一种用于成像系统模糊核估计的高精度图像配准方法与流程

文档序号:11231957阅读:1094来源:国知局
一种用于成像系统模糊核估计的高精度图像配准方法与流程

本发明主要涉及到数字图像处理领域,特指一种用于成像系统模糊核估计的高精度图像配准

方法。



背景技术:

在计算摄影、图像复原等图像处理领域,很多情况下都需要估计成像系统的模糊核,其中一种常用的方法是利用成像系统拍摄打印出的棋盘格标定板得到对应的模糊图像与清晰图像,再利用非盲卷积图像复原算法进行估计模糊核(thenon-parametricsub-pixellocalpointspreadfunctionestimationisawellposedproblemmaurcio,2012)。目前这种方法存在的主要问题是所拍摄模糊图像与清晰图像之间配准精度不高,因为模糊图像与清晰图像是两次单独的拍摄,而且拍摄时相机参数不一样,很难保证两次拍摄的外界条件完全一致,模糊图像与清晰图像之间会存在偏差,这些偏差将直接影响模糊核的估计精度。所以在拍摄得到模糊图像与清晰图像之后还要进行配准操作,即使是比较高的配准算法依然难以消除拍摄时导致的误差。这也是影响模糊核估计精度的主要因素之一。除了估计图像复原中的估计模糊核,还有图像拼接等图像处理领域也面临这种配准精度不高的问题,因此,如何进一步提高图像配准精度也是图像处理领域急需解决的问题。



技术实现要素:

本发明要解决的技术问题在于:针对目前图像配准精度有待提高的问题,本发明提出一种用于成像系统模糊核估计的高精度图像配准方法。本方法不是拍摄打印出的标定板,而是直接拍摄在电脑上生成的标定板图像。拍摄电脑上的标定板图像得到模糊图像,通过检测原始棋盘格与拍摄棋盘格的角点坐标,推导二者之间的坐标对应关系式,依据该关系式进行映射,将映射之后的图像作为与模糊图像对应的清晰图像。这样可以避免另外单独对清晰图像进行拍摄,通过映射方法的清晰图像与模糊图像是精确配准的。而且根据实际图像处理需要,得到对应关系式后可将棋盘格图像替换成所需要的具体图像,方便后续图像处理。

为解决上述技术问题,本发明提出的技术方案是:

一种用于成像系统模糊核估计的高精度图像配准方法,其特征在于:

步骤一:在电脑上生成原始棋盘格图像,其中的棋盘格图像可在电脑上由matlab软件直接生成,是黑白棋盘格图像。

步骤二:利用成像设备拍摄电脑上的棋盘格图像得到模糊图像,其中成像设备可以是手机或者相机等实际需要的成像设备。

步骤三:将步骤一和步骤二中的棋盘格图像对进行角点检测,得到对应的原始棋盘格图像与拍摄棋盘格图像对应的角点坐标矩阵mat1和mat2,其中的角点检测方法可以采用常用的角点检测方法,得到的角点坐标矩阵mat1和mat2的大小为2*row*col,其中row表示所用棋盘格图像中横向棋盘的数量,col表示所用棋盘格图像中列向棋盘的数量。

步骤四:计算求出原始棋盘格图像与拍摄棋盘格图像之间的坐标对应关系,并将原始棋盘格图像按照对应的坐标关系映射到拍摄棋盘格图像相应区域处,即可得到精准匹配的清晰与实际拍摄棋盘格图像。

原始棋盘格图像与拍摄棋盘格图像之间的坐标对应关系推导如下:

针对步骤三中所求出的角点坐标矩阵mat1和mat2,第i块棋盘格的上下左右四个角点的坐标索引可以表示为:

(1)

其中,c1pc2pc3pc4p分别表示第i块棋盘格上下左右四个角点的坐标索引;floor表示取最接近的下整数操作符号;row表示棋盘格图像中横向棋盘的数量。

由公式(1)得到的索引值,可分别由步骤三中得到的角点坐标矩阵mat1和mat2得到原始棋盘图像和拍摄棋盘图像中第i个棋盘格对应的坐标,如公式(2)和公式(3)所示:

(2)

(3)

其中,c1、c2、c3和c4分别表示原始棋盘图像第i个棋盘格对应的上下左右四个角点的坐标,cc1、cc2、cc3和cc4分别表示拍摄棋盘图像第i个棋盘格对应的上下左右四个角点的坐标。

由原始棋盘图像中第i个棋盘格对应的坐标可得到参数α与β:

(4)

其中,c1(2)表示原始棋盘图像坐标点c1的纵坐标,β表示拍摄棋盘图像坐标点c3的横坐标。

基于上述参数,可以求出原始棋盘图像与拍摄棋盘图像之间的对应关系式:

(5)

其中,cc1、cc2、cc3和cc4分别表示拍摄棋盘图像第i个棋盘格对应的上下左右四个角点的坐标,[x,y]表示由拍摄棋盘格上一点映射到原始棋盘格图像上对应的坐标。

由对应关系式(5)即可将原始棋盘格图像一一映射到拍摄棋盘格图像的对应位置,从而得到精确配准的棋盘格图像。

本发明有益效果:

与参考文献[1]中提到的分别拍摄模糊图像与清晰图像,然后再进行配准的方法相比,本发明只需拍摄电脑上的标定板得到模糊图像,然后通过推导相应的映射公式,通过映射的方法得到与模糊图像对应的清晰图像,避免后续配准过程,而且得到的清晰图像可与之前拍摄的模糊精准匹配,能保证误差在一个像素之内。这种配准方法能很好地避免拍摄过程所导致的误差,从而最终提高后续图像处理精度。

附图说明

图1为本发明所述方法的流程图;

图2为原始棋盘格图像;

图3为拍摄棋盘格图像;

图4为映射后精确匹配的棋盘格图像。

具体实施方式

下面结合附图1对本发明进行详细描述。

本实施例提供的一种用于成像系统模糊核估计的高精度图像配准方法,包括如下步骤:步骤一:电脑上生成原始棋盘格图像,如图2所示,棋盘格图像可在电脑上由matlab软件直接生成,是黑白棋盘格图像。

步骤二:利用成像设备拍摄电脑上的棋盘格图像得到模糊图像,其中成像设备可以是手机或者相机等实际需要的成像设备。在具体实施例中,用相机拍摄电脑上的棋盘格图像。

步骤三:将步骤一和步骤二中的棋盘格图像对进行角点检测,得到对应的原始棋盘格图像与拍摄棋盘格图像对应的角点坐标矩阵mat1和mat2,其中的角点检测方法可以采用常用的角点检测方法,得到的角点坐标矩阵mat1和mat2的大小为2*row*col,其中row表示所用棋盘格图像中横向棋盘的数量,col表示所用棋盘格图像中列向棋盘的数量。在具体实施例中,选取row=18和col=30。

步骤四:计算求出原始棋盘格图像与拍摄棋盘格图像之间的坐标对应关系,并将原始棋盘格图像按照对应的坐标关系映射到拍摄棋盘格图像相应区域处,即可得到精准匹配的清晰与实际拍摄棋盘格图像。

原始棋盘格图像与拍摄棋盘格图像之间的坐标对应关系推导如下:

针对步骤三中所求出的角点坐标矩阵mat1和mat2,第i块棋盘格的上下左右四个角点的坐标索引可以表示为:

(1)

其中,c1pc2pc3pc4p分别表示第i块棋盘格上下左右四个角点的坐标索引;floor表示取最接近的下整数操作符号;row表示棋盘格图像中横向棋盘的数量。

由公式(1)得到的索引值,可分别由步骤三中得到的角点坐标矩阵mat1和mat2得到原始棋盘图像和拍摄棋盘图像中第i个棋盘格对应的坐标,如公式(2)和公式(3)所示:

(2)

(3)

其中,c1、c2、c3和c4分别表示原始棋盘图像第i个棋盘格对应的上下左右四个角点的坐标,cc1、cc2、cc3和cc4分别表示拍摄棋盘图像第i个棋盘格对应的上下左右四个角点的坐标。

由原始棋盘图像中第i个棋盘格对应的坐标可得到参数α与β:

(4)

其中,c1(2)表示原始棋盘图像坐标点c1的纵坐标,β表示拍摄棋盘图像坐标点c3的横坐标。

基于上述参数,可以求出原始棋盘图像与拍摄棋盘图像之间的对应关系式:

(5)

其中,cc1、cc2、cc3和cc4分别表示拍摄棋盘图像第i个棋盘格对应的上下左右四个角点的坐标,[x,y]表示由拍摄棋盘格上一点映射到原始棋盘格图像上对应的坐标。

由对应关系式(5)即可将原始棋盘格图像一一映射到拍摄棋盘格图像的对应位置,从而得到精确配准的棋盘格图像。在具体实施例中,总共有18*30=540个棋盘格,需要按照上述对应关系式依次遍历,进行映射。

如上所述,针对目前图像配准精度有待提高的问题,本发明提出一种用于成像系统模糊核估计的高精度图像配准方法。本方法避免了两次拍摄打印出的标定板图像,直接拍摄电脑上生成的标定板图像作为模糊图像,通过检测原始棋盘格与拍摄棋盘格的角点坐标,推导二者之间的坐标对应关系式,依据该关系式进行映射,通过映射得到与模糊图像对应的清晰图像,从而可以得到精确配准的图像。根据实际需要得到对应关系式后可将棋盘格图像替换成所需要的图像,方便后续图像处理。这种方法很好地避免了拍摄过程所产生的误差,在图像处理具有非常重要的意义。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1