本发明属于无人机应用技术领域,尤其涉及一种无人机自动起降管理站、无人机自动起降管理系统及方法。
背景技术:
近年来无人机技术取得了迅速发展,特别是小型无人机,由于其具有机动灵活、反应快速、无人飞行、操作要求低、起飞无需跑道或其他辅助设备等优点,使得小型无人机在军、民用方面应用较广泛。主要应用市场包括:智能交通、智能社区、智慧城市、智慧深林、农业植保、核辐射探测、边境巡逻以及海事侦查等多个领域。这些领域一般要求无人机能够在完全无人工干预的情况下长时间周期性工作,需要无人机实现定时或连续的自动工作。然而,现有的小型无人机所携带的电池电量是有限的,并且其数据传输距离也是有限的,若要保证小型无人机能够定时或连续工作,需要有人监管保证其在工作过程中没电时能够及时回收充电,并同时进行数据下传与存储,这样不仅影响工作效率,而且操作起来非常不便。
技术实现要素:
本发明实施例的目的在于提供一种无人机自动起降管理站、无人机自动起降管理系统及方法,旨在解决上述现有的小型无人机需要有人监管保证其在工作过程中没电时能够及时回收充电,并同时进行数据下传与存储,这样不仅影响工作效率,而且操作起来非常不便的问题。
本发明实施例是这样实现的,一种无人机自动起降管理站,包括起降平台、设置在所述起降平台上的校正杆组件、设置在校正杆组件上的充电数据接头、 视觉辅助降落系统、地面控制系统以及电源系统,所述地面控制系统包括天线、通信控制器以及校正控制模块,所述通信控制器分别与所述天线、所述校正控制模块、所述视觉辅助降落系统、所述电源系统以及所述充电数据接头连接,所述电源系统还与所述充电数据接头连接,所述校正控制模块与所述校正杆组件连接;其中:
所述视觉辅助降落系统,用于在所述通信控制器接收到所述无人机发送的降落指令时捕捉所述无人机在所述起降平台上空的位置信息,并根据所述位置信息向所述无人机发送位置修正信息,使所述无人机根据所述位置修正信息修正自身的位置后降落在所述起降平台上;
所述校正控制模块,用于控制所述校正杆组件校正所述无人机在所述起降平台上的位置,使所述无人机的起落架位于所述起降平台上的预设位置,以便所述无人机起落架上的充电数据接口与所述校正杆组件上的充电数据接头与对接并压紧;
所述通信控制器,用于在所述无人机的电量不足时,控制所述电源系统通过所述充电数据接头对所述无人机进行充电,并在充电的同时与所述无人机进行数据通信。
本发明实施例的另一目的在于提供一种无人机自动起降管理系统,包括无人机、至少一个上述无人机自动起降管理站以及与所述至少一个无人机自动起降管理站连接的,用于监测与管理所述无人自动起降管理站的运行状态的指挥中心。
本发明实施例的另一目的在于提供一种基于上述无人机自动起降管理系统的无人机自动降落方法,包括:
所述无人机自动起降管理系统中的至少一个无人机自动起降管理站接收无人机发送的降落请求,具备降落条件的无人机自动起降管理站响应所述降落请求;
无人机根据位于不同位置处的无人机自动起降管理站返回的响应信号选择 目标无人机自动起降管理站,并再次向所述目标无人自动起降管理站的通信控制器发送降落请求;
所述目标无人自动起降管理站的通信控制器根据所述降落请求控制视觉辅助降落系统捕捉所述无人机在起降平台上空的位置信息,并根据所述位置信息向所述无人机发送位置修正信息,使所述无人机根据所述位置修正信息修正自身的位置后降落在所述起降平台上;
所述目标无人自动起降管理站的校正控制模块控制所述校正杆组件校正所述无人机在所述起降平台上的位置,使所述无人机的起落架位于所述起降平台上的预设位置,以便所述无人机起落架上的充电数据接口与所述校正杆组件上的充电数据接头与对接并压紧;
所述通信控制器在所述无人机的电量不足时控制所述电源系统通过所述充电数据接头对所述无人机进行充电,并在充电的同时将所述无人机的机载数据导出至所述地面控制系统中进行存储。
本发明实施例的另一目的在于提供一种基于上述无人机自动起降管理系统的无人机自动起飞执行任务的方法,包括:
指挥中心向所述无人机自动起降管理系统中的至少一个无人机自动起降管理站发布任务请求,具备执行任务条件的无人机自动起降管理站响应所述任务请求;
所述指挥中心根据位于不同位置处的无人机自动起降管理站返回的响应信息选择目标无人机自动起降管理站,并将任务信息发送至所述目标无人机自动起降管理站;
所述目标无人机自动起降管理站地面控制系统中的通信控制器接收所述任务信息,并通过充电数据接头将所述任务信息上传至降落在所述目标无人自动起降管理站的起降平台上的无人机后控制所述无人机起飞执行任务。
实施本发明实施例提供的一种无人机自动起降管理站、无人机自动起降管理系统及方法具有以下有益效果:
本发明实施例提供的无人机自动起降管理站能够在无人干预的情况下实现无人机的自动起降,并将无人机校正、夹紧到起降平台的预设位置,使无人机起落架上的充电数据接口与起降平台校正杆组件上的充电数据接头对接并压紧,完成对无人机的自动充电、机载数据的下载以及任务的上传,大大提高了无人机的工作效率,简化了使用无人机时的操作步骤。
附图说明
图1是本发明实施例提供的无人机自动起降管理站的示意框图;
图2是无人机降落在本发明实施例提供的无人自动起降管理站中的示意图;
图3是本发明实施例提供的无人机自动起降管理系统的示意框图;
图4是本发明实施例提供的无人机自动降落方法的具体实现流程图;
图5是本发明实施例提供的无人机自动起飞执行任务的方法的具体实现流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1是本发明实施例提供的无人机自动起降管理站的结构示意图。为了便于说明仅仅示出了与本实施例相关的部分。
参见图1所示,本实施例提供的一种无人机自动起降管理站100包括起降平台1、设置在所述起降平台1上的校正杆组件11、设置在校正杆组件11上的充电数据接头12、视觉辅助降落系统3、地面控制系统2以及电源系统4,所述地面控制系统2包括天线21、通信控制器22以及校正控制模块23,所述通信控制器22分别与所述天线21、所述校正控制模块23、所述视觉辅助降落系 统3、所述电源系统4以及所述充电数据接头12连接,所述电源系统4还与所述充电数据接头12连接,所述校正控制模块23与所述校正杆组件11连接;其中:
所述视觉辅助降落系统3,用于在所述通信控制器22接收到所述无人机200发送的降落指令时捕捉所述无人机200在所述起降平台1上空的位置信息,并根据所述位置信息向所述无人机200发送位置修正信息,使所述无人机200根据所述位置修正信息修正自身的位置后降落在所述起降平台1上;
所述校正控制模块23,用于控制所述校正杆组件11校正所述无人机200在所述起降平台1上的位置,使所述无人机200的起落架位于所述起降平台1上的预设位置,以便所述无人机200起落架上的充电数据接口与所述校正杆组件11上的充电数据接头12与对接并压紧;
所述通信控制器22,用于在所述无人机200的电量不足时,控制所述电源系统4通过所述充电数据接头12对所述无人机200进行充电,并在充电的同时与所述无人机200进行数据通信,例如:将无人机200的机载数据导出至所述地面控制系统2中进行存储或者向无人机200上传任务信息。
在本实施例中,所述起降平台1由一块光滑的正方形大平板、立柱和底板组成,通过框架连接成一个立方体形状,用做无人机200的起飞与降落平面,同时是所述无人机自动起降管理站100各组成模块的支撑与安装主体。
进一步的,所述校正杆组件11包括两组相对设置在所述起降平台1平面上的校正杆和与两组校正杆连接的校正杆驱动单元,所述校正杆驱动单元与所述地面控制系统2中的校正控制模块23连接。
进一步的,所述电源系统4包括与所述充电数据接头12连接的电池充电器41、与所述电池充电器41连接的直流电源42和储能单元43,所述储能单元43还与所述地面控制系统2中的通信控制器22连接。
参见图2所示,在本实施例中,所述无人机200的充电数据接口202设置在所述无人机200起落架201底部两平行管的外侧,所述无人机200内部的电 池和机载设备的数据线引到所述起落架201的底部两平行管端部和所述充电数据接口202连接。所述无人机自动起降管理站100中的校正杆组件11包括沿所述起降平台1平面X轴方向和Y轴方向相对设置的两组校正杆,充电数据接头12安装在X轴方向校正杆的两端,对于不同跨距的起落架201,校正杆上安装的充电数据接头12的接头座尺寸可以相应调整,充电数据接头12的导电探针与电源系统4中的电池充电器41连接。当无人机200降落在所述起落平台上时,由地面控制系统2中的通信控制器22触发校正控制模块23控制校正杆组件11执行相应的校正动作,首先控制位于起降平台1平面上两侧的Y轴方向的校正杆同时向起降平台1中心区域运动,推动无人机200的起落架201往起降平台1的中心区域移动,待Y轴方向校正杆运动到位后,无人机200的中轴面与起降平台1平面上的Y轴重合,并且起落架201底部的两平行管被Y轴方向的校正杆约束,只剩下Y轴方向上的移动自由度;然后控制位于起降平台1平面上两侧的X轴方向的校正杆向起降平台1的中心区域运动,推动起落架201校正无人机200在Y轴方向上的位置,当X轴方向的校正杆运动到位后,无人机200被定位到起降平台1的中心区域,同时位于X轴方向的校正杆两端的充电数据接头12和起落架201上的充电数据接口202对应并压紧,至此无人机200降落后的定位夹紧和与无人机自动起降管理站100的充电数据接头12的对接完成。接下来由地面控制系统2通过通信控制器22向无人机200发送断电命令,待无人机200断电后再由所述通信控制器22读取所述无人机200的电量信息,并判断所述电量信息是否低于预设的电量阈值,若低于预设的电量阈值,则控制电源系统4对无人机200进行充电,所述通信控制器22还能够在充电的同时与无人机200进行数据交互,将无人机200的机载数据导出至地面控制系统2进行存储,其中所述机载数据包括但不限于所述无人机200的机载载荷数据和机载飞行记录数据。
进一步的,所述无人机自动起降管理站100还包括与所述地面控制系统2的通信控制器22连接的防护装置7,所述防护装置7设置在所述起降平台1外 部,用于保护所述起降平台1。
在本实施例中,所述防护装置7根据所述通信控制器22发送的打开/关闭指令执行打开或关闭的动作,所述防护装置7一般处于关闭状态可以对起降平台1以及降落在起降平台1上的无人机200起到保护作用。
进一步的,所述的无人机自动起降管理站100还包括与所述地面控制系统2的通信控制器22连接的气象站5,所述气象站5用于监测所述起降平台1周围的气象信息,并在所述气象信息异常时向所述通信控制器22发出气象异常的提示信息。
在本实施例中,所述气象站5可以在气象信息异常时向所述通信控制器22发出气象异常的提示信息,使所述通信控制器22根据所述气象异常的提示信息判断所述无人机自动起降管理站100是否具备无人机200降落/起飞所需的条件,确保无人机200能够在理想条件下使用无人机自动起降管理站100。
进一步的,所述的无人机自动起降管理站100还包括与所述地面控制系统2的通信控制器22连接的监控装置6,所述监控装置6用于监测所述起降平台1所处机场内的情况,并在监测到有异常情况时发出告警信息。
在本实施例中,所述监控装置6能够监控无人机自动起降管理站100的内部状况,并在监测到有可疑人进入无人机自动起降管理站100时及时发出告警信息通知相关管理人员,防止无人机自动起降管理站100出现被盗的情况。
以上可以看出,本实施例提供的无人机自动起降管理站100能够在无人干预的情况下实现无人机200的自动起降,并将无人机200校正、夹紧到起降平台1的预设位置,使无人机200起落架201上的充电数据接口202与起降平台1校正杆组件11上的充电数据接头12对接并压紧,完成对无人机200的自动充电、机载数据的下载以及任务的上传,大大提高了无人机200的工作效率,简化了使用无人机200时的操作步骤。
图3是本发明实施例提供的无人机自动起降管理系统的示意框图。为了便于说明仅仅示出了与本实施例相关的部分。
参见图3所示,本实施例提供的一种无人机自动起降管理系统,包括无人机200、至少一个如图1和图2实施例所述的无人机自动起降管理站100以及与所述至少一个无人机自动起降管理站100连接的,用于监测与管理所述无人自动起降管理站的运行状态的指挥中心300。
需要说明的是,本实施例中的无人机自动起降管理站100与图1和图2所示实施中提供的无人机自动起降管理站100完全相同,因此,在此不再累述。相对于图1和图2所示实施例,本实施例中的无人机自动起降管理系统由指挥中心300和多个无人机200以及多个无人机自动起降管理站100组成,能够形成一个无人值守的网络系统,使得无人机200在无人机自动起降管理站100群中就近选择目标无人机自动起降管理站100进行充电与数据交互,节省无人机200能耗,使其续航里程大幅增加,任务连续性加强。
图4是本发明实施例提供的无人机自动降落方法的具体实现流程图,该方法的执行主体为图3所示实施例提供的无人机自动起降管理系统。参见图4所示,本实施例提供的一种无人机自动降落方法,包括:
在S401中,所述无人机自动起降管理系统中的至少一个无人机自动起降管理站100接收无人机200发送的降落请求,具备降落条件的无人机自动起降管理站100响应所述降落请求;
在S402中,无人机200根据位于不同位置处的无人机自动起降管理站100返回的响应信号选择目标无人机自动起降管理站100,并再次向所述目标无人自动起降管理站的通信控制器22发送降落请求;
在S403中,所述目标无人自动起降管理站的通信控制器22根据所述降落请求控制视觉辅助降落系统3捕捉所述无人机200在起降平台1上空的位置信息,并根据所述位置信息向所述无人机200发送位置修正信息,使所述无人机200根据所述位置修正信息修正自身的位置后降落在所述起降平台1上;
在S404中,所述目标无人自动起降管理站的校正控制模块23控制所述校正杆组件11校正所述无人机200在所述起降平台1上的位置,使所述无人机 200的起落架201位于所述起降平台1上的预设位置,以便所述无人机200起落架201上的充电数据接口202与所述校正杆组件11上的充电数据接头12与对接并压紧;
在S405中,所述通信控制器22在所述无人机200的电量不足时控制所述电源系统4通过所述充电数据接头12对所述无人机200进行充电,并在充电的同时将所述无人机200的机载数据导出至所述地面控制系统2中进行存储。
本实施例提供的一种无人机200自动降落的方法,不仅能够在无人干预的情况下实现无人机200的自动降落,并将无人机200校正、夹紧到起降平台1的预设位置,使无人机200起落架201上的充电数据接口202与起降平台1校正杆组件11上的充电数据接头12对接并压紧,完成对无人机200的自动充电、机载数据的下载以及任务的上传,大大提高了无人机200的工作效率,克服了现有技术中降落时需要无人机200自行进行位置调整的问题,而且还能够使得无人机200在无人机自动起降管理站100群中就近选择目标无人机自动起降管理站100进行充电与数据交互,节省无人机200能耗,使其续航里程大幅增加,任务连续性加强。
图5是本发明实施例提供的无人机自动起飞执行任务的方法的具体实现流程图,该方法的执行主体为图3所示实施例提供的无人机自动起降管理系统。参见图5所示,本实施例提供的一种无人机自动起飞执行任务的方法,包括:
在S501中,指挥中心300向所述无人机自动起降管理系统中的至少一个无人机自动起降管理站100发布任务请求,具备执行任务条件的无人机自动起降管理站100响应所述任务请求;
在S502中,所述指挥中心300根据位于不同位置处的无人机自动起降管理站100返回的响应信息选择目标无人机自动起降管理站100,并将任务信息发送至所述目标无人机自动起降管理站100;
在S503中,所述目标无人机自动起降管理站100地面控制系统2中的通信控制器22接收所述任务信息,并通过充电数据接头12将所述任务信息上传至 降落在所述目标无人自动起降管理站的起降平台1上的无人机200后控制所述无人机200起飞执行任务。
可选的,在S504之后还包括:
当所述无人机200执行任务中断后,向所述指挥中心300返回任务执行中断信号,使所述指挥中心300根据所述任务执行中断信号重新选择目标无人机自动起降管理站100。
本实施例提供的一种无人机自动起飞执行任务的方法由于采用指挥中心300调度管理各个无人机自动起降管理站100的运行状态,从而能够实现无人机200远程管理与控制,使得无人机200能够根据指挥中心300下发的任务信息自动起飞执行任务。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。