本发明涉及一种用于机器人自主环境感知的介质材料识别方法,尤其涉及一种利用静电测量技术的介质材料识别方法,属于材料识别领域。
背景技术:
随着电子与计算机技术、人工智能的快速发展,智能机器人技术取得了长足的进步。智能机器人是一类能够在无人干预情况下完成自主感知、自主决策、自主控制,独立地活动和处理问题的机器人。作为智能机器人强大自主能力的典型特征—自主环境感知技术,已经成为衡量机器人智能程度的重要标准,也是实现机器人自主决策和自主控制的重要基础,因此机器人自主感知技术的研究受到了人们的极大重视。
机器人自主感知的主要内容是对周围环境的感知。其中两项重要内容是对介质材料的识别分类和地面环境的识别分类。材料识别是智能机器人对目标物体进行感知并做出下一步动作的重要依据。比如机器人通过自身传感器对接触的材料进行识别,从而判断材料属性和种类,将识别结果反馈给机器人后,机器人进行一系列自主决策,并最终控制相关机构完成对物体的定位、拿取等操作。
现有的材料识别方法主要可以分为两个大类。其一是通过非接触式传感器进行识别,包括机器视觉识别,电磁和电容识别,超声波识别等。另外一类就是使用各种接触式传感器,通过与被测材料接触测量的方式来识别材料。主要利用热觉、静电或压电等原理进行测量。在机器人的材料自动识别的应用背景下,基于机器视觉的方法不仅容易收到光照和遮盖的影响,且其图像数据量大,处理复杂。相比之下,基于触觉的多种识别方法,能够对材料的属性,如硬度、电阻率,导热性等进行直接测量,数据量小,识别更快,但是也存在着需要外加激励,结构相对复杂,仅能识别特定材料的不足。
技术实现要素:
本发明要解决的技术问题是提高机器人在自主环境感知中材料识别分类的能力。增强机器人环境感知过程中抗光照条件干扰的能力,拓宽机器人可识别的材料范围,降低机器人环境感知系统的复杂度。本发明公开了一种基于材料表面电荷泄放特性,不受光照、烟雾条件影响,不需要外加激励条件下就能测量,识别范围更加广泛的机器人用材料识别方法。
本发明公开的一种用于机器人自主环境感知的介质材料识别方法,具体实现步骤如下:
步骤一:布设金属电极检测被测材料上静电信号,检测方式是通过一个谐振式探测装置驱动着金属电极做上下谐振运动,使之与被测材料进行不断的接触与分离,使用静电测量系统检测出由金属电极感应电荷变化产生的感应电流信号。所述的静电测量系统包括:谐振式探测装置、静电信号检测单元、金属电极、被测材料、绝缘材料和接地的金属铝板构成的基座。其中静电信号检测单元包括:电流放大电路,f陷波器,i-v转换电路,数据采集仪。假设被测材料表面电荷量为q,材料等效面积为s,在被测材料正上方间距为d位置处布置一块金属电极,等效面积s。谐振式探测装置驱使金属电极与被测材料不断地接触与分离,那么间距d的变化可用如下方程描述:
d表示金属电极与被测材料表面的最大间距,f表示金属电极谐振运动的频率。每个周期开始于金属电极距离被测材料表面最大高度,结束于电极回到相同位置为止。
被测材料表面电荷在金属电极上形成的电场强度如下:
根据高斯定理,材料表面电荷在金属电极上的感应电荷密度可以表示为:
ρ=ε0εre(3)
那么,在接触与分离过程中,金属电极上的感应电荷可以表示为:
当金属电极以一定的运动方式靠近被测材料表面时,由于场强的变化,将会导致金属电极感应电荷的变化。通过静电信号检测单元,检测金属电极由感应电荷变化产生的感应电流。电路中感应电流如下所示:
除此之外,当金属电极与被测材料发生接触时,被测材料表面电荷将通过金属电极向大地泄放。而由于不同介质材料电阻率的差异,材料表面电荷流动性会不同,当介质材料电阻率较大时,材料对表面电荷的束缚更强,电荷就更不易发生流动,当金属电极与材料进行接触时,表面电荷被导入大地的比例就更小。为了衡量不同材料的表面电荷泄放特点,本发明定义一个表征电荷泄放快慢的参数-电荷泄放因子α。金属电极与被测材料每次接触时,材料表面电荷变化如下所示。
q(n)=q·αn(6)
式中n表示接触次数,q(n)表示第n次接触时材料表面的电荷量,代入感应电流的公式(5),得到接触与分离状态下感应电流:
其中电荷泄放因子α为:
r和c分别表示金属电极与被测材料的接触电阻和接触电容。
所述的电流信号即为金属电极在与被测材料接触与分离过程中检测到的静电信号,这个信号中包含了材料种类的信息。
步骤二:使用静电测量系统采集5类典型的介质材料(玻璃,纸张,木材,铝板和聚四氟乙烯)的静电信号,每类材料分别采集50组静电信号。所述的静电信号是指:首先将检测得到电流信号经过电荷放大器以使其幅值得到放大,再将放大后的电流信号经过i-v转换电路转变为电压信号,电压信号随后经过低通滤波电路去除噪声,数据采集仪将滤波后的电压信号转化为数字静电信号存储下来。通过静电测量系统采集5类介质材料静电信号,用作后续分析与处理。
步骤三:将该采集到的5类介质材料电压信号进行滤波处理,提取信号三类特征量。通过实测信号表明,静电信号中最大负峰值代表金属电极与材料未接触时的最大电压值,而与主峰其紧邻的负峰值则代表着第一次接触分离后,材料表面残余电荷在金属电极上感应出的最大电压值。静电信号中这两个值的比值的倒数反映了电极与材料一次接触分离后,材料表面电荷泄放的比例,因此这个两个峰值的比值倒数即电荷的泄放比例就是本发明的电荷泄放因子,以此作为材料静电信号的第一个特征量。
5类介质材料的静电信号衰减趋势主要表现在同样的时间和接触频率内,信号幅值衰减到初始值的快慢。通过判断信号负峰的个数,能够直观分辨出5类介质材料静电信号。因此,为了找出5类介质材料静电信号的差异,本发明选取信号前3s区间内的负峰个数作为识别特征。有效负峰的定义附图1所示。
有效负峰是指划定最大负峰值绝对值的1/k作为判断线,当负峰值超过此线时,就将次峰认定为有效负峰。经过计算发现,当k=5时,5类介质材料静电信号的有效负峰个数存在明显的区别。因此,有效负峰个数可以作为识别5类介质材料静电信号的第二个特征量。
除此之外,由于所有的信号都是在同一频率下采集,当给信号划定一个相同的时间窗时,能够提取出同时段内信号的不同的峰值信息。对于5类介质材料的静电信号,除去明显的衰减趋势差异外,其信号的峰值也是一个较明显的参数,考察一个时间窗内的所有正负峰值信息可以有效弥补仅仅提取一对主副峰值的不足,有效的利用采集的数据。因此在本发明中,通过给信号加上一个两秒时长的时间窗,并提取出窗内信号的正负峰与负峰值,对正负峰值分别求方差之后再求和,最后从每个信号中提取出正负峰值方差和作为判断信号类别的第三个特征量。时间窗正负峰值的定义如附图2所示。
步骤四:采用k最近邻分类算法对采集到的静电信号进行识别分类。将每类材料静电信号提取电荷泄放因子、有效负峰个数以及时间窗内正负峰值方差和三个特征量后,组成一个特征向量进行识别分类。选择每类材料35组信号用于分类器训练,15组用于分类器测试验证。经过测试表明5类介质材料平均识别正确率达到86%。
步骤五:通过在机器人机体搭载静电测量系统和后端实现信号识别分类算法的硬件模块,并重新采集某类别介质材料的静电信号,经过滤波处理和特征提取之后,放于分类器进行识别分类,分类器最终根据分类算法得出该材料的类别结果,完成机器人对材料的自动识别分类,协助机器人完成环境的自主感知。
有益效果:
1、本发明涉及一种用于机器人自主环境感知的介质材料识别方法,首次提出利用材料表面静电泄放特性来识别介质材料,识别范围广,识别准确性更高。
2、本发明涉及一种用于机器人自主环境感知的介质材料识别方法,由于采用接触识别的方式,具有不受光照和烟雾条件影响的特点。
3、本发明涉及一种用于机器人自主环境感知的介质材料识别方法,由于利用材料本身电荷特性,采用不需要外加激励的测量方式,具有原理可靠,结构简单的特点。
附图说明
图1是第二个特征量-有效负峰个数的定义示意图;
图2是第三个特征量-时间窗和正、负峰值的定义示意图;
图3是材料静电信号测量系统示意图;
具体实施方式
下面结合附图详细描述本发明的具体实施方式。
本实施例公开的一种用于机器人自主环境感知的介质材料识别方法。具体实现步骤如下:
步骤一:布设一个谐振式探测装置驱使金属电极与被测材料多次接触分离,使用静电测量系统检测出由金属电极感应电荷变化产生的感应电流信号。所述的静电测量系统包括:谐振式探测装置、金属电极、静电信号检测单元、被测材料、绝缘材料和接地的金属铝板构成的基座。静电信号检测单元包括:电流放大电路,f陷波器,i-v转换电路,数据采集仪。材料静电信号测量系统如附图3所示。金属电极等效面积为1cm2,金属电极与被测材料间距最大值为0.15m,谐振式探测装置谐振频率为2hz。采集5类典型的介质材料(玻璃,纸张,木材,铝板和聚四氟乙烯)的静电信号,每类材料分别采集50组静电信号,所述的静电信号是每个时刻探测系统获取的电压信号,该电压信号是经感应电流信号转换而来。
步骤二:采用k最近邻算法对采集到的静电信号进行识别分类。将每类材料静电信号提取电荷泄放因子、有效负峰个数以及时间窗内正负峰值方差和三个特征量后,组成一个特征向量进行识别分类。选择每类材料35组信号用于分类器训练,15组用于分类器测试验证。经过训练测试获得平均识别正确率超过80%的分类器。
步骤三:将静电测量系统和和后端实现信号识别分类算法的硬件模块搭载与机器人上,并驱使机器人重新采集某类别的介质材料的静电信号,经过滤波处理和特征提取之后,放于分类器进行识别分类,分类器最终根据分类算法得出该材料的类别结果,完成机器人对材料的自动识别分类,协助机器人完成环境的自主感知。
本发明保护范围不仅局限于本实施例,本实施例用于解释本发明,凡与本发明在相同原理和构思条件下的变更或修改均在本发明公开的保护范围之内。