4分离,能够更换逆变器3。
图5示出了图3的v-v剖面的局部放大图,图6示出了图3的vi-vi剖面的局部放大图。如图5以及图6所示,形成有在至少由逆变器壳体5围起的空间收容逆变器3的逆变器收容室51。逆变器收容室51为了配置电子部件,而需要进行适度密封,以避免冷却油、润滑油、水、其他液体浸入壳体2内,特别是浸入逆变器收容室51内。图5以及图6中的附图标记s1、s2、s3、s4示出了对壳体2的内部与外部之间进行密封的密封部件。密封部件能够使用由丁腈橡胶、苯乙烯橡胶、硅酮橡胶、氟橡胶等橡胶材料构成的o型圈、x型圈等。
第一密封部件s1配置于逆变器壳体5与主体壳体4之间,对逆变器收容室51与比分隔壁部55更靠图5以及图6中的下方的空间之间进行密封。此外,逆变器收容室51也可以向比分隔壁部55更靠图5以及图6中的下方(未图示的区域)延展。即,可以将逆变器收容室51由分隔壁部55分隔,并将构成逆变器装置100的部件分开地分别配置于两个被分隔的逆变器收容室51。而且,在更下方形成有变速装置tm的收容室(未图示),逆变器收容室51与变速装置tm的收容室也可以被未图示的密封部件以液密状态隔离。
第二密封部件s2配置于逆变器壳体5与逆变器壳体罩6之间,对逆变器收容室51与车辆用驱动装置1的外部空间之间进行密封。第三密封部件s3配置于逆变器壳体5与后述的外部连接端子33之间,对逆变器收容室51与车辆用驱动装置1的外部空间之间进行密封。第四密封部件s4在逆变器收容室51中,为了划分形成对逆变器3进行冷却的液体制冷剂的流路,而配置于逆变器壳体5的分隔壁部55与后述的散热片9之间,以避免液体制冷剂向逆变器3侧泄漏的方式进行密封。
将旋转电机mg与逆变器3电连接的连接端子8配置于该逆变器收容室51内。在本例中,从主体壳体4的一侧延伸并连接于逆变器3的连接端子8配置于逆变器收容室51内。连接端子8在逆变器收容室51内被贯通设置于连接端子8的紧固孔8a的螺栓等紧固部件10(参照图7)连接于逆变器3。将连接端子8配置于逆变器收容室51内,从而能够通过拆下逆变器壳体罩6而使连接端子8向外部露出。因此,相对于车辆用驱动装置1拆装逆变器3时的作业性也良好,从而车辆用驱动装置1的维护性也较高。
然而,优选相对于连接端子8处于主体壳体4侧以及相对于连接端子8处于逆变器3侧的至少一侧的布线构成为所谓的母线,与该母线接近地配置以非接触的方式检测电流的电流传感器39。电流传感器39也可以设置于相对于连接端子8处于主体壳体4侧以及相对于连接端子8处于逆变器3侧的任意一侧。然而,接触型的电流传感器39也可以被设置于任意的母线的中途。另外,不限定于图2所示的位置,也可以在构成逆变器3的各臂构成使用了分流电阻的电流传感器。
另外,构成逆变器3的开关元件30伴有较大的发热。因此,如图5以及图6所示,在成为逆变器3的核心的ipm安装有散热片9。散热片9构成为被液体制冷剂冷却,逆变器3经由散热片9与液体制冷剂热交换由此被冷却。在逆变器壳体5的第二外壁形成部5w形成有对逆变器3进行冷却的液体制冷剂的供给口7a以及排出口7b。换句话说,在相对于壳体2的外部露出的部分亦即壳体外壁2a直接设置有液体制冷剂的供给口7a以及排出口7b。此外,在图3、图4、图6中,简单地将制冷剂供排口7的一方设为供给口7a,将另一方设为排出口7b做出例示,但它们的功能也可以相反。
制冷剂供排口7设置于第二外壁形成部5w,但换言之,在逆变器壳体5直接形成有制冷剂供排口7。因此,需要密封的位置被限定。例如,在专利文献1中,制冷剂的流路通过外壳的平台(platform26)进入收容空间内,在收容空间内连接于逆变器(powerinvertermodule30)。因此,与本实施方式相比密封位置至少增多在外壳的外部空间与收容空间的边界部分需要密封的数量。
另外,如上所述,配置于壳体外壁2a的外部空间的电气装置(低压直流电源bl、车辆ecu90)与逆变器装置100(逆变器3、逆变器控制装置80)经由外部连接端子33被电连接。该外部连接端子33也形成于第二外壁形成部5w。即,外部连接端子33与制冷剂供排口7相同,直接设置于逆变器壳体5。因此,例如,与如专利文献1那样经由收容空间内的情况相比,能够抑制需要密封的部位的个数。另外,若使逆变器壳体5从车辆用驱动装置1分离,则与配置于外部空间的与电气装置连接的布线也与逆变器壳体5一同从车辆用驱动装置1分离。因此,相对于车辆用驱动装置1拆装逆变器3时的作业性也良好。
主体壳体4具有在其中内置构成车辆用驱动装置1的车辆用驱动传递装置的至少一个的筒状(四棱柱状的筒状)的主体壁部4m以及形成为朝向作为从主体壁部4m朝向外侧的方向之一的突出方向y突出并且包围突出方向y的周围的突出周壁部4c。在本实施方式中,在主体壁部4m的内侧内置作为车辆用驱动传递装置之一的变速装置tm。突出周壁部4c的突出方向y的端面4p形成所谓的凸缘部。逆变器壳体5的第二外壁形成部5w接合于该凸缘部。形成上述的凸缘部,由此能够使主体壳体4与逆变器壳体5适当地接合。
如图3~图5所示,逆变器壳体5的第二外壁形成部5w的至少一部分具有相对于与突出周壁部4c接合的第一接合面p1形成为平行状的盖部5h。另外,第二外壁形成部5w的至少一部分也具有从与突出周壁部4c接合的第一接合面p1朝向突出方向y突出的壁部(5c)。该壁部(5c)形成为包围突出方向y的周围,并形成为从与突出方向y正交的方向包围逆变器装置100(逆变器3、逆变器控制装置80)的包围壁部5c。该包围壁部5c形成为从盖部5h连续,并从盖部5h朝向突出方向y突出。换言之,第二外壁形成部5w具备包围壁部5c,该包围壁部5c形成为在突出方向y的接合于突出周壁部4c的第一接合面p1与接合于逆变器壳体罩6的第二接合面p2之间的区域包围突出方向y的周围,并包围配置于内侧的逆变器装置100。
逆变器壳体5利用包围壁部5c能够确保沿着突出方向y的方向上的厚度。因此,能够以逆变器壳体5为核心,适当地设置逆变器收容室51。另外,包围壁部5c为第二外壁形成部5w的一部分,因此能够不损坏逆变器壳体5的拆装性,而确保基于逆变器壳体5的逆变器装置100的收容力。另外,逆变器壳体罩6具有接合于第二接合面p2的接合面p3以及从该接合面p3向与逆变器壳体5侧相反一侧鼓起的鼓起部61。利用该鼓起部61形成逆变器收容室51,从而能够确保逆变器装置100的收容力。
设置包围壁部5c,由此逆变器壳体5的壳体外壁2a,换句话说第二外壁形成部5w的表面积增加。有效地利用该增加的表面积,能够适当地设置与车辆用驱动装置1的外部间的连接部。例如,液体制冷剂的制冷剂供排口7形成于该包围壁部5c。因此,如图5以及图6所示,在本实施方式中,能够从逆变器3的侧方朝向相对于逆变器3配置于主体壳体4的一侧的散热片9的方向适当地设置制冷剂路70。即,能够在不妨碍制冷剂的流动,实现良好的热交换的基础上,形成优选的制冷剂路70。
此外,在本实施方式中,如图5以及图6所示,使液体制冷剂循环的流路,即制冷剂路70的内壁的至少一部分由逆变器壳体5构成。如图5以及图6所示,逆变器壳体5具有划分主体壳体4侧与逆变器壳体罩6侧的分隔壁部55。该分隔壁部55构成使液体制冷剂循环的流路的内壁7w的至少一部分。由此,能够抑制逆变器壳体5的大型化,并且实现适当的冷却构造。
另外,构成逆变器3的部件的至少一部分固定于该分隔壁部55。如图5以及图6所示,内置成为逆变器3的核心的开关元件30的ipm32被固定为与散热片9直接接触。而且,散热片9固定于分隔壁部55。ipm32的端子向与散热片9相反的方向突出,贯通基板31,并通过锡焊等连接于基板31。如上所述,在基板31也安装有构成逆变器控制装置80的电子部件,在该基板31上,将逆变器控制装置80与ipm32电连接。
如以上说明的那样,在具备成为车轮w的驱动力源的旋转电机mg以及控制该旋转电机mg的逆变器3的车辆用驱动装置1中,能够实现逆变器3的拆装较容易,并且抑制了实施密封的位置的个数的构造。
〔其他的实施方式〕
以下,对车辆用驱动装置1的其他的实施方式进行说明。此外,以下说明的各实施方式的构成不限定于分别单独地应用的构成,只要不产生矛盾,则也能够与其他的实施方式的构成组合来应用。
(1)上文中,例示了形成有在被逆变器壳体5与逆变器壳体罩6围起的空间收容逆变器装置100(逆变器3、逆变器控制装置80)的逆变器收容室51,并将逆变器装置100配置于该逆变器收容室51的方式。但是,逆变器收容室51只要为至少被逆变器壳体5围起的空间即可,也可以为被逆变器壳体5以及主体壳体4围起的空间,或为被逆变器壳体5、逆变器壳体罩6以及主体壳体4围起的空间。另外,如在第一密封部件s1的说明中提及的那样,逆变器收容室51也可以被分隔壁部55分隔,构成逆变器装置100的部件被分开地分别配置于两个被分隔的逆变器收容室51。
(2)上文中,如图5以及图6所示,例示了从逆变器3的侧方朝向相对于逆变器3配置于主体壳体4的一侧的散热片9的方向设置制冷剂路70的方式。换句话说,例示了将制冷剂供排口7形成于包围壁部5c的方式。但是,制冷剂供排口7只要形成于第二外壁形成部5w即可,不限定于该方式。例如,制冷剂供排口7也可以形成于盖部5h。
(3)上文中,作为配置于壳体外壁2a的外部空间的电气装置,例示了低压直流电源bl以及车辆ecu90,但例如在将逆变器控制装置80设置于壳体2的外部空间的情况下,也能够将逆变器控制装置80设为该电气装置。另外,可以将高压直流电源bh设为该电气装置。在参照图3~图6说明的实施方式中,例示了将与高压直流电源bh连接的外部连接端子34形成于第一外壁形成部4w的方式。但是,可以将该外部连接端子34形成于第二外壁形成部5w。
〔优选的实施方式的概要〕
以下,对上文中说明的车辆用驱动装置(1)的优选的实施方式的概要简单地进行说明。
作为一个方式,车辆用驱动装置(1)在被壳体外壁(2a)围起的空间内置成为车轮(w)的驱动力源的旋转电机(mg)以及控制该旋转电机(mg)的逆变器装置(100),该车辆用驱动装置(1)具备:
至少收容上述旋转电机(mg)的主体壳体(4)、
接合于上述主体壳体(4)的逆变器壳体(5)、以及
接合于上述逆变器壳体(5)的逆变器壳体罩(6),
在至少由上述逆变器壳体(5)围起的空间形成有收容上述逆变器装置(100)的逆变器收容室(51),
将上述旋转电机(mg)与上述逆变器装置(100)电连接的连接端子(8)被配置于上述逆变器收容室(51)内,
上述壳体外壁(2a)至少由作为上述主体壳体(4)的外壁形成部的第一外壁形成部(4w)、作为上述逆变器壳体(5)的外壁形成部的第二外壁形成部(5w)以及上述逆变器壳体罩(6)形成,
将对上述逆变器装置(100)进行冷却的液体制冷剂的供给口(7a)以及排出口(7b)形成于上述第二外壁形成部(5w)。
根据本结构,在第二外壁形成部(5w)设置有液体制冷剂的供给口(7a)以及排出口(7b),换言之,在收容成为冷却对象的逆变器装置(100)的逆变器壳体(5)直接形成有供给口(7a)以及排出口(7b)。因此,需要密封的位置被限定。例如,在专利文献1中,制冷剂的流路通过外壳的平台(platform26)进入收容空间内,在收容空间内连接于逆变器装置(100)。因此,与本结构相比密封位置至少增多在外壳的外部空间与收容空间的边界部分需要密封的数量。如上,根据本结构,在具备成为车轮(w)的驱动力源的旋转电机(mg)以及控制该旋转电机(mg)的逆变器装置(100)的车辆用驱动装置(1)中,能够实现逆变器装置(100)的维护较容易,并且抑制了实施密封的位置的个数的构造。
另外,车辆用驱动装置(1)的最外侧,换句话说壳体外壁(2a)由第一外壁形成部(4w)、第二外壁形成部(5w)、逆变器壳体罩(6)形成。例如,在专利文献1的构造中,相当于逆变器壳体(5)的部位(powerinvertermodule30)被相互接合的外壳(casing12)与盖(lid36)完全内置。因此,例如在组装车辆用驱动装置(1)后或将车辆用驱动装置(1)搭载于车辆后,在需要更换逆变器装置(100)的情况下,在专利文献1的构造中,需要在将外壳(casing12)与盖(lid36)分离后,从中取出与逆变器装置(100)对应的部位(powerinvertermodule30)。但是,根据本结构,逆变器壳体(5)的一部分(第二外壁形成部(5w))构成壳体外壁(2a),在车辆用驱动装置(1)的最外侧配置有逆变器装置(100)。因此,通过将逆变器壳体(5)与主体壳体(4)分离,便能够更换逆变器装置(100)。另外,将旋转电机(mg)与逆变器装置(100)电连接的连接端子(8)也配置于逆变器收容室(51)内,因此相对于车辆用驱动装置(1)拆装逆变器装置(100)时的作业性也良好。即,根据本结构,车辆用驱动装置(1)的维护性提高。
另外,上述连接端子(8)优选从上述主体壳体(4)的一侧延伸,并在上述逆变器收容室(51)内通过紧固部件(10)连接于上述逆变器装置(100)。将连接端子(8)配置于逆变器收容室(51)内,从而能够通过拆除逆变器壳体罩(6)而使连接端子(8)向外部露出。因此,相对于车辆用驱动装置(1)拆装逆变器装置(100)时的作业性也良好,从而车辆用驱动装置(1)的维护性也提高。
车辆用驱动装置(1)优选还在上述第二外壁形成部(5w)形成有外部连接端子(33),该外部连接端子(33)用于将上述逆变器装置(100)与配置于上述壳体外壁(2a)的外部空间的电气装置(bl、90)电连接。与上述的制冷剂供排口(7)相同地,外部连接端子(33)直接设置于逆变器壳体(5)。因此,例如,与如专利文献1那样经由收容空间内的情况相比,能够抑制需要密封的部位的个数。另外,若使逆变器壳体(5)从车辆用驱动装置(1)分离,则与配置于外部空间的电气装置(bl、90)之间的布线也与逆变器壳体(5)一同从车辆用驱动装置(1)分离。因此,相对于车辆用驱动装置(1)拆装逆变器装置(100)时的作业性也良好。
车辆用驱动装置(1)优选上述主体壳体(4)具有筒状的主体壁部(4m)以及形成为朝向作为从上述主体壁部(4m)朝向外侧的方向之一的突出方向(y)突出并且围绕上述突出方向(y)形成的突出周壁部(4c),在上述突出周壁部(4c)的上述突出方向(y)的端面(4p)接合上述第二外壁形成部(5w)。根据该结构,由突出周壁部(4c)形成所谓的凸缘部,因此能够使主体壳体(4)与逆变器壳体(5)适当地接合。
此处,上述第二外壁形成部优选具备在接合于上述突出方向(y)的上述突出周壁部(4c)的第一接合面(p1)与接合于上述逆变器壳体罩(6)的第二接合面(p2)之间的区域围绕上述突出方向(y)形成,并包围配置于内侧的上述逆变器装置(100)的包围壁部(5c)。利用包围壁部(5c)能够确保沿着突出方向(y)的方向上的厚度,因此能够适当地设置逆变器收容室(51)。另外,包围壁部(5c)为第二外壁形成部(5w)的一部分,因此能够不损坏逆变器壳体(5)的拆装性,而确保逆变器壳体(5)对于逆变器装置(100)的收容力。
通过设置包围壁部(5c),能够使逆变器壳体(5)的壳体外壁(2a),换句话说第二外壁形成部(5w)的表面积增加。而且,通过有效地利用增加的表面积,能够适当地设置与车辆用驱动装置(1)的外部的连接部。作为一个方式,优选将上述液体制冷剂的上述供给口(7a)以及上述排出口(7b)形成于上述包围壁部(5c)。
另外,上述逆变器壳体(5)优选具有划分出上述主体壳体(4)的一侧与上述逆变器壳体罩(6)的一侧的分隔壁部(55),上述分隔壁部(55)构成使上述液体制冷剂循环的流路(70)的内壁(7w)的至少一部分,构成上述逆变器装置(100)的部件的至少一部分被固定于上述分隔壁部(55)。由于形成在车辆用驱动装置(1)的外部与逆变器壳体(5)之间直接供给以及排出液体制冷剂,并且使液体制冷剂向逆变器壳体(5)本身循环的流路(70),因此能够简化冷却构造。另外,也能够抑制需要密封的位置的个数。
符号说明
1…车辆用驱动装置;2a…壳体外壁;3…逆变器(逆变器装置);4…主体壳体;4c…突出周壁部;4m…主体壁部;4p…端面;4w…第一外壁形成部;5…逆变器壳体;5c…包围壁部;5w…第二外壁形成部;6…逆变器壳体罩;7…制冷剂供排口;7a…供给口;7b…排出口;7w…内壁;8…连接端子;10…紧固部件;33…外部连接端子;51…逆变器收容室;55…分隔壁部;80…逆变器控制装置(逆变器装置);90…车辆ecu(配置于壳体外壁的外部空间的电气装置);100…逆变器装置;bl…低压直流电源(配置于壳体外壁的外部空间的电气装置);mg…旋转电机;w…车轮;y…突出方向。