图像路面区域的提取方法与流程

文档序号:11063941阅读:720来源:国知局
图像路面区域的提取方法与制造工艺

本发明属于图像处理技术领域,特别涉及一种提取图像中部分区域的方法,尤其适用于提取图像中的路面等边缘信息不明显的区域。



背景技术:

生活中成像设备越来越多,人们也越来越习惯于以图像去获取信息,图像处理技术应运而生。图像分割是图像处理中的一项重要技术,由于图像的多样性,至今也没有一种分割算法能够应用到所有图像上,也没有制定出一种能够判断分割算法好坏的标准。由于算法通用性上的限制,只能在解决具体的问题上提出特定的方法。目前,图像的分割算法主要有阈值分割法、边缘检测法和区域提取法三大类。

阈值分割法是最早提出来的,是基于图像的灰度进行计算。阈值分割法的主要思想是利用一个灰度阈值将灰度分为两类,其关键是找到一个最优的分割阈值。根据图像本身的特点和分割目的的最优阈值的选择准则有直方图法、最大熵法、最小误差法、最大类间方差法等。基于此许多人也提出了新方法,如严学强等人为了使算法计算量减小,提出了基于量化直方图的最大熵阈值算法,采用最大熵阈值算法处理量化后的直方图;程杰等人对最大类间方差进行了改进,运用对直方图的预处理和轮廓追踪,找到了最佳分割阈值。总之,这类方法的中心思想就是利用一系列工具找到最优阈值。

边缘检测法是利用图像的一阶导数极值或者二阶导数的零点来判断图像的边缘,其中心思想是用构造的对图像灰度突变敏感的差分算子来进行检测边缘,进而分割图像。这类算子有Sobel算子、Canny算子、Prewitt算子等。例如Canny边缘检测,先用高斯滤波器对图像进行平滑操作以减少噪声;其次用一阶有限差分算子来计算梯度的幅值和方向;然后进行非极大值抑制操作来保留局部梯度最大的点;最后用双阈值限制找到边缘并且连接。总的来说这种方法对边缘区域比较明显的图像比较适用,但对边缘信息不明显的区域,如路面等区域,这种方法将失去优势。

区域提取法是将有某种相似性质的像素点联通起来构成最终的分割区域。其基本思想是选取目标区域的一个小块,然后利用一定的规则判断像素点是否与既定像素有相似的性质,若是加入其中,令其不断生长,最终形成区域。采用这种方法分割后的图像在空间上是连续的,但会造成图像过度分割。王广君等人将区域增长和人工智能结合起来,提出了基于四叉树结构的分割方法,对多个目标的图像分割有很好的适用性。王楠等人充分利用了彩色图像的颜色信息,对灰度图和彩色信息分别处理,根据图像的具体信息进行自适应分割。

但现实生活中即使在很好的天气下拍的图像都会含有少量雾的存在,加上图像中的路面区域边缘信息本来就不明显,目前还没有特别适用于提取图像中诸如地面等边缘信息不明显区域的方法。



技术实现要素:

本发明的目的是提供一种图像中路面区域的提取方法,可以克服路面边缘信息不明显的问题,利用亮度信息提取出路面区域。

为了实现上述目的,本发明采取如下的技术解决方案:

图像中路面区域的提取方法,包括以下步骤:输入原始图像,

步骤一、获取原始图像中各个像素点的粗估计透过率,得到粗估计透过率图像:

获取原始图像的暗通道图像,选出暗通道图像中像素亮度最大的前P个像素点所对应的区域,将该区域与原始图像相应区域内最大的像素灰度值作为大气光强度的值,根据暗原色先验条件计算图像中各像素点的粗估计透过率得到粗估计透过率图像;

其中,ω为修正系数,x为待计算像素点,Ω(x)表示以x为中心的正方形滑动窗口,y为滑动窗口内x周围的像素点,Ic(y)表示滑动窗口内原始图像I的一个颜色分量值,Ac表示大气光强度的一个颜色分量值;

步骤二、引导滤波优化,对粗估计透过率图像进行细化、平滑处理,得到具有保边效果的引导滤波图像;

其中,tg(x)为引导滤波透过率,|w|为Ωk内像素点的数量,Ωk为以像素点k为中心的正方形滑动窗口,Ωw为所有包含待计算像素点x的滑动窗口,表示某个像素点的粗估计透过率,和μk分别为原始图像I在Ωk内像素灰度值的方差和均值,ε为调节参数,Ix为引导图;

步骤三、对引导滤波透过率进行修正;

式中的tc(i,j)为修正后的透过率,i和tg(i,j)分别表示某一像素点的行坐标和亮度,q为权重调整系数,m为原始图像的总行数;

步骤四、通过差值操作得到差值图并转换为二值图像,对二值图像进行区域分割后实现路面区域的提取;

将修正前后的引导滤波透过率图像进行减操作得到差值图,利用最大类间方差法将差值图转换为二值图像并计算路面区域和非路面区域的分割阈值,得到分割出路面区域的图像。

更具体的,步骤一中的P为0.1%。

更具体的,步骤二中的ε为0.001。

更具体的,步骤四中利用最大类间方差法计算路面区域和非路面区域的分割阈值时,类间方差var=w1×(u1-u)2+w2×(u2-u)2,其中,w1为差值图中路面区域的像素点数量占原始图像像素点总数的比例,w2为差值图中非路面区域的像素点数量占原始图像像素点总数的比例,u1为差值图中路面区域的灰度均值,u2为差值图中非路面区域的灰度均值,u=u1×w1+u2×w2为差值图的平均灰度值;var值最大时得到分隔阈值T,大于T的像素点属于路面区域,小于T的像素点属于非路面区域。

更具体的,分割阈值为T-0.025。

更具体的,步骤四中得到分割出路面区域的图像后,对图像填孔、移除小对象以及取反的优化处理。

由以上技术方案可知,本发明方法利用暗原色先验理论求取图像的粗估计透过率图像,对得到的粗估计透过率图像进行引导滤波处理,由于路面区域一般处于图像的下方,而且在透过率图像中表现为亮度偏小,因此采取透过率图像像素点的行坐标和亮度作为两个约束因子来处理图像,遍历整张透过率图像,得到路面区域亮度明显提高的透过率图像;将处理前后的透过率图像相减得到差值图像,路面区域的像素差值比其他区域要大,表现在差值图像中路面区域的亮度比其他区域亮;再利用最大类间方差法得到分割阈值,从而得到二值图像,实现路面区域的提取。本发明方法是基于图像透过率的基础上进行区域提取,算法简便、效率较高,透过率图中路面区域的透过率严重偏低,亮度小,通过将行坐标作为约束因子,减小了其他暗色区域(特别是天空区域)的影响,将亮度作为另一约束因子,保证了差值图中路面区域亮度明显,易于分割,在路面边缘不是很明显的情况下仍然能够快速准确地提取路面区域。

附图说明

图1为本发明方法的流程图。

图2a为用数码相机采集的数字图像。

图2b为利用暗原色理论得到的粗估计透过率图像。

图3a为对粗估计透过率图像进行引导滤波操作后的图像。

图3b为以像素行坐标和亮度为约束条件对引导滤波透过率处理后得到的修正透过率图像。

图4a为以修正透过率减去引导滤波透过率得到的差值透过率图像。

图4b为利用最大类间方差法作用于差值透过率图像得到的初步二值图像。

图5a为通过对初步二值图像进行填孔、移除边缘对象得到的二值图像,即路面区域图像。

图5b为标明路面区域在输入原图像中的位置。

以下结合附图对本发明的具体实施方式作进一步详细地说明。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下获得的所有其他实施例,都属于本发明保护的范围。

在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其它不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。

图1为本发明方法的流程图,参照图1,本发明的图像中路面区域的提取方法包括以下步骤:输入原始图像I,如图2a所示,

步骤一、获取原始图像中各个像素点的粗估计透过率得到粗估计透过率图像,具体如下:

首先获取原始图像I的暗通道图像式中的x为待计算像素点,Ω(x)表示以x为中心的正方形滑动窗口,y为滑动窗口内x周围(与x相邻)的像素点,r、g、b表示图像的三个颜色分量,Ic表示原始图像I的一个颜色通道,本实施例的滑动窗口Ω(x)边长为7个像素;

选出暗通道图像Idark(x)中像素亮度最大的前P个像素点所对应的区域,将该区域与原始图像相应区域内最大的像素灰度值作为大气光强度A的值,P为区域阈值,本实施例的P=0.001;

根据暗原色先验条件Idark=0计算图像中各像素点的粗估计透过率得到粗估计透过率图像:

其中,ω为修正系数,本实施例的ω为0.95,c为rgb颜色分量中的任一分量,Ic(y)为滑动窗口内原始图像I的一个颜色分量值,Ac为大气光强度A的一个颜色分量值;

原始图像经过上述计算后得到的粗估计透过率图像如图2b所示。

步骤二、对粗估计透过率图像进行引导滤波优化;

以原始图像I(图像的某一颜色通道,如R通道)作为引导图,利用引导滤波对粗估计透过率图像进行细化、平滑处理,得到具有保边效果的引导滤波图像,引导滤波图像与输出图像保持线性关系;

其中,tg(x)为引导滤波透过率,Ωk为以像素点k为中心的正方形滑动窗口,k为滑动窗口中心位置处的像素点,|w|为Ωk内像素点的数量,Ωw为所有包含待计算像素点x的滑动窗口,表示某个像素点的粗估计透过率,和μk分别为原始图像I在Ωk内像素灰度值的方差和均值,ε为调节参数,用于防止ak的值过大,本实施例中ε=0.001,Ix为引导图,本实施例引导滤波优化时滑动窗口半径Ωk为步骤一中获取暗通道图像时滑动窗口Ω(x)半径的4倍;

粗估计透过率图像图(2b)经过引导滤波处理得到引导滤波透过率图像如图3a所示。

步骤三、对引导滤波透过率进行修正;由于绝大多数含有路面区域的透过率图像在路面区域会发生景深灰度值反转的现象,因此要对引导滤波处理过的透过率进行修正,修正的过程中用到了透过率图像中每个像素点的行坐标和亮度两个约束参数,修正操作是对引导滤波透过率图中每一个像素点进行:

式中tc(i,j)为修正后的透过率,i和tg(i,j)分别表示某一像素点的行坐标和亮度,i和tg(i,j)是修正操作的两个约束参数,q为权重调整系数,用于调整像素点亮度对修正透过率的权重,本实施例中q取0.5,m为原始图像的总行数;

对引导滤波透过率修正时主要针对边缘信息不明显的路面区域透过率像素亮度偏小,在保证其他区域透过率变化尽量小的基础上着重增加这一区域的像素值,如路面区域一般位于图像的偏下方,因此规定整幅透射率图像中像素点的行坐标越大,亮度越小,其像素值增加的幅度就越大;

引导滤波透过率图像(图3a)经过修正处理得到修正透过率图像如图3b所示。

步骤四、通过差值操作得到差值图并转换为二值图像,对二值图像进行区域分割后实现路面区域的提取;

将修正前后的引导滤波透过率图像进行减操作,即Δt=tc(i,j)-tg(x),相减后的图像中像素亮度值较大的区域,即明亮区域为路面区域,像素亮度值较小的区域,即黑暗区域为非路面区域,如图4a所示,然后利用最大类间方差法将差值图转换为更直观的二值图像,计算路面区域和非路面区域的分割阈值,得到分割出路面区域的图像(图4b),由于二值图像还存在一些孔洞以及边缘等小对象,对图像填孔、移除小对象以及取反等优化处理操作(图5a),最终完成图像中路面区域的提取,图5b显示了路面区域在原始图像中的位置。

得到差值图后利用最大类间方差法计算路面区域和非路面区域的分割阈值时,类间方差var=w1×(u1-u)2+w2×(u2-u)2,其中,w1为差值图(相减后的图像)中路面区域的像素点数量占原始图像像素点总数的比例,w2为差值图中非路面区域的像素点数量占原始图像像素点总数的比例,u1为差值图中路面区域的灰度均值,u2为差值图中非路面区域的灰度均值,u=u1×w1+u2×w2为差值图的平均灰度值;var值最大时得到分隔阈值T,即分隔阈值T处于差值图的灰度直方图两波峰之间的波谷位置,大于T的像素点属于路面区域,小于T的像素点属于非路面区域。为更加精准起见,将路面区域向边缘方向延伸少许,分割阈值可优选为T-0.025。

以上所述仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1