一种测量醇基燃料完全蒸发温度的方法和装置的制造方法
【技术领域】
[0001] 本发明涉及能源燃料领域,具体涉及一种测量醇基燃料完全蒸发温度的方法和装 置。
【背景技术】
[0002] 醇基燃料是一种复杂的混合燃料,在燃气轮机中可作为替代天然气的气态燃料。 在常温常压下,醇基燃料为液体状态,在喷入燃气轮机燃烧室燃烧之前需要气化,所以必须 提前了解该复杂燃料在密闭燃烧系统内部不同压力下的完全蒸发温度,以便对该燃料进行 加热气化。
[0003] 实验室经常采用综合热分析仪(TG-DSC)测量分析物质的蒸发温度和蒸发潜热,采 用加压热重分析仪测试分析压力对各组分蒸发温度的影响,获得物质在不同压力下的蒸发 温度。综合热分析仪是具有微机数据处理系统的热重一差热联用热分析仪器,是一种在程 序温度(等速升降温、恒温和循环)控制下,测量物质的质量和热量随温度变化的分析仪器, 常用以测定物质在蒸发、升华等特定温度下发生的热量和质量变化。热重分析仪(TG)也是 在程序温度控制(等速升温、降温、恒温和循环)下,测量物质的质量(或重量)随温度变化的 一种热分析仪器。
[0004] 为了测得成分较为复杂的醇基燃料的蒸发温度,针对上述两种仪器,开展了测试 性实验,结果发现:醇基燃料由于富含甲醇、乙醇、丙酮等,具有较强的挥发性,致使测试中 在常温环境下对液体燃料样品进行称量时即发生蒸发,表明该醇基燃料的起始蒸发温度低 于常温,而由于现有实验室的综合热分析仪和加压热重分析仪的程序升温起始温度都是室 温,且样品均放置在小容量的敞口坩埚中,造成样品质量无法初始化等问题,因此以上测试 方案不适合。同时因为醇基燃料为多种物质混合而成,并非单一物质,物理化学特性复杂, 要测量该混合液体完全蒸发的温度具有较大的难度。
【发明内容】
[0005] 为了解决上述问题,本发明提供了一种测量醇基燃料完全蒸发温度的方法,该方 法能避免现有方法无法初始化的问题,测定方法简单便捷,测试结果误差小。
[0006] 本发明还提供了一种用于该测量方法的测量装置,操作简易,气密性好,性能稳 定。
[0007] 上述目的是通过如下技术方案实现的: 一种测量醇基燃料完全蒸发温度的装置,包括反应釜、加热装置、温控单元和数据处 理单元;反应釜包括釜体和釜盖,釜盖上安装有一个压力传感器和两个热电偶传感器TC1、 TC2,盖上釜盖时,TC1插至釜体底部,TC2悬于釜体中;加热装置套装在反应釜外围并包住 釜体;所述加热装置与温控单元连接,所述压力传感器和热电偶传感器TC1、TC2的信号输 出端与数据处理单元连接。
[0008] 进一步地,釜体和釜盖采用T316S超低碳不锈钢制作,釜体内径63. 5mm,容积 500ml,釜体与釜盖采用扣环密封,并以柔性石墨垫片为密封材料。该材料导热快,釜体体积 大小合适,密封性能好。
[0009] 进一步地,热电偶传感器TC1与TC2采用K型热电偶传感器,TC2至釜体底部距离 为15mm。该型号的热电偶传感器灵敏;距底部15mm距离适合所述容积大小的装置进行试 验。
[0010] 一种采用上述装置测量醇基燃料完全蒸发温度的方法,其特征在于包括如下步 骤: (1) 取醇基燃料加入定容反应釜釜体内; (2) 安装反应釜釜盖,确保釜体与釜盖密封配合; (3) 通过温控单元设定加热装置的加热温度T0,开始加热; (4) 加热装置温度达到设定值T0后,启动系统,再将安装好的反应釜置于加热装置内, 热电偶传感器TC1、TC2实时采集釜体中液体温度和蒸汽温度,并将采集的数据送给数据处 理单元,数据处理单元接收并处理数据,生成液体温度-时间曲线和蒸汽温度-时间曲线两 条曲线; (5) 观察上述两条曲线变化情况,当液体温度-时间曲线出现转折点,且该转折点后的 两条曲线的分离趋势增大时,记录该转折点时刻对应的液体温度值和釜内压力值,则该液 体温度值即为该醇基燃料在该压力条件下的完全蒸发温度。
[0011] 进一步地,步骤(3)所述加热装置的设定加热温度为250~350°C。高于该温度范围 时,会导致温度时间曲线变化太剧烈,影响实验效果;低于该温度范围时,会导致温度时间 曲线变化太平缓,转折点不够明显。在该温度范围内时,液体温度-时间曲线的转折点较为 明显,液体和蒸汽温度变化速度合适。
[0012] 进一步地,通过改变步骤(1)中醇基燃料的体积,复重步骤(1)~ (5),测得该醇基 燃料在多种压力条件下的完全蒸发温度。
[0013] 进一步地,所述多种压力条件为2. 2MPa-2. 5MPa,并将测得的各压力条件下对应的 完全蒸发温度生成压力-温度曲线。操作中,欲获得醇基燃料在某一特定压力下的完全蒸 发温度,可以参照该特定压力附近压力的醇基燃料加入体积,调整醇基燃料加入量,从而获 得该特定压力下的完全蒸发温度。
[0014] 本发明的有益效果: (1)本发明提供的用于测量醇基燃料完全蒸发温度的装置导热快,体积大小合适,密封 性能好,温度和压力采集准确,误差小,能够获得准确地醇基燃料完全蒸发温度。
[0015] (2)本发明提供的测量方法能避免现有方法无法初始化的问题,测定方法简单便 捷,体系温度控制得当,终点容易控制,测试结果误差小,可操作性强。
[0016] (3)本发明提供的装置和测量方法能够准确地测量醇基燃料的完全蒸发温度,结 果与理论值相近,准确可靠。
【附图说明】
[0017] 图1 :醇基燃料完全蒸发温度测量装置示意图; 图2 :某醇基燃料TC1和TC2温度-时间曲线图; 图3 :图2所示TC1温度-时间曲线的一阶导数图; 图4 :图2所示的TC1和TC2差值TC1-TC2随时间变化曲线图; 图5 :水完全蒸发温度测量值与理论值对比。
[0018] 图1中,1、反应釜;2、加热炉;3、温控单元;4、排气阀;11、釜体;12、釜盖;13、扣 环。
【具体实施方式】
[0019] 下面结合具体实施例详细说明本发明的技术方案。
[0020] 实施例1:醇基燃料完全蒸发温度测量装置 如图1所示,测量装置包括反应II1和电热炉2,电热炉2套在反应II1外壁,反应II1 包括釜体11和釜盖12,釜盖12上安装有两个热电偶传感器TC1、TC2和一个压力传感器P, 盖上釜盖时,TC1与釜体底部接触,TC2悬于釜体。釜体11和釜盖12采用T316S超低碳不 锈钢制作,釜体11内径63. 5mm,容积为500ml,釜体11与釜盖12采用扣环13密封,并以柔 性石墨垫片为密封材料,TC1与TC2为K型热电偶传感器,TC2距釜体底部15_。
[0021] 实施例2:以某醇基燃料为例说明本发明测量方法的原理 以某种醇基燃料的试验结果为例进行分析。由图2可见,TC1与TC2在升温过程中出现 了两个斜率比较平缓的"台阶",由于醇基燃料主要由甲醇及乙醇以不同的比例混合制成, 因此这两个"台阶"应该是由于反应器内的甲醇与乙醇分别蒸发时产生的。与定压条件下水 平的沸腾曲线不同,由于定容反应器内沸腾时气相的摩尔数逐渐增大,使得容器内的压力 升高,因此对应的饱和温度也随之升高,产生了具有一定斜率的沸腾曲线。但可以看出沸腾 时的升温速率明显小于沸腾前后的升温速率。图中TC2的升温曲线相对于TC1有一定的滞 后,这是由于TC2置于热电偶套管中并且与定容反应器的底部有一定的距离。热量通过蒸 汽及热电偶套管的金属管壁传递给TC2,使得TC2相对于TC1曲线表现为一定时间的滞后, 但二者的整体变化趋势是相同的。
[0022] 在第二个"台阶"之后,定容反应器内的溶液完全蒸发,升温速率显著增加,在升温 曲线上表现为斜率的骤然增大。由图3中TC1升温曲线的一阶导数可以发现,在升温曲线 的第二个"台阶"之后,TC1曲线的斜率有一个明显的骤增,此时的TC1即为对应压力下醇基 燃料的完全蒸发温度值(见图2和图3的箭头所指处)。
[0023] 图4为TC1-TC2的差值随反应时间的变化曲线。可以看出TC1-TC2的差值先逐渐 增大,达到峰值后逐渐减小直至最低点,随后二者的差值又呈增大的趋势。其原因如下:反 应初期,定容反应器内的气相主要为空气及少量醇基燃料蒸汽。TC1由于与反应器底部直接 接触,因此升温速率较快;而热量传递给TC2则需要依次经过容器底部的液体、气相混合物 以及热电偶套管的金属管壁,由于传热过程需要时间和温差,TC2的值不仅滞后于TC1并且 比T