加速度传感器的制造方法

文档序号:10228178阅读:722来源:国知局
加速度传感器的制造方法
【技术领域】
[0001]本实用新型涉及半导体领域,尤其涉及一种加速度传感器。
【背景技术】
[0002]MEMS(Micro Electro Mechanical Systems)加速度计就是使用MEMS技术制造的加速度计。由于采用了微机电系统技术,使得其尺寸大大缩小,具有体积小、重量轻、能耗低等优点,广泛应用在军事、汽车工业、消费类电子产品等领域。
[0003]其中,较为常用的是电容式加速度传感器,其基本工作原理在于,敏感质量块借助于悬挂装置支撑在基底上,同时连接可动电极。可动电极和固定电极形成一个或多个敏感电容,待测加速度作用在敏感质量块上产生的惯性力引起敏感电容的极板间隙变化。
[0004]在现有的Z轴加速度传感器中,悬于基底的多晶硅敏感质量块与固定在基底的多晶硅电极形成平板电容,在加工过程中,敏感质量块和底部电极设置有绝缘介质层(如氧化硅),受限于工艺条件,往往绝缘介质厚度在几微米,导致间隙很小。易引起敏感电容电极在过载加速度下相接触,而引起电极短路。
[0005]同时,可动多晶硅敏感质量结构通过湿法或蒸汽法工艺释放,而氧化硅绝缘介质产生的间隙很小,因此需要在敏感质量块上刻蚀密集的释放孔,此举减少了敏感质量块的有效质量。也减小了敏感质量块对加速度产生的惯性力,降低了传感器的灵敏度。为防止敏感电容电极在过载加速度下相接触引起电极短路,提高扭转梁的刚度,而此举也降低了传感器的灵敏度。
[0006]因此,需要对现有技术进行改进。
【实用新型内容】
[0007]本实用新型实施例提供一种加速度传感器,用于解决现有技术中z轴向的敏感电容的灵敏度低的问题。
[0008]基于上述目的,本实用新型提供一种加速度传感器,包括:包含至少一个腔体的单晶硅基底;其中,所述腔体包括:为竖直轴向加速度敏感电容提供运动空间的第一腔体;覆盖在所述单晶硅基底上的敏感器件层,包括:均悬于所述第一腔体的第一固定梳齿、由所述第一固定梳齿两端延伸至所述第一腔体外边沿延伸的悬臂梁、包含与所述第一固定梳齿有间隙的啮合的第一可动梳齿的第一质量块、以及横跨所述第一腔体并将所述第一质量块分为质量不等两部分的扭转梁,其中,所述扭转梁的两端部固定于所述第一腔体的外边沿上;位于所述敏感器件层上、且与所述第一固定梳齿和第一可动梳齿所构成的敏感电容相连的金属电极;位于所述悬梁臂的氧化硅薄膜;所述氧化硅薄膜的固有压应力使悬臂梁向下发生弯曲,使连接在所述悬臂梁上的第一固定梳齿的顶部和底部、与所述第一质量块上的第一可动梳齿的顶部和底部形成高度差;当竖直轴向加速度作用时,所述第一质量块带动第一可动梳齿绕所述扭转梁转动,第一可动梳齿与第一固定梳齿交叠面积发生改变。
[0009]优选地,在包含所述腔体的单晶硅基底和所述敏感器件层之间设有氧化硅层。
[0010]优选地,所述第一固定梳齿和第一可动梳齿对称于所述扭转梁两侧。
[0011]优选地,所述腔体还包括:为水平正交两轴向加速度敏感电容提供空间的两个第二腔体;覆盖在每个所述第二腔体上的敏感器件层构成水平平面水平轴向加速度敏感电容、或垂直于所述水平平面的垂直轴向加速度敏感电容;其中,覆盖在所述第二腔体上的敏感器件层包括:悬于所述第二腔体并包含第二可动梳齿的第二质量块,其中,所述第二固定梳齿与所述第二可动梳齿有间隙的啮合,并所述第二固定梳齿与所述第二可动梳齿所对应的两个敏感电容在敏感方向上输出差分敏感信号;以及由所述第二质量块沿敏感方向对称延伸至所述第二腔体外边沿的弹性梁;对应的,所述加速度传感器还包括:位于所述敏感器件层上、且单独与所述加速度敏感电容和水平轴向加速度敏感电容相连的金属电极。
[0012]优选地,在所述第一腔体中设有止挡部;所述止挡部位于所述扭转梁一侧质量较轻的第一质量块部分处;在所述第二腔体中设有止挡部;对应的,所述第一质量块位于所述扭转梁一侧质量较轻的部分与所述止挡部之间具有间隙;所述第二质量块与相应止挡部之间具有间隙。
[0013]如上所述,本实用新型的加速度传感器,具有以下有益效果:利用导电性良好的单晶硅作为基板,多腔硅基底与所述基板通过硅硅键合工艺合成一体,对基板一面进行减薄后制成敏感器件层,解决了基板上的腔体无法深度刻蚀、导致z轴方向灵敏度低的问题;此夕卜,所述敏感器件层厚度从几微米到几百微米任意可调;同时,由于单晶硅基底和敏感器件层都为单晶硅,具有相同的热膨胀系数,拓宽了传感器工作温度范围;另外,将第一固定梳齿悬于第一腔体增加了敏感器件层和基底的间隙,这减少了传感器的寄生电容,提高了传感器的灵敏度;此外,悬臂梁设置在多腔硅基底的空腔体上方,增加了敏感器件层和基底的间隙,减少了传感器的寄生电容,提高了传感器的灵敏度;第一腔体为第一质量块提供了一定角度范围内自由扭转的空间,提高了 Z轴敏感电容的灵敏度,并拓宽了 Z方向加速度的测量范围。腔体的深度决定了Z轴第一质量块绕扭转梁的最大扭转角度;还有,采用止挡部来限制最大扭转角度,尤其是抑制了过大的Z轴方向加速度产生的扭转力矩损坏传感器结构。
【附图说明】
[0014]为了更清楚地说明本实用新型实施例中的技术方案,下面将对本实用新型实施例描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据本实用新型实施例的内容和这些附图获得其他的附图。
[0015]图1是本实用新型的加速度传感器的一个实施例的结构示意图。
[0016]图2是本实用新型的加速度传感器中第二固定梳齿和第二可动梳齿的结构示意图。
[0017]图3是本实用新型的加速度传感器中第二固定梳齿和第二可动梳齿受加速度作用变形的结构示意图。
[0018]图4是本实用新型的加速度传感器沿X轴或y轴截面的结构示意图。
[0019]图5是本实用新型的加速度传感器沿z轴截面的结构示意图。
[0020]图6是本实用新型的加速度传感器中第一固定梳齿和第一可动梳齿在无z轴加速度时的结构示意图。
[0021]图7是本实用新型的加速度传感器中第一固定梳齿和第一可动梳齿在z轴加速度时的结构示意图。
【具体实施方式】
[0022]为使本实用新型解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将结合附图对本实用新型实施例的技术方案作进一步的详细描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
[0023]需要说明的是,本实用新型中所述的x、y、z轴分别对应水平平面的水平轴向、同样位于所述水平平面且与所述水平轴向垂直的垂直轴向、以及与所述水平平面垂直的竖直轴向。
[0024]如图1、4和5所示,本实用新型提供一种加速度传感器。所述加速度传感器可以仅测量竖直轴向(z轴向)加速度的传感器,也可以是包含三轴轴向加速度的传感器。
[0025]所述加速度传感器包括:单晶硅基底100、敏感器件层500、氧化硅薄膜408和金属电极200。
[0026]所述单晶硅基底100上包含至少一个腔体,其中,所述腔体包括:为竖直轴向加速度敏感电容提供空间的第一腔体102。
[0027]在此,所述腔体的数量与所述加速度传感器所能感应的加速度方向相关。若所述传感器为z轴加速度传感器,则可仅包含所述第一腔体102。若所述传感器为三轴加速度传感器,则所述腔体包括所述第一腔体102和两个第二腔体103。其中,所述第二腔体103用于为X轴或y轴的加速度敏感电容提供空间。其中,所述第一腔体102和第二腔体103的深度可固定,也可以根据每个腔体所对应的敏感电容的移动幅度、或灵敏度需要而设定不同深度。例如,所述第一腔体102的深度大于悬于其上的加速度敏感电容的最大移动幅度。
[0028]所述敏感器件层500覆盖在所述单晶硅基底100上。其中,所述敏感器件层500覆盖所述单晶硅基底的所有腔体。优选地,在包含所述腔体的单晶硅基底100和所述敏感器件层500之间设有氧化硅层101。
[0029]需要说明的是,所述氧化硅层101的厚度仅描述了微米级的数值,但该精度并非一定在微米级,也可以为更高精度。
[0030]其中,覆盖在
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1