本发明涉及用于调节钟表机芯的运转的装置的领域。特别地,本发明涉及磁性类型的钟表擒纵机构,其常规功能是维持谐振器的谐振模式,特别是该谐振器的惯性部分的连续振荡或旋转,以及计数机构的速度(pace)。在本发明的范围内,磁性擒纵机构借助于包括磁性结构的擒纵轮确保了这两种功能,所述磁性结构与由进行谐振运动的谐振器的部分承载的至少一个磁体磁耦合。
背景技术:
多年来就已知用于通过也称为磁力链的磁耦合器调节也称为转子的轮的速度的装置。钟表应用也是已知的。Horstmann Clifford Magnetics公司已针对C.F.Clifford的发明提交了许多涉及该领域的专利申请。特别地,将引用文献FR 1,113,932和US 2,946,183。从日本实用新型JPS 5263453U(申请号JP19750149018U)还已知同一类型的磁性擒纵机构,其在谐振器与由支承两个共轴的环形磁轨的圆盘形成的擒纵轮之间具有直接磁耦合。这两个轨道基本是连续的,并且各自都包括由高磁导率磁性材料制成的单独的板形成的磁区,所述磁区规则地设计为具有给定角周期,第一轨道的板相对于第二轨道的板以半个周期偏离或相移。在板之间设置有非磁区,即磁导率不良的区。因此,获得交替地分布在与音叉型谐振器的一个分支的端部承载的至少一个磁体的不工作位置(零位)对应的圆的两侧的高磁导率磁区。谐振器的磁体与这两个相移轨道磁耦合,使得它被第一轨道和第二轨道的磁区交替地吸引。擒纵轮因此以一定旋转速度旋转,使得它在谐振器的每次振荡时前移两个轨道的一个角周期。擒纵轮提供维持承载磁耦合器的磁体的谐振器的分支的振荡所需的能量,并且该谐振器控制或调节该擒纵轮的旋转速度,该旋转速度与谐振频率成比例。因此存在与谐振器连接的磁性擒纵机构,其共同形成用于调节钟表机芯的计数机构的操作的装置。
应指出,上述磁性类型的调节装置在现有技术中设置用于对于发生谐振运动的每个部分具有单个自由度的谐振器。一般而言,谐振器设计成使得由发生谐振运动的元件承载的磁体根据基本径向方向——即大致正交于两个环形磁轨——振荡。这种情况下,上述现有技术的实施例具有在谐振器的振荡频率与承载磁性结构的擒纵轮的旋转频率(单位为转/s)之间降频(即,频率降低)的优点。没有被枢转的移动本体以谐振频率的数量级的频率旋转或振荡。降低系数由环形磁轨的角周期的数目给定。
在具有单个自由度的这些谐振器的情况下,在谐振器的振荡与擒纵轮的旋转之间的降频所导致的上述优点的结果是磁耦合力问题。事实上,为了增大降频,有必要增加磁轨的周期数。对于擒纵轮的给定直径而言,周期数的增加引起环形轨道的磁区的表面的缩小。由于谐振器的磁体在小于环形轨道的半周期的角距离上延伸,所以当降频增大时该磁体的尺寸必须也减小。因此,应理解谐振器与擒纵轮之间的磁相互作用力减小;这限制了可施加至擒纵轮的转矩并因此增大了该谐振器与擒纵轮之间丧失同步的风险。这里“同步”应理解为谐振频率与擒纵轮的旋转频率之间的确定的比例关系。
最后,应指出,包括具有两个自由度的谐振器——特别是其惯性部分通过沿同一方向连续旋转而具有大致呈圆形的平移轨迹的谐振器——的磁性类型的钟表调节装置不是已知的。然而,在钟表领域中确实存在设计用于这种具有两个自由度的谐振器的磁性类型的擒纵机构——其中磁耦合的水平降低——的需求。当谐振器以比较高的谐振频率工作时,例如谐振器的谐振元件以大于10转/秒(10转/s=10Hz)的频率旋转时,此需求甚至看上去是至关重要的。事实上,涉及将这种谐振元件与移动本体连接的机械耦合将导致设定该移动本体以谐振频率旋转。旋转频率大于每秒5或6转的被枢转的移动本体存在的主要问题是,由于摩擦而引起的能量损失以及轴承位置处的磨损问题。
技术实现要素:
本发明的目的在于满足钟表调节装置领域、特别是对于具有针对圆形谐振运动的两个自由度的谐振器的确定的要求,以及对于在与具有频率大幅降低的已知磁性擒纵机构连接的具有单个自由度的谐振器的情况下的弱磁交互相关的问题找到解决方案。
为此,本发明的主题是一种磁性擒纵机构,其用于装备机械钟表机芯并且包括由马达装置驱动并与该机械钟表机芯的谐振器耦合的擒纵轮,该擒纵轮包括第一磁性结构,所述第一磁性结构在该擒纵轮的非零径向范围内限定出具有第一角周期P1的第一周期性图案,使得360°/P1等于第一整数N1,所述磁性擒纵机构包括至少一个磁体,所述磁体安装在所述谐振器上并与所述擒纵轮磁耦合,以使得当所述机械钟表机芯工作时所述磁体具有一定谐振频率下的周期性谐振运动,并且使得所述擒纵轮以与该谐振频率成比例的频率旋转。所述磁性擒纵机构还包括第二磁性结构,所述第二磁性结构平行于所述第一磁性结构并且在所述径向范围内限定出具有第二角周期P2的第二周期性图案,使得360°/P2等于与所述整数N1不同的第二整数N2,所述整数N1和N2之差的绝对值|ΔN|为小于或等于N/2的数字,即|ΔN|<=N/2,N是整数N1和N2中较小的数字。所述第一和第二磁性结构被设计成使得:当所述钟表机芯工作时,所述第一磁性结构相对于第二磁性结构以第一相对角频率F1rel旋转。所述第一周期性图案和所述第二周期性图案被选择成使得:在所述径向范围内所述第一周期性图案和所述第二周期性图案在平行于所述第一和第二磁性结构的几何表面上的投影中产生组合图案,所述组合图案与所述磁体耦合并且交替地限定出包含第一比例的磁性表面的至少所述数字|ΔN|个第一区域和包含小于所述第一比例的第二比例的磁性表面的至少所述数字|ΔN|个第二区域,并且使得所述组合图案相对于所述第二磁性结构以第二相对角频率F2rel旋转,所述第二相对角频率等于所述第一相对角频率F1rel乘以所述整数N1并除以所述整数N1与N2之差ΔN,即F2rel=F1rel·N1/ΔN,其中ΔN=N1–N2。
角频率应理解为:与周期性运动的时间周期(temporal period)的倒数对应的每秒转数。
在一个优选变型中,磁体具有垂直于所述组合图案的几何表面的磁化轴线。
在一个优选实施例中,所述组合图案限定出周期性组合图案,所述周期性组合图案交替地具有所述数字|ΔN|个第一区域和所述数字|ΔN|个第二区域,任意第一区域和一个相邻的第二区域限定出所述周期性组合图案的角周期P3,P3的值等于360°除以所述数字|ΔN|,即P3=360°/|ΔN|。
在一个改进的实施例中,根据本发明的磁性擒纵机构包括安装在谐振器上并由所述谐振部分或由谐振器的另一谐振部分支承的第二磁体。该第二磁体相对于第一磁体在第一和第二磁性结构的另一侧上设计成使得该第二磁体在基本平行于所述旋转轴线的方向上与所述第一磁体对齐,并且使得该第二磁体具有类似于所述第一磁体的周期性谐振运动的在所述谐振频率下的周期性谐振运动。
在第一变型中,第二磁体具有与第一磁体的磁化轴线平行并且在相反方向的磁化轴线。在第二变型中,第二磁体具有与第一磁体的磁化轴线平行并且在相同方向的磁化轴线。
在所述改进实施例的一个有利变型中,所述磁性擒纵机构包括第三磁性结构,所述第三磁性结构限定出与由所述第一或第二磁性结构限定的周期性图案基本相同并且叠加在其上的周期性图案,该第三周期性结构在所述第一或第二磁性结构旋转时与所述第一或第二磁性结构一体地旋转。具有相同的周期性图案的两个磁性结构分别位于具有不同周期性图案的磁性结构的两侧。
在一个有利变型中,第二磁性结构相对于钟表机芯是固定的,第一相对角频率F1rel限定出擒纵轮相对于该钟表机芯的角频率。
本发明还涉及用于调节钟表机芯的运转的第一装置,所述钟表机芯包括根据本发明的磁性擒纵机构和谐振器,该谐振器的支承所述磁体的一个谐振部分在钟表机芯的工作期间发生根据一个自由度的振荡。所述谐振器被设计成使得对于所述擒纵轮的任意角位置,在所述磁体的不工作位置所述磁体的中心基本位于零位圆(zero position circle)上,所述零位圆定心在所述擒纵轮的旋转轴线上并且被所述谐振器的谐振部分的所述自由度横交。由磁性擒纵机构限定的所述周期性组合图案位于所述零位圆的第一侧,在所述几何表面中垂直地投影,由所述径向范围限定的所述第一和第二磁性结构的环形区域在所述振荡的每个周期的第一次交替时与所述磁体磁耦合,使得对于所述振荡的每个周期,所述周期性组合图案旋转等于其角周期P3的一段角距离。
在所述第一调节装置/调速装置的一个优选实施例中,所述周期性组合图案是第一周期性组合图案并且所述径向范围是第一径向范围,在相对于所述第一径向范围位于所述零位圆的另一侧的所述擒纵轮的第二非零径向范围内,所述第一和第二磁性结构分别限定产生第二周期性组合图案的第三周期性图案和第四周期性图案,所述第二周期性组合图案交替地具有所述数字|ΔN|个第三区域和所述数字|ΔN|个第四区域,所述第三区域包含大于所述第二比例的第三比例的磁性表面,所述第四区域包含小于所述第一和第三比例的第四比例的磁性表面,所述第二周期性组合图案具有所述角周期P3。所述第二周期性组合图案相对于所述第一周期性组合图案以角周期P3的一半在角向上偏离,所述第二周期性组合图案同样以所述第一周期性组合图案的所述相对角频率F2rel旋转,由所述第二径向范围限定的所述第一和第二磁性结构的环形区域在所述振荡的每个周期的第二次交替时与所述磁体磁耦合。
在一个特定变型中,第一和第二周期性组合图案是基本连续的。
本发明还涉及一种用于调节钟表机芯的运转的第二装置,所述钟表机芯包括根据本发明的磁性擒纵机构和具有支承所述磁体的谐振部分的谐振器,该谐振器被设计成使得当所述磁体的中心移动远离所述擒纵轮的旋转轴线时所述谐振部分受到相对于该旋转轴线的径向复位力,并且使得当所述磁体的中心移动远离该旋转轴线时所述磁体的中心以一定角谐振频率基本限定了在所述旋转轴线上定心的一个圆,并且使得所述磁体以基本恒定转矩被设定旋转。由所述径向范围限定的所述第一和第二磁性结构的环形区域与该磁体磁耦合,使得该磁体通过磁交互转矩被设定旋转,所述磁交互转矩来自于当在驱动转矩的可用范围内的驱动转矩被提供给所述擒纵轮时发生旋转的所述组合图案,在转矩的所述可用范围内所述组合图案的角频率被控制在所述角谐振频率,转矩的所述可用范围被选择成使得所述磁交互转矩保持低于最大磁交互转矩,并且使得对于该可用范围的任意驱动转矩,所述磁体的中心所限定的圆具有在所述径向范围内的半径。
在一个优选变型中,谐振器被设计成并且驱动转矩的可用范围被选择成使得对于该可用范围的任意驱动转矩,磁体完全叠加在所述组合图案上。
下面将在本发明的详细描述中说明本发明的其它特定特征。
附图说明
以下将借助作为示例以非限制性方式给出的附图说明本发明,在附图中:
-图1在平面图中示意性示出根据本发明的磁性擒纵机构的第一实施例中的两个磁性结构,以及为了形成该第一实施例的它们的叠加;
-图2在平面图中示意性示出根据本发明的磁性擒纵机构的第二实施例中的两个磁性结构,以及为了形成该第二实施例的它们的叠加;
-图3A和3B以局部截面图示出根据本发明的磁性擒纵机构,其分别处于该磁性擒纵机构的磁体的第一位置和该磁体的第二位置;
-图3C示出在图3A和3B中示出的磁性擒纵机构的磁势能变化的示意性曲线图;
-图4示意性示出根据本发明的第一调节装置的第一实施例;
-图5以截面图示意性示出根据本发明的第一调节装置的第二实施例;
-图6示出关于根据本发明的磁性擒纵机构的第三实施例的两个局部截面图和一个曲线图,其分别与图3A、3B和3C相似;
-图7示出关于根据本发明的磁性擒纵机构的第四实施例的两个局部截面图和一个曲线图,其分别与图3A、3B和3C相似;
-图8以截面图示意性示出根据本发明的第一调节装置的第三实施例;
-图9示意性示出图8的调节装置的一个实施例变型;
-图10以平面图示意性示出根据本发明的第二调节装置的第一实施例;
-图11示意性示出图10的调节装置的一个实施例变型;以及
-图12以截面图示意性示出根据本发明的第二调节装置的第二实施例。
具体实施方式
在图1中,部分示出了装备机械钟表机芯并且包括擒纵轮的磁性擒纵机构12的第一实施例的结构,所述擒纵轮由第一磁性结构2形成,第一磁性结构2在环形表面中限定出第一圆形网络3,该第一圆形网络3具有第一整数N1个(在所示例子中N1=20)由磁性材料制成的线4,这些线4通过由空间或基本非磁性的材料限定的线5分隔。该第一圆形网络因此具有等于360°/N1的第一角周期P1。磁性擒纵机构12还包括第二磁性结构8,其限定出第二圆形网络9,该第二圆形网络9具有与数字N1不同的第二整数N2个(在所示例子中N2=21)由磁性材料制成的线10,这些线10通过由空间或基本非磁性的材料限定的线11分隔。因此,该第二圆形网络具有等于360°/N2的第二角周期P2。在所示的特定变型中,线4大致在第一角周期P1的一半上方延伸并且线10大致在第二角周期P2的一半上方延伸。磁性材料应理解为具有高磁导率的材料,特别是铁磁材料。
这里,数字N1和N2之差的绝对值|ΔN|等于1(|ΔN|=1)。一般而言,规定数字N1和N2之差的绝对值|ΔN|小于或等于N/2,即|ΔN|<=N/2,N为数字N1和N2中的较小数字。在一个优选变型中,规定数字|ΔN|小于或等于N/3,即|ΔN|<=N/3。
第一和第二圆形网络以彼此较小间距的平行方式安装。它们被设计成使得当钟表机芯工作时,第一网络以第一角频率F1围绕擒纵轮的旋转轴线6相对于第二网络旋转。在该给定示例中,第二磁性结构相对于钟表机芯固定成使得频率F1是钟表机芯中的第一圆形网络的频率(限定出固定基准)。第一和第二圆形网络在环形表面中(因此具有非零径向范围)在平行于这些圆形网络的几何平面上的投影中产生组合图案14,该组合图案14限定出包含大比例的磁性表面的第一区域15和包含较小比例的磁性表面的第二区域16。组合图案14与谐振器的磁体(未示出)磁耦合。特别地,组合图案14以第二角频率F2旋转,对于其中数字|ΔN|=1的给定示例的特定情形,所述第二角频率F2的绝对值是第一角频率F1的N1倍。因此,对于如图1所示的具有20条线的第一圆形网络3,该组合图案是该网络3的旋转速度的20倍。应指出,组合图案中的磁性表面的密度在50%与100%之间大致线性地变化。磁性表面的比例应理解为:由第一和第二圆形网络的磁性材料在组合图案的给定区域中限定的表面积与该区域的总表面积之间的比率。
与光学莫尔效应相似,具有包含各种比例的磁性表面的区域的组合图案的产生在此被视为磁性莫尔效应。一般而言,通过设置两个网络之间的线差|ΔN|(|ΔN|是数字N1与数字N2之差的绝对值),交替地获得了包含第一比例的磁性表面的一定数量|ΔN|个第一区域和包含小于第一比例的第二比例的磁性表面的一定数量|ΔN|个第二区域。组合图案以第二角频率F2旋转,该第二角频率F2等于第一角频率F1乘以数字N1并除以差ΔN=N1-N2,即F2=F1·N1/ΔN。在本发明的范围内,第一磁性结构形成擒纵轮。应指出,数字ΔN可以是正的或负的。在它为正的情况下,组合图案沿与擒纵轮相同的方向旋转。在数字ΔN为负的情况下,组合图案沿与擒纵轮相反的方向旋转;这在数学上对应于负频率。磁性擒纵机构12还包括固定在谐振器上并与第一和第二圆形网络耦合的至少一个磁体,如稍后将说明的。
在图2中,部分示出了根据第二实施例的磁性擒纵机构24。第一圆形网络3与图1的第一圆形网络相似,但它在更大的径向距离上延伸。第二磁性结构18形成两个同心的圆形网络19和20,其延伸到相应的连续环形表面中。这两个网络具有通过由空间或基本非磁性的材料限定的线分隔的相同数目N2个磁性线21和22,并因此具有相同的周期P2。它们以半周期P2/2角向地偏离并因此具有180°的相移。在本示例中,N2=N1+2。通过叠加两个磁性结构2和18,在平行几何平面上的投影中获得了延伸到外部环形表面中的第一组合图案25和延伸到内部环形表面中的第二组合图案26。这两个组合图案是连续的并以第二角频率F2一起旋转,即F2=(F1·N1)/(-2)。当数字|ΔN|=2时,各组合图案交替地具有包含高比例的磁性表面的两个区域和包含较低比例的磁性表面的两个区域。
鉴于圆形网络19和20之间的相移,两个组合图案25和26同样具有180°的相移。一般而言,包含高比例的磁性表面的区域和包括较小比例的磁性表面的区域的交替限定了具有角周期P3的周期性组合图案,该角周期P3的值等于360°除以数字N1和N2之差的绝对值|ΔN|,即P3=360°/|ΔN|。在图2的例子中,两个组合图案25和26各自具有周期P3=360°/2=180°。应指出,图2的实施例是擒纵轮上具有单个圆形网络的特定情形,该单个圆形网络延伸到与第二磁性结构的两个圆形网络的两个同心的环形表面对应的环形表面中。在一个变型中,第一磁性结构还包括具有相同周期P1的两个单独的圆形网络。例如,这两个圆形网络具有P1/4的角度偏差,并且第二磁性结构的两个圆形网络具有P2/4的角度偏差。还应指出,在一个变型中,通过在两个磁性结构之间颠倒周期P1和P2,第一磁性结构的两个圆形网络具有不同周期P1和P2,并且第二磁性结构的两个圆形网络同样如此。
如图3A和3B所示,磁性擒纵机构24包括安装在谐振器上并与两个磁性结构磁耦合的至少一个磁体32,所述两个磁性结构叠加成使得:当机械钟表机芯工作时,该磁体以谐振频率进行周期性谐振运动。根据本发明,在与两个磁性结构的磁交互中,磁体进行与得到的组合图案相关联的运动,所述组合图案能比擒纵轮快得多地旋转。在图3A和3B中,部分以截面图示出了磁体32与图2的两个圆形网络3和19的磁交互。磁体具有垂直于组合图案的几何表面的磁化轴线。在图3A中,磁体位于组合图案的包含大比例的磁性表面的第一区域上方。在该第一区域中,两个网络角向地偏离,使得它们共同形成用于磁体的场线34A的相对连续的磁路;其结果是减小了对磁体的磁阻。在图3B中,磁体位于组合图案的包含较小比例的磁性表面的第二区域上方。在该第二区域中,两个网络大致叠加成使得这些网络中用于磁体的磁路被空白空间中断,或者由设置在磁性线之间的非磁性材料形成。应理解,在两个网络的位置处的磁体的场线34B必须穿过所述空白空间或非磁性区域。因此,相对于图3A的情况而言磁阻增加。磁阻的这种变化的结果是图3C中以曲线36示出的磁势能Epot的变化。磁势能Epot的这种变化在磁体上产生力,使得可以设定磁体旋转和/或利用两个同心的环形磁轨维持谐振运动。
在图4中,示出了根据第一类型的调节装置40的第一实施例。该调节装置包括如在图2中描述的磁性擒纵机构24。两个叠加的磁性结构2和18导致形成相移180°的两个周期性的组合图案25和26,如前文所述。谐振器42由具有两个分支43和44的音叉形成。具有轴向磁化作用的两个磁体46和48分别固定在这两个分支的自由端。在它们的不工作位置,两个磁体的中心位于限定零位圆的圆50上方。该圆50被选择成使得它与分隔两个连续的组合图案的圆会合。与在“背景技术”中提到的装置相似,这两个组合图案形成具有振荡器的势能的周期性变化的两个磁轨,该振荡器由音叉42和磁性擒纵机构形成。每个磁体根据一个大致径向的自由度振荡。它被两个磁轨的低磁阻区域交替地吸引。在每个轨道上方,磁体蓄积磁势能并制动擒纵轮。通过与零位圆交叉,它们各自都接收用于维持谐振的脉冲,前提是它们经历由于两个周期性的组合图案25和26的角度偏离导致的磁势能的跃变。因此,在与擒纵轮有关的旋转基准框架中,磁体遵循与根据每个磁体的自由度的振荡对应的轨迹50。
关于音叉的振荡频率Fosc与承载第一磁性结构(在第二磁性结构不旋转的情况下)的擒纵轮的旋转频率F1之间的降低比率(ratio of reduction),一方面组合图案25和26的旋转频率F2等于F1·N1/ΔN(ΔN是N1与N2之差)。另一方面,振荡频率Fosc等于F2·ΔN。不论ΔN是多少,都获得关系式Fosc=F2·ΔN=F1·N1。因此,降低比率独立于数字ΔN。通过选择小的ΔN,特别是|ΔN|=2或4,可受益于此事实。本发明的特别之处在于,对于大的降低比率,可存在具有较大周期的周期性组合图案,并且因此可以使用大尺寸的磁体,该磁体具有与限定组合图案的磁性结构的比较大的磁交互区域,而不要求该降低比率的减小。为了使音叉的磁体相对于旋转轴线6对称地振荡,数字ΔN是偶数。在图4中,ΔN=-2。
在图5中,示出了根据本发明的调节装置60的第二实施例,该调节装置60包括由限定第一圆形网络3的第一磁性结构2形成的磁性擒纵机构24A,该结构2安装在一个轴上并围绕旋转轴线6旋转。此外,该磁性擒纵机构由限定两个相移的圆形网络的第二磁性结构18形成,如上文参考图2和4所述。此第二实施例与前一个实施例的区别在于以下事实:谐振器70的谐振部分68包括分别设置在两个磁性结构的两侧并形成磁性擒纵机构24A的两个磁体32和62。这种构型通过以下事实解决了第一实施例的问题:只要两个磁性结构大致位于距与它们相对的相应磁体的相等距离处,则由磁性结构在两个磁体上形成的轴向吸引力就大部分互相补偿。这同样适用于由两个磁体在两个磁性结构的整体上施加的吸引力。
两个磁体固定在呈U形的非磁性元件的端部上。谐振器用示意性的弹簧表示。谐振部分68可例如固定在音叉的自由端。其工作情况与第一实施例相似。各磁体以上述方式与圆形网络磁耦合。它们轴向地对齐以便均垂直于零位圆。结构18是固定的并由圆盘66支承,圆盘66由非磁性材料形成。在该圆盘中设置有侧向凹部,以便允许谐振部分68从结构18的下方通过。应指出,在所示的变型中,磁性结构2和18各自都具有将圆形网络3、19和20的线连接的内部环形部分和外部环形部分。
在所示的变型中,两个磁体具有在相反方向上的轴向磁化作用。此构型是有利的,因为它使得可以如图6所示放大磁交互。第一图像(Δx=0)是与图3B相似的截面图,而第二图像(Δx=0.5·P3)是与图3A相似的截面图。在第二图像中,由于两个叠加的圆形网络大致形成两个磁体之间的屏障(screen),因此磁交互处在约等于单个磁体情形的两倍的第一近似值。相比而言,在第一图像中,两个磁体在磁性线之间的空白空间中彼此排斥。该排斥力增加了磁势能Epot。Epot的曲线74具有与图3C的曲线36相似的轮廓。然而,计算机模拟已使得可以确定:周期性曲线74的振幅是大于周期性曲线36的振幅的一定数量级的先验。
在图7所示的变型中,两个磁体具有在相同方向上的轴向磁化作用。圆形网络的线在此设置为更厚。在磁势能的曲线图上可以看到,Epot的曲线76是曲线74的倒置。事实上,鉴于在此变型中两个磁体之间的磁通被大致轴向地引导,相比在两个磁体与包含较小比例磁性表面的区域相对的情况,组合图案的包含较大比例磁性表面的区域具有对于两个磁体的更大的磁阻。在所示的构型中,周期性曲线76的振幅是周期性曲线74的振幅的约一半的先验。
第一类型的调节装置80的第三实施例在图8中示出。与图5的实施例共用的元件将不再进行详细说明。该调节装置包括谐振器70以及磁性擒纵机构24B,该磁性擒纵机构24B由限定与图2的网络3相似的第一圆形网络的第一磁性结构2A和限定与图2的网络19和20对应的两个同心圆形网络的第二磁性结构18A构成。应指出,在本例中,存在形成擒纵轮并且围绕轴线6旋转的两个同心的圆形网络,结构2A固定安装在钟表机芯中。此第三实施例与前一个实施例的区别主要在于,它包括限定第四圆形网络的第三磁性结构82,与第一网络相似,所述第四圆形网络延伸到包括结构18A的第二和第三相移的网络的环形表面中。该第三结构与第一结构2A成一体,第四圆形网络与第一圆形网络相同并且它们的磁性线轴向地叠加(两个网络之间不存在角度偏离)。第一和第四网络分别位于形成第二和第三网络的磁性结构18A的两侧。
磁性结构18A包括连续的中央环形部。在第二和第三网络之间,设置有连续的环形中间部,其优选由磁性材料制成。此外,还设置了连续的环形外周部。这三个连续的环形部使得可以具有与固定在两端的两个网络的磁性线一体化的磁性结构18A。为使连续的环形区域不干扰磁性擒纵机构的操作,规定圆形网络在比振荡磁体的径向长度大得多的径向长度上延伸。该结构18A被保持在安装于擒纵轮的轴上的非磁性轮毂86中。两个固定结构2A和82分别包括由非磁性支柱84连接的两个连续的环形外周部。此实施例解决了第二实施例中保留的问题。事实上,两个叠加的磁性结构由于磁体的磁通而被互相吸引。由于三个磁性结构的叠加,在磁性中间结构大致位于其它两个磁性结构中间的情况下,这些吸引力大部分被抵消。应指出,可设想各种变型。在第一变型中,两个同心的具有相移的网络设置在第一和第三磁性结构中,而第二磁性结构形成单个延伸的圆形网络。在另一变型中,规定第一和第三外部结构安装在擒纵轮的轴上并一体地旋转,而第二中间结构以固定方式安装在钟表机芯中。
将借助于图9简单说明一个实施例变型。该调节装置90的不同之处在于以下事实:磁性擒纵机构24C包括位于擒纵轮的两侧的两个磁性结构2B和82A,这两个磁性结构通过分别在两个桥夹板95和97中固定且居中的两个非磁性支承件94和96与钟表机芯连接,并且两个中间圆形网络19和20增加一倍且设计位于形成擒纵轮的非磁性圆盘92的两侧。
将借助于图10说明用于调节钟表机芯的运转的第二装置的第一实施例。调节装置100包括如借助图1所描述的磁性擒纵机构12,唯一的差别在于,叠加的圆形网络具有更多磁性线和因此更小的角周期。然而,如图1中所示,磁性线之差|ΔN|等于1(|ΔN|=1)。擒纵轮(未完整地示出)承载形成组合图案14的两个磁性结构之一,并且围绕由这两个磁性结构限定的圆形网络的中心轴线6旋转。该调节装置还包括谐振器102,其谐振部分包括磁体104。此谐振器具有两个自由度,在所述两个自由度的谐振模式下,磁体104以一定角谐振频率基本上跟随圆形轨迹而不自行转动。为此,该谐振器被设计成使得,当磁体的中心移动远离旋转轴线6时,其谐振部分受到相对于旋转轴线6的径向复位力,该复位力优选在角向上是各向同性的并且在径向上是直线的以便该调节装置是等时的。因此,谐振器被设计成使得磁体104的中心在它移动远离该旋转轴线时以一定角谐振频率Fres基本上遵循中心在该旋转轴线上的圆形轨迹,并且使得该磁体以基本上恒定的转矩被设定旋转。应指出,在此系统中该轨迹也可以是椭圆形的而不会破坏等时性。在该后一种情况下,将确保磁体至少部分保持叠加在由叠加的圆形磁性网络形成的组合图案上。在图10中,这种谐振器由与两个弹簧106和108连接的磁体104示意性地表示,这两个弹簧正交并且具有基本上相同的弹性系数,并且分别安装在支承件110和112上,所述支承件分别在两个正交的轨道114和116中无摩擦地滑动;所述支承件由理论上不具有惯性的带轮子的托架示意性示出。弹簧的径向力的矢量之和产生允许谐振器的惯性部分遵循大致圆形或椭圆形轨迹的复位力(向心力)。
因此,限定出包括具有大比例磁性表面的第一区域15和具有较小比例磁性表面的第二区域16的组合图案14的第一和第二磁性结构的环形区域与磁体104磁耦合,以使得该磁体通过以角频率ω旋转的组合图案所引起的磁交互转矩被设定旋转。当在驱动转矩的可用范围内的驱动转矩被提供给擒纵轮时该组合图案旋转,在转矩的此可用范围内组合图案的角频率ω被控制在角谐振频率Fres,转矩的此可用范围被选择成使得上述磁交互转矩保持小于最大磁交互转矩,并且使得对于该可用范围的任意驱动转矩而言,由磁体的所述中心描绘的所述圆具有处于组合图案14的径向范围内的半径。此谐振器中的磁交互具有使擒纵轮的角频率ω在谐振器的谐振频率Fres下同步的效果。组合图案14引起谐振器中的势能Epot在磁体位于第一区域15上方时的最小能量与磁体位于第二区域16上方时的最大能量之间根据磁体与该组合图案的相对角位置而变化。该势能的角向梯度在磁体上产生切向夹带力(entrainment force)。为了避免同步损失,将确保磁体在擒纵轮上施加的制动转矩保持小于取决于势能Epot的梯度的最大值的最大磁交互转矩。
在一个优选变型中,谐振器被设计成并且驱动转矩的可用范围被选择成使得:对于该可用范围的任意驱动转矩而言,磁体104完全叠加在组合图案14上。
图11示出图10的调节装置的一个实施例变型。不会再对上文已经描述的元件进行描述。此变型与前一个实施例的区别在于,磁性擒纵机构24A由两个叠加的圆形网络形成,它们相应的磁性线的数目之差的绝对值|ΔN|等于2,即|ΔN|=2,与图2的两个组合图案之一的实施例相似。因此,组合图案25A交替地具有包含大比例的磁性表面的两个区域15A和包含较小比例的磁性表面的两个区域16A。鉴于极值之间的磁势能差与前一变型大致相等,但该差对一半的角范围有影响,所以最大磁交互力大致为两倍。相比而言,组合图案25A的角频率与承载两个圆形磁性网络之一的擒纵轮的旋转频率之间的比率等于前一个变型的比率的一半。因此,驱动转矩的可用范围增大,但擒纵轮的频率与谐振频率之间的倍增比率减小。应注意,磁体104具有小于90°且特别是小于45°的角度偏差α,该角度偏差根据磁体104与组合图案25A之间的磁交互所引起的转矩而变化。
图12示意性示出根据本发明的第二调节装置的第二实施例。该调节装置130是实施前文对第一实施例的描述中提到的物理特征的一个特定实施例。谐振器132由大致限定出球体的一部分的可根据两个自由度弹性变形的棒134形成,该棒固定在插座136中。该棒在其自由端承载磁体104A。磁性擒纵结构12A与图2和10描述的磁性擒纵机构相似。它包括形成第一圆形网络3A的第一磁性结构2A和形成第二圆形网络9A的第二磁性结构8A,所述第一圆形网络的磁性线4A延伸到第一截角表面中,所述第二圆形网络的磁性线10A延伸到平行于第一截角表面的第二截角表面中。如上所述,获得了与上述组合图案14相似的组合图案14A。第一磁性结构2A安装在由设置在桥夹板142中的两个滚珠轴承引导旋转的轴138上。第二磁性结构固定和设置在非磁性支承件146上。结构2A包括连接磁性线4A的连续的内环形部,并且结构8A包括将磁性线10A连接的连续的外环形部。在轴138的一端处设置有截顶部140,其形成用于磁体104A的中央圆形限位止挡,该限位止挡被设计成使得:当没有向这里由第一磁性结构2A、轴138和小齿轮144构成的擒纵轮提供驱动转矩时,至少该磁体的主要部分保持叠加在组合图案14A上。该小齿轮与机械钟表机芯的计数机构连接,其经所述计数机构接收由马达装置(未示出)提供的驱动转矩。
最后,总体上,本发明涉及一种机械钟表机芯,其包括调节装置、由该调节装置调速的计数机构以及用于驱动该计数机构并维持调节装置的谐振模式的马达装置。该钟表机芯的特征在于以下事实:它包括根据本发明的磁性擒纵机构或根据本发明的调节装置。