本发明主要涉及高频高压功率半导体器件的可靠性领域,具体的说,是一种高热载流子可靠性的横向绝缘栅双极型晶体管,适用于航天电子设备、卫星通信设备、等离子体显示设备、电子计算机、通讯系统、汽车工业等领域的相关功率集成电路。
背景技术:
集成电路的可靠性自从集成电路诞生之日起就是人们关注的焦点问题,其中热载流子注入(Hot Carrier Injection,HCI)特性就是一个非常重要的可靠性问题,也是造成诸多电子产品失效的主要原因之一。随着节能需求的日益增强,高压功率集成电路产品的性能受到越来越多的关注,由于功率集成电路通常工作在高温、高压、大电流的条件下,因而它面临的可靠性风险要比常规集成电路严峻的多。随着微电子工艺线宽的减小,功率器件的热载流子效应造成的电路失效已成为制约功率集成电路进一步发展的瓶颈,因而与功率器件的HCI特性有关的研究也成为研究人员关注的重中之重。
横向绝缘栅双极型晶体管(Lateral Insulated Gate Bipolar Transistor,LIGBT)因为它结合MOS(Metal Oxide Semiconductor)栅的高输入阻抗以及双极型晶体管电导调制的优点,解决了横向双扩散金属氧化物半导体晶体管(Lateral Double Diffused Metal Oxide Semiconductor,LDMOS)的击穿电压(BV)与导通电阻Ron的矛盾,并且与标准CMOS工艺兼容良好,加上绝缘体上硅(Silicon-On-Insulator,SOI)工艺为功率器件提供良好隔离,缓解高压器件与低压逻辑器件功率集成度,因此SOI-LIGBT器件在高压功率集成电路中得到了广泛的应用。
鉴于SOI-LIGBT器件在实际工作过程中一直在关态高压和开态大电流之间不断的切换,所以热载流子退化是一个很严峻的可靠性问题,此时的热载流子损伤主要来自开态工作阶段和开关阶段。通常来说降低开态工作阶段的热载流子损伤可以通过降低沟道电场或者沟道电流来实现,而降低开关阶段热载流子损伤是通过缩短开关延迟时间来实现。降低开态阶段的沟道电场一般采用降低P型体区的掺杂浓度来实现,缩短关断延迟主要是通过增加N型缓冲区的掺杂浓度来实现,但是过多的改变P型体区和N型缓冲区的掺杂浓度可能会带来器件的耐压降低或导通电阻增大的问题。
技术实现要素:
本发明提供一种高热载流子可靠性的横向绝缘栅双极型晶体管。
本发明采用如下技术方案:
一种高热载流子可靠性的横向绝缘栅双极型晶体管,包括:P型衬底,在P型衬底上设有埋氧化层,在埋氧化层上设有N型外延层,在N型外延层的内部设有N型缓冲区和P型体区,在N型缓冲区内设有P型阳区,在P型体区中设有N型阴区和P型体接触区,在N型外延层的表面设有栅氧化层和场氧化层,且栅氧化层的一端和场氧化层的一端相抵,所述栅氧化层的另一端向N型阴区延伸并止于N型阴区的边界,在栅氧化层的表面设有多晶硅栅且所述多晶硅栅延伸至场氧化层的上表面,在场氧化层的上表面上设有多晶硅且多晶硅与P型阳区相邻,在场氧化层、P型体接触区、N型阴区、多晶硅栅、P型阳区的表面设有钝化层,在P型阳区和多晶硅上连接有第一金属电极,在多晶硅栅的表面连接有第二金属电极,在N型阴区表面连接有第三金属电极,在P型体接触区表面有连接有第四金属电极,所述P型阳区由成行排列的等大块状P型区构成,在N型缓冲区内设有浮空N型接触区,所述成行排列的块状P型区设在浮空N型接触区内且每个块状P型区被浮空N型接触区三面包围;所述场氧化层的另一端向P型阳区延伸并止于所述浮空N型接触区。
与现有技术相比,本发明具有如下优点:
本发明能有效降低寄生PNP晶体管的发射效率,通过降低沟道区横向电场和电流密度减小开态工作阶段的碰撞电离;通过缩短器件关断时间,降低开关阶段热载流子损伤。
(1)、本发明结构器件增设了浮空N型接触区8结构,提高了开态工作阶段的热载流子可靠性。将P型阳区作为寄生PNP晶体管的发射区,浮空N型接触区以及N型缓冲区作为寄生PNP晶体管的基区,P型体区和体接触区作为寄生PNP晶体管的集电区,P型阳区5面积减小,被浮空N型接触区8三面包围,减小了寄生PNP晶体管发射区面积,增大了寄生PNP晶体管基区的面积,有效降低了寄生PNP晶体管的发射效率,减少了从P型阳区5注入到N型外延层3中的空穴数目,削弱了器件的Kirk效应,使器件的横向电场更多的分布在器件阳极场板下方,从而降低器件的沟道区横向电场;同时,空穴注入电流的减小将减弱器件的电导调制效应,使器件的电流能力降低,器件沟道区的电流密度也有所减小。器件横向电场和电流密度同时降低使得器件沟道区碰撞电离率减小,图9为新结构与传统结构器件在高栅极应力条件下沟道区碰撞电离率分布图,可以看出本发明结构器件沟道区碰撞电离率明显减小,从而降低了器件开态工作阶段的HCI损伤,提高了器件的可靠性。
(2)、本发明器件有效降低了寄生PNP晶体管的发射效率,提高了器件的开关速度。从P型阳区5注入到N型外延层3中的空穴数目减少,有效抑制了载流子存储效应,降低了器件关断时间,减轻器件电流拖尾现象,图10为新结构与传统结构器件在应力条件下的波形比较图,可见本发明结构器件明显缩短了器件的关断时间,提高了器件的开关速度,改善了器件的性能。
(3)、本发明器件有效降低了寄生PNP晶体管发射效率,通过提高开关速度降低了开关阶段的热载流子损伤。从P型阳区5注入到N型外延层3中的空穴数目,有效抑制了载流子存储效应,缩短了器件的关断时间,同时开关转换阶段的应力时间相应也会有所降低,从而降低开关阶段的热载流子损伤,图11、12为新结构与传统结构器件的HCI退化结果比较图,可见新结构器件与传统结构器件的HCI退化趋势完全相同,这说明新型器件的退化机理与传统器件相同,然而其退化量明显小于传统器件。
(4)、本发明器件在提高器件可靠性的同时,并不改变器件原来的版图面积,也不增加额外的工艺步骤,所以不会增加额外的成本,同时本发明器件的制作工艺可以与现有标准CMOS工艺完全兼容,易于制备。
附图说明
图1为传统结构器件去除钝化层、金属层后的俯视图。
图2为传统结构器件沿AA’面的剖面图(含有钝化层和金属层)。
图3为传统结构器件沿BB’面的剖面图(含有钝化层和金属层)。
图4为本发明器件去除钝化层、金属层后的俯视图。
图5为本发明器件沿CC’面的剖面图(含有钝化层和金属层)。
图6为本发明器件沿DD’面的剖面图(含有钝化层和金属层)。
图7为新结构与传统结构器件横向电场分布比较图。
图8为新结构与传统结构器件电流密度分布比较图。
图9为新结构与传统结构器件碰撞电离分布比较图。
图10为新结构与传统结构在高栅极应力条件下的的波形比较图。
图11是本发明结构与传统结构器件阳极饱和电流Iasat退化结果比较图。
图12是本发明结构与传统结构器件阈值电压Vth退化结果比较图。
具体实施方式
下面结合附图5,对本发明做详细说明,一种高热载流子可靠性的横向绝缘栅双极型晶体管,包括:P型衬底1,在P型衬底1上设有埋氧化层2,在埋氧化层2上设有N型外延层3,在N型外延层3的内部设有N型缓冲阱4和P型体区18,在N型缓冲阱4内设有P型阳区5和N型浮空接触区8,在P型体区18中设有N型阴区15和P型体接触区17,在N型外延层3的表面设有栅氧化层13和场氧化层10且栅氧化层13的一端和场氧化层10的一端相抵,所述栅氧化层13的另一端向N型阴区15延伸并止于N型阴区15的边界,所述场氧化层10的另一端向P型阳区5延伸并止于N型浮空接触,在栅氧化层13的表面设有多晶硅栅12且多晶硅栅12延伸至场氧化层10的表面,在场氧化层10、P型体接触区17、N型阴区15、多晶硅栅12、P型阳区5的表面设有钝化层6,在P型阳区5和多晶硅9表面连接有第一金属电极7,在多晶硅栅12的表面连接有第二金属电极11,在N型阴区15表面连接有第三金属电极14,在P型体接触区17表面接有第四金属电极16,P型阳区5由成行排列间距等宽的等大块状P型区构成,在N型缓冲区4内设有浮空N型接触区8,所述成行排列的块状P型阳极设在浮空N型接触区8内且每个块状P型阳极被浮空N型接触区8三面包围;所述场氧化层10的另一端向P型阳区5延伸并止于所述浮空N型接触区8。
所述P型阳区中相邻块状P型区之间的间距与块状P型区的宽度之比在1∶2与2∶1之间。
所述浮空N型接触区8处于浮空状态,不与第一金属电极7相连。
所述浮空N型接触区8与N型阴区15在同一过程注入,共用一块掩膜板。
本发明采用如下方法来制备:
首先是SOI制作,其中外延层3采用N型掺杂。接下来的是横向绝缘栅双极型晶体管的制作,包括在N型外延层3上通过注入磷离子形成N型缓冲区4,注入硼离子形成P型体区18,然后是场氧化层10,接下来是栅氧化层13的生长,之后淀积多晶硅12,刻蚀形成栅,再制作重掺杂的P型阳区5、P型体接触区17,N型阴区15和浮空N型接触区8,其中浮空N型接触区8与N型阴区15在同一过程中注入,共用一块掩膜板,紧接着淀积二氧化硅,刻蚀电极接触区后淀积金属,再刻蚀金属并引出电极,最后进行钝化处理。
本发明的工作原理如下:
本发明结构器件增设了浮空N型接触区8,P型阳区作为寄生PNP晶体管的发射区,浮空N型接触区以及N型缓冲区作为寄生PNP晶体管的基区,P型体区和体接触区作为寄生PNP晶体管的集电区,P型阳区5面积减小,被浮空N型接触区8三面包围,等效增大了寄生PNP晶体管中发射极与基极的接触面积有效降低了寄生PNP晶体管的发射效率,减少了从P型阳区5注入到N型外延层3中的空穴数目,加剧了器件的Kirk效应,使器件的横向电场更多的分布在器件阳极场板下方,从而降低器件的沟道区横向电场;同时,空穴注入电流的减小将减弱器件的电导调制效应,使器件的电流能力降低,器件沟道区的电流密度也有所减小。器件横向电场和电流密度同时降低使得器件沟道区碰撞电离率减小,从而降低了器件开态工作阶段的HCI损伤。另外P型阳区5注入到N型外延层3中的空穴数目减少,有效抑制了载流子存储效应,降低了器件关断时间,减轻器件电流拖尾现象,提高了开关阶段的可靠性。