本发明涉及一种透镜装配装置,尤其涉及一种c-lens装配工艺的检测设备和控制方法。
背景技术:
传统的c-lens(球面光纤准直器)装配工艺指的是人工将光纤接口组件和c-lens装配、固化成为透镜组件的过程,在这过程中还包括目视检测步骤。
一般的目视检测步骤是在固化完成后才进行的,这样的方式存在以下缺点:即便后期检测出来有偏差的产品,也无法对已经固化好的透镜组件进行修正,因此出现了大批的不合格成品。现在也有人提出应该人工装配后,固化之前,先进行检测,但其依赖的方法,仍然为目视检测法。
目视检测法的原理是先测出c-lens的几何中心与to(英文名称为transistoroutlin,中文名称为同轴封装激光器)的发光中心的偏芯精度,再根据偏芯的方向和多少,对还没固化前的透镜组件进行人工修正,从而减少成品中的不合格率。目视检测的具体方法是:点亮to,确认to发射出来的光线在透过c-lens后,散发出来的光是否均匀一致、c-lens的边缘是否存在漏光现象,凭借人的经验进行主观判断是否存在偏芯、偏芯的方向和多少。但由于c-lens的几何中心与to的发光中心的轻微偏芯导致的漏光现象非常不明显,因此轻微的漏光导致的偏心不容易被人眼发现,只有较为严重的漏光才能看出,漏检率非常高,再加上目视检测对是否偏芯,偏芯多少的把握具有主观成分,使目视检测方法存在诸多诟病。
技术实现要素:
本发明的目的在于提供一种c-lens装配工艺的检测设备和控制方法,通过设备完成在装配工艺中未固化前的检测工作,解决目视检测方法主观意识强,准确率低的问题。
本发明是这样实现的:一种c-lens装配工艺的检测设备,包括激光器、3d位置调节器、装配机构、第一光阑机构、第二光阑机构,所述激光器的输出端与所述3d位置调节器连接,所述装配机构设有定位构件,所述定位构件用于固定光纤接口组件和c-lens,所述第一光阑机构包括第一光阑,第二光阑机构包括第二光阑;调节所述3d位置调节器、装配机构、第一光阑机构和第二光阑机构的位置,使激光器的光线依次通过光纤接口组件、c-lens、第一光阑的内孔和第二光阑的内孔。
在传统的目视检测方式中,合格的标准主要是判断激光器发射出来的光线在透过c-lens后,散发出来的光线均匀一致、c-lens的边缘不存在漏光现象,此时,所述激光器发射出来的光线在透过c-lens后只有一条光路,那么我们就可以采用本发明的技术方案,验证激光器发射出来的光线通过光纤接口组件、c-lens后,是否可以成为一条光路,如果可以,说明检测合格,如果不可以,说明光线被分散,说明检测不合格。采用技术方案,避免了目视检测的主观性,提高了检测的准确率。
作为本发明的进一步改进,还包括导轨和导轨调节组件,所述3d位置调节器、装配机构、第一光阑机构和第二光阑机构依次通过导轨调节组件与导轨滑动连接。进一步的,所述导轨调节组件包括调节台和滑块,所述各滑块与导轨滑动连接,所述各调节台分别与3d位置调节器、装配机构、第一光阑机构和第二光阑机构连接,所述调节台沿着导轨的垂直方向移动,所述调节台以导轨的垂直方向为轴旋转。该导轨调节组件使调节更加灵活。
作为本发明的进一步改进,所述3d位置调节器设在所述装配机构上,所述3d位置调节器的一端连接所述激光器的输出端,所述3d位置调节器的另一端连接定位构件。采用此技术方案,调节3d位置调节器的时候,所述定位构件跟着移动,使调节过程更加简便、快速,而且不需将3d位置调节器通过导轨调节组件与导轨连接,减少了导轨调节组件的数量。
作为本发明的进一步改进,所述装配机构还设有c-lens位置调节器,所述c-lens位置调节器与c-lens连接。采用技术方案,当需要调整光纤接口组件和c-lens的相对位置时,不需要通过人手去接触光纤接口组件或c-lens,只需要通过c-lens位置调节器调节,这样做可以减少人手的污染、提高调整精度。
作为本发明的进一步改进,所述定位构件设有点胶装置。在调整好所述光纤接口组件和c-lens的相对位置,并在检测合格后,此时可以通过定位构件中的点胶装置进行固化,获得透镜组件的成品。采用技术方案,将装配、检测和固化步骤结合在一起,提高了生产效率。
本发明的另一个目的在于提供一种c-lens装配工艺的检测设备的控制方法,包括以下步骤:
步骤s1,启动激光器,调节所述3d位置调节器、装配机构、第一光阑机构和第二光阑机构的位置,使激光器的光线依次通过第一光阑的内孔和第二光阑的内孔,固定第一光阑机构和第二光阑机构的位置,获得标准光路;
步骤s2,将光纤接口组件和c-lens安装在定位构件中,启动激光器,使激光器的光线依次通过光纤接口组件和c-lens,获得检测光路;
步骤s3,通过调节3d位置调节器,使标准光路和检测光路重合,当所述标准光路和检测光路重合时,判断为检测合格;如所述标准光路和检测光路无法重合时,判断为检测不合格。
采用上述的技术方案,先利用第一光阑机构和第二光阑机构,固定标准光路;再安装光纤接口组件和c-lens,判断激光器的光线经过光纤接口组件和c-lens后,是否还能与标准光路重合,如果重合,说明经过光纤接口组件和c-lens的光线仍然为一条光路,判断为检测合格;如果无法重合,说明经过光纤接口组件和c-lens的光线已经分散,无法凝聚成一条光路,检测不合格。这种方法告别了目视检测中的主观性,步骤简单,操作方便。
进一步的,还包括:步骤s4,当判断为检测不合格时,改变光纤接口组件或c-lens在所述定位构件中的位置,重新进行步骤s3。当单纯调节3d位置调节器无法使检测光路与标准光路重合时,说明光纤接口组件和c-lens的相对位置不符合要求,此时可以调节光纤接口组件或c-lens,使两者之间的相对位置符合要求,这样做的目的是为检测后的固定做好准备。
进一步的,所述c-lens装配工艺的检测设备还包括导轨和导轨调节组件,所述装配机构、第一光阑机构和第二光阑机构依次通过导轨调节组件与导轨滑动连接,所述3d位置调节器设在所述装配机构上,所述3d位置调节器分别连接激光器的输出端和定位构件,所述装配机构还设有c-lens位置调节器,所述c-lens位置调节器与c-lens连接,所述步骤s4中通过调整c-lens位置调节器改变c-lens的位置。
这样做的好处的不需要人手接触c-lens,减少了人手对c-lens的污染,提高调整精度。
进一步的,还包括:步骤s5,所述定位构件设有点胶装置,当判断为检测合格时,通过点胶装置在光纤接口组件和c-lens之间进行点胶固定。
进一步的,所述装配机构上还设有激光器固定构件,所述激光器固定在所述激光器固定构件中。
与现有技术相比,本发明的有益效果是:这种c-lens装配工艺的检测设备和控制方法,利用了激光器发射出来的光线通过光纤接口组件和c-lens的光线是否仍然为一条光路为判断准则,设计了结构简单、操作方便的检测设备,减少了目视检测的主观性,提高了检测准确率,并使装配、检测和固化工艺在同一台设备上完成,提高了生产效率。
附图说明
图1是一种c-lens装配工艺的检测设备结构示意图。
图2是一种c-lens装配工艺的检测设备局部结构示意图。
图3是一种c-lens装配工艺的检测设备局部结构示意图。
附图说明:1-激光器,10-标准跳线,2-3d位置调节器,3-装配机构,31-定位构件,32-c-lens位置调节器,4-第一光阑机构,5-第二光阑机构,6-导轨,61-调节台,62-滑块,100-光纤接口组件,200-c-lens。
具体实施方式
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面结合附图及具体实施例对本发明进一步说明。
实施例1
如图1、3所示的一种c-lens装配工艺的检测设备,包括激光器1、3d位置调节器2、装配机构3、第一光阑机构4、第二光阑机构5,所述激光器1的输出端与所述3d位置调节器2连接,所述装配机构3设有定位构件31,所述定位构件31用于固定光纤接口组件100和c-lens200,所述第一光阑机构4包括第一光阑和第一固定台,所述第一光阑安装在第一固定台上,第二光阑机构5包括第二光阑和第二固定台,所述第二光阑安装在第二固定台上;调节所述3d位置调节器2、装配机构3、第一光阑机构4和第二光阑机构5的位置,使激光器1的光线依次通过光纤接口组件100、c-lens200、第一光阑的内孔和第二光阑的内孔。
在传统的目视检测方式中,合格的标准主要是判断激光器发射出来的光线在透过c-lens200后,散发出来的光线均匀一致、c-lens200的边缘不存在漏光现象,此时,所述激光器1发射出来的光线在透过c-lens200后只有一条光路,那么我们就可以采用本发明的技术方案,验证激光器1发射出来的光线通过光纤接口组件100、c-lens200后,是否可以成为一条光路,如果可以,说明检测合格,如果不可以,说明光线被分散,说明检测不合格。采用技术方案,避免了目视检测的主观性,提高了检测的准确率。
进一步的,还包括导轨和导轨调节组件,所述3d位置调节器2、装配机构3、第一光阑机构4和第二光阑机构5依次通过导轨调节组件与导轨6滑动连接。
实施例2
在实施例1的基础上,所述导轨调节组件包括调节台61和滑块62,所述各滑块62与导轨6滑动连接,所述各调节台61分别与3d位置调节器2、装配机构3、第一光阑机构4和第二光阑机构5连接。
所述调节台61上设有第一旋钮和第二旋钮,调节第一旋钮时,所述调节台61沿着导轨6的垂直方向移动;调节第二旋钮时,所述调节台61以导轨6的垂直方向为轴旋转。
滑块62上设有固定件(图中未示出),所述滑块62通过固定件与导轨连接。
调节台61和滑块62的应用,使导轨调节组件的调节更加灵活。
实施例3
在实施例2的基础上,所述3d位置调节器2设在所述装配机构3上,所述3d位置调节器2的一端连接所述激光器1的输出端,所述3d位置调节器2的另一端连接定位构件31。
原来需要将3d位置调节器2、装配机构3、第一光阑机构4和第二光阑机构5连接分别通过导轨调节组件与导轨6连接,因此需要四个导轨调节组件,零件多,安装步骤繁琐,采用此技术方案的话,减少了导轨调节组件的数量;另外,由于3d位置调节器2与定位构件31连接,因此只要调节3d位置调节器2的时候,所述定位构件31就会跟着移动,使调节过程更加简便、快速。
实施例4
在实施例3的基础上,所述装配机构3还设有c-lens位置调节器32,所述c-lens位置调节器32与c-lens200连接。
进一步的,所述c-lens位置调节器32与装配机构3滑动连接。
进一步的所述c-lens位置调节器32沿着装配机构3的水平方向移动;所述c-lens位置调节器32以装配机构3的水平方向为轴旋转。
采用上述技术方案,当需要调整光纤接口组件100和c-lens200的相对位置时,不需要通过人手去接触光纤接口组件100或c-lens200,只需要通过c-lens位置调节器32调节,这样做可以减少人手的污染。而c-lens位置调节器32能够沿着装配机构3的水平方向移动或者旋转,那么就可以带动c-lens200的位置做灵活的调整变动,提高了调整精度。
实施例5
在实施例4的基础上,所述定位构件31设有点胶装置(图中未示出)。点胶装置是用来加入胶水,实现光纤接口组件100和c-lens200的固化的装置。在调整好所述光纤接口组件100和c-lens200的相对位置,并在检测合格后,此时可以通过定位构件31中的点胶装置进行固化,获得透镜组件的成品。采用技术方案,将装配、检测和固化步骤结合在一起,提高了生产效率。
实施例6
本发明的另一个目的在于提供如实施例1所述的c-lens装配工艺的检测设备的控制方法,这种方法包括以下步骤:
步骤s1,启动激光器,调节所述3d位置调节器2、装配机构3、第一光阑机构4和第二光阑机构5的位置,使激光器的光线依次通过第一光阑的内孔和第二光阑的内孔,固定第一光阑机构4和第二光阑机构5的位置,获得标准光路;
步骤s2,将光纤接口组件100和c-lens200安装在定位构件31中,启动激光器1,使激光器1的光线依次通过光纤接口组件100和c-lens200,获得检测光路;
步骤s3,通过调节3d位置调节器2,使标准光路和检测光路重合,当所述标准光路和检测光路重合时,判断为检测合格;如所述标准光路和检测光路无法重合时,判断为检测不合格。
采用上述的技术方案,先利用第一光阑机构4和第二光阑机构5,固定标准光路;再安装光纤接口组件100和c-lens200,判断激光器1的光线经过光纤接口组件100和c-lens200后,是否还能与标准光路重合,如果重合,说明经过光纤接口组件100和c-lens200的光线仍然为一条光路,判断为检测合格;如果无法重合,说明经过光纤接口组件100和c-lens200的光线已经分散,无法凝聚成一条光路,检测不合格。这种方法告别了目视检测中的主观性,步骤简单,操作方便。
实施例7
进一步的,还包括:步骤s4,当判断为检测不合格时,改变光纤接口组件100或c-lens200在所述定位构件31中的位置,重新进行步骤s3。
当单纯调节3d位置调节器2无法使检测光路与标准光路重合时,说明光纤接口组件100和c-lens200的相对位置不符合要求,此时可以调节光纤接口组件100或c-lens200,使两者之间的相对位置符合要求,这样做的目的是为检测后的固定做好准备。
进一步的,所述c-lens装配工艺的检测设备还包括导轨和导轨调节组件,所述装配机构3、第一光阑机构4和第二光阑机构5依次通过导轨调节组件与导轨6滑动连接,所述3d位置调节器2设在所述装配机构3上,所述3d位置调节器2分别连接激光器1的输出端和定位构件31,所述装配机构还设有c-lens位置调节器32,所述c-lens位置调节器32与c-lens200连接,所述步骤s4中通过调整c-lens位置调节器32改变c-lens200的位置。这样做的好处的不需要人手接触c-lens200,减少了人手对c-lens200的污染,提高调整精度。
进一步的,还包括:步骤s5,所述定位构件31设有点胶装置,当判断为检测合格时,通过点胶装置在光纤接口组件100和c-lens200之间进行点胶固定。
实施例8
进一步的,所述装配机构3上还设有激光器固定构件(图中未示出),所述激光器1固定在所述激光器固定构件中。
实施例9
在实施例6-8的基础上,一个优选的c-lens装配工艺的检测设备的控制方法,包括以下步骤:
步骤s1,将激光器1固定在激光器固定构件上,启动激光器1,不安装光纤接口组件100和c-lens200,如图2所示,将所述第一光阑机构4沿着导轨6移动,粗略调节3d位置调节器2、各调节台61和各滑块62,使所述激光器1的光线在第一光阑机构4的移动过程中,始终照射在所述第一光阑的同一个位置上;精细调节3d位置调节器2、各调节台61和各滑块62,使激光器1的光线依次通过第一光阑的内孔和第二光阑的内孔,固定第一光阑机构4和第二光阑机构5的位置,获得标准光路;
步骤s2,将激光器1从激光器固定构件上取下,如图3所示,通过一条标准跳线10连接激光器1和3d位置调节器2,启动激光器1,将光纤接口组件100和c-lens200安装在定位构件31中,使激光器1的光线依次通过光纤接口组件100和c-lens200,获得检测光路;
步骤s3,通过调节3d位置调节器2,使标准光路和检测光路重合,当所述标准光路和检测光路重合时,判断为检测合格;如所述标准光路和检测光路无法重合时,判断为检测不合格;
步骤s4,当判断为检测不合格时,通过调整c-lens位置调节器32改变c-lens200的位置,重新进行步骤s3;
步骤s5,当判断为检测合格时,通过点胶装置在光纤接口组件100和c-lens200之间进行点胶固定;
步骤s6,取下已经固定好的透镜组件。
同理,所述步骤s1中也可以将所述第二光阑机构5沿着导轨6移动,粗略调节3d位置调节器2、各调节台61和各滑块62,使所述激光器1的光线在第二光阑机构5的移动过程中,始终照射在所述第二光阑的同一个位置上,。
这种c-lens装配工艺的检测设备和控制方法,利用了激光器1发射出来的光线通过光纤接口组件100和c-lens200的光线是否仍然为一条光路为判断准则,设计了结构简单、操作方便的检测设备,减少了目视检测的主观性,提高了检测准确率,并使装配、检测和固化工艺在同一台设备上完成,提高了生产效率。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。