显示装置、制造方法及显示设备的制造方法_3

文档序号:9490656阅读:来源:国知局
域2之间留很大的距离,同时第一电极层6的边界也可以适当的缩小。
[0090]第二实施例
[0091]第二实施例与第一实施例的不同之处在于,第二实施例中在形成第一导电层的同时,在显示区域的像素定义层上形成第二导电层(ΙΤ0层),在0LED发光层的工艺之后,第一电极层覆盖在此第二导电层氧化铟锡层之上,有利于减小第一电极层的电阻,从而进一步降低功耗。
[0092]参考图4和7所不,图4为本发明实施例提供的显不装置的俯视图。图7为图4中沿F-F方向的本发明第二实施例的显示装置的剖面示意图。图7中的A部分表示显示区域2、驱动电路3与封装区域4之间的剖面示意图;B部分表示显示区域2的剖面示意图。
[0093]本发明实施例二的一种显示装置10为AM0LED显示装置,本实施例中以底栅结构的TFT背板为例(即栅极在下、半导体层在上),包括:基板1,形成于基板1上的显示区域2、驱动电路3、封装区域4、钝化层5、第一导电层11以及显示元件。
[0094]驱动电路3形成于显示区域2的周围。驱动电路3可以是栅极驱动电路3、发光控制驱动电路3、数据驱动电路3的一种,但不以此为限。封装区域4环绕显示区域2,本实施例中,第一电极层6的边沿位于显示区域2与封装区域4之间。与前述实施例相似,本实施例中,第一电极层6可以是阴极,然而在本实施例中仅是以阴极为例进行说明,则对应的第二电极层可以是阳极,但不以此为限。在本发明的其他实施例中,可以是倒置结构的发光显示装置,则第一电极层6是阳极,第二电极层是阴极。钝化层5覆盖驱动电路3,钝化层5包括暴露驱动电路3的接触孔。第一导电层11覆盖钝化层5,通过接触孔接触驱动电路3。第一导电层11具有朝向显示区域2延展的内沿部分和背离显示区域2延展的外沿部分。本实施例中,第一导电层11是氧化铟锡,然而在本实施例中仅是以氧化铟锡为例进行说明,在本发明的其他实施例中,还可以是其他材料,只要能够实现导电功能,即可作为第一导电层,例如可以是金属导电层,但不以此为限。
[0095]显示元件形成于显示区域2,显示元件包括第一电极层6 (阴极)、有机发光层9、第二导电层14、像素定义层8以及驱动元件层7。其中驱动元件层7包括TFT元件、第二电极层等器件。并且第二电极层位于驱动元件层7的最靠近有机发光层9的一侧。第一电极层6、有机发光层9和第二电极层构成发光器件,当第一电极层6和第二电极层被施加驱动电压时,驱动有机发光层9发光。。像素定义层8包含多个开口,有机发光层9位于像素定义层8的多个开口中。像素定义层8与钝化层5同层且同质,在制备过程中在同一层制备得到,不用添加额外的工序,但不以此为限。第一电极层6形成于有机发光层9和像素定义层8之上。第一电极层6自显示区域2向驱动电路3延展。第一电极层6通过第一导电层11与驱动电路3电连接。第一电极层6覆盖第一导电层11的内沿部分。第二导电层14形成于像素定义层8与第一电极层6之间。第二导电层14与第一导电层11同层且同质,有利于减少制程工序,但不以此为限。由于增加了第二导电层14,在显示区,等同于增加了第一电极层6的厚度,使得第一电极层6的厚度相比现有技术的第一电极层更厚,例如可以为500埃,但不以此为限。与现有技术中阴极6’的厚度为150埃对比可知,阴极厚度增加的情况下的功耗要比阴极厚度薄的要省21%左右。
[0096]如图8所示,图8为本发明第二实施例的显示装置的制造方法的流程图。本实施例提供的制造方法与图6提供的制造方法中,相同的步骤将进行简要描述,其详细步骤请参考图6提供的制造方法的相关描述,在此,仅就其不同部分进行详细描述。结合参考图7和图8,制造第二实施例中的显示装置的制造方法,包括以下步骤:
[0097]首先,提供一基板1,包括显示区域2。
[0098]其次,在基板1上形成驱动电路3和驱动元件层7,其中驱动元件层包括TFT器件和第二电极层,第二电极层位于显示区域2内,驱动电路3位于显示区域2周围。
[0099]其次,在驱动电路3上形成钝化层5,并且在第二电极层上形成像素定义层8,像素定义层8包含多个开口。
[0100]其次,在钝化层5上形成第一导电层11,覆盖钝化层5,并且通过过孔工艺接触驱动电路3 ;在显示区域的像素定义层上形成一第二导电层14,第二导电层与第一导电层同层且同质。第二导电层包含多个开口,并且第二导电层14的开口与像素定义层8的开口轮廓相同。第二导电层14与第一导电层11同层制备,在刻蚀过程中保留显示区域2中像素定义层8上的导电材料。
[0101 ] 其次,形成有机发光层9,有机发光层9位于像素定义层8即第二导电层14的多个开口中。
[0102]其次,形成自显示区域2向驱动电路3延展的第一电极层6,第一电极层6通过第一导电层11与驱动电路3电连接。
[0103]最后,进行封装,封装区域4环绕显示区域2和驱动电路3,第一电极层6的边沿位于显示区域2与封装区域4之间。
[0104]其中,第一电极层6的边沿延展进入驱动电路3的区域的距离h为驱动电路3的宽度Η的30 %至40 %,远远小于现有技术中的超出的距离。
[0105]本发明不但可以通过在钝化层5的接触孔上采用面板工艺(Array工艺,包括成膜、曝光、刻蚀、剥离等步骤)先增加一层透明的氧化铟锡,氧化铟锡的宽度刚好能覆盖住接触孔即可。氧化铟锡增加了阴极的驱动电路的接触区域和接触效果,克服工艺精度差的问题。其它地方在面板工艺中刻蚀掉。由于面板工艺的精度非常高,所以不需要留很宽的距离来考虑第一电极层6覆盖的问题,无需在封装区域4与显示区域2之间留很大的距离,同时第一电极层6的边界也可以适当的缩小。而且还可以通过在显示区域2形成与第一导电层11同层且同质的第二导电层14来进一步减小第一电极层6的电阻,从而降低显示装置的功耗。
[0106]第三实施例
[0107]第三实施例与第一实施例的不同之处在于,第一实施例中的阴极覆盖第一导电层之上,而第三实施例中的第一导电层覆盖阴极之上。
[0108]参考图4和9所示,图4为本发明实施例的显示装置的俯视图。图9为图4中沿F-F方向的本发明第三实施例的显示装置的剖面示意图。图9中的A部分表示显示区域2、驱动电路3与封装区域4之间的剖面示意图;B部分表示显示区域2的剖面示意图。第一导电层11具有朝向显示区域2延展的内沿部分和背离显示区域2延展的外沿部分,第一导电层11的内沿部分覆盖第一电极层6的边沿。第一导电层11的内沿部分和及第一电极层6的边沿均位于驱动电路3与显示区域2之间,但不以此为限。其他技术特征均与第一实施例相同,此处不再赘述。
[0109]并且,和本发明图7提供的实施例相似的,本实施例的显示区也可以包含第二导电层,并且本实施例的第二导电层由于位于第一电极层之上,第一电极层在显示区域为整面覆盖结构,本实施例提供的第二导电层也为整面覆盖结构,在显示区域整面覆盖在第一电极层之上,以此降低第一电极层的电阻,降低显示功耗。
[0110]本实施例中,第一导电层可以通过刻蚀工艺制备。由于在有机发光显示装置制备过程中,第一电极层和有机发光层需要通过蒸镀制备,而其他器件层则可以通过刻蚀金属层或非金属层制备。通常蒸镀过程的工艺偏差大,而刻蚀过程则较为精细,偏差在2微米以内。第一导电层通过刻蚀工艺制备,不会出现很大的误差,突破了现有技术中,需要预留较宽的第一电极接触区域的限制。避免需要第一电极层6直接连接钝化层5最外围的接触孔,可以减小驱动电路3区域的宽度,促进边框窄化。并且,在本发明的其他实施例中,在显示区还可以包括覆盖在第一电极层之上的第二导电层,第二导电层和第一导电层同层且同质,第二导电层的设置可以相当于将第一电极层加厚,以此降低第一电极层的电阻,减小显示装置的功耗。
[0111]如图10所示,图10
当前第3页1 2 3 4 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1