本发明设计属于光纤干涉仪测量领域,具体涉及到一种同时测量轴向加速度与水平旋转角速度的光纤传感装置。
背景技术:
地震测量作为关系到国计民生的测量领域,自张衡发明第一台地震仪以来,已有上百年历史。传统对地震的认识是建立在弹性模型基础上,人们认为地震波是一种具有能量很强的弹性运动,即横波。但是在大地震的极震区,偶尔会看到一些建筑物发生旋转错位,最大扭动角度可达30度左右。人们开始怀疑在地下传输的横波中混有一定旋转方向的扭动力,传统的地震教科书里面不认为旋转波可以穿过岩石,所以这种旋转现象在起初在2003年被波兰科学院的Roman Teisseyre解释为,地震横波与穿透物体之间的内在相互作用。直到2009年,同样是波兰科学学院Górski M证明了,由于非对称应力的作用,旋转波可以在有空洞,缺陷甚至内部完整的岩石中传播。实际上,这种旋转现象早在1976年就被波兰地震局有效记录,此时只有很少部分的人研究旋转波的研究。
在弹性模型中,即横波场模型,对于某一方向的形变量我们通常用梯度来表示,然而对于旋转矢量场,就必须引入旋转梯度作为旋转波的衡量单位。1968年,日本的渡边晃使用两根钢管构成的直角磁感应线圈测量其对应x,y两个分量方向的位移,从而通过求解输出电压对位移的微分求矢量和计算得到旋转波大小。1979年Tokmakob同样利用相距为L的两根铁管构成磁感线圈,相对于线圈中间产生的磁场变化测得不同方向的梯度值,通过矢量合成求解得到旋转波大小。对于以上方法属于间接求解旋转的方法,其中或多或少都会有些干扰误差,不能测量到物体的绝对旋转速度。
对于横波分量方向,位移,速度以及加速度的测量是使用机械摆,通过拾震摆来测得以上物理量的大小。按照这个思路,对于旋转的测量同样可以设计旋转摆,2009年福建地震局的蔡乃成等人提出了一种旋转惯性摆的结构,该摆由钢丝水平悬吊,垂直径向方向拉紧,使其只能做旋转运动而不能做水平运动,通过该方法连接周围的电容传感器从而测量到了该物体的旋转速度。对于以上传统的机械部件,体积大,布设难,应用条件苛刻等问题无疑会暴露出来。该摆在测量旋转速度的同时屏蔽了轴向横波的干扰,为了减少测量误差。
对于旋转速度的测量,波兰华沙应用物理研究所率先采用光纤方法测量地震中物体的旋转速度。该方案借鉴于传统的光纤陀螺,光纤陀螺作为光纤传感领域内比较成熟的角速度测量传感器,具有精度高,轻巧耐用,造价低廉等优势。该旋转地震测量仪使用萨格纳克干涉仪作为旋转探测光路,辅助以GPS/GSM等通信方案实现对设备的无线数据传输与数据采集。国内对于旋转波测量的传感器,数量不多,德国的B施密特在中国申请一篇专利-具有线性和旋转地震元件的双轴、抗震旋转速率传感器(CN201080040102.6),利用两个质量块与弹簧构成的x,y坐标系求解旋转速度。
基于以上分析,本专利公开一种同时测量轴向加速度与水平旋转角速度的光纤传感装置。本装置结合传统的光纤陀螺与马赫泽德干涉仪,将两个干涉仪在光路上进行复用,既减小了体积,同时增加了测量功能。对于轴向加速度的测量,哈尔滨工程大学杨军,吴冰等人提出多种光纤应变,位移测量方案。如一种超短基线顺变柱体结构光纤位移传感器及光纤应变仪(CN201210381978.8),一种短基线差分式激光应变测量仪(CN201210381976.9),一种超短基线差分盘式光纤位移传感器及光纤应变仪(CN201210381977.3)等,以上专利阐述了如何利用迈克尔逊干涉仪测量地震波产生的应变,轴向加速度,其应变测量分辨率(10-11~10-12ε),动态范围大于180dB,在此基础上,将萨格纳克干涉仪与马赫泽德干涉仪进行光路复用,此时可以利用光纤陀螺原理测量传感器的旋转速度,对比当前光纤陀螺测量精度,其角速度测量分辨率为10-9rad/s。该方案在大规模阵列式地震测量领域内有广阔的发展空间与应用前景。
技术实现要素:
本发明的目的在于提供一种同时测量轴向加速度与水平旋转角速度的光纤传感装置。
本发明的目的是这样实现的:
包括传感光路20,传感壳体10与光源采集卡;传感光路20中,宽谱光输入211连接至环形器231a端口;环形器231的b、c端口分别连接至1号探测器201与第一耦合器221的一个输入端;第一耦合器221的另一个输入端连接至窄线宽激光输入212;第一耦合器221的一个输出端通过第一连接光纤a连接至外层光纤环242,外层光纤环242通过第三连接光纤c连接至波分复用器245的一个输入端;第一耦合器221的另一个输出端通过第二连接光纤b连接至相位调制器251,之后通过第五连接光纤e连接至内层光纤环243,之后通过第四连接光纤d连接至波分复用器245的一路输出端口;波分复用器245的另外一对输入输出端口连接至第二耦合器222;第二耦合器222的输出端口分别连接至2号探测器202与3号探测器203;第一耦合器221,外层光纤环242,内层光纤环243构成萨格纳克干涉仪;外层光纤环242,内层光纤环243,波分复用器245与第二耦合器222构成马赫泽德干涉仪;第一耦合器221,第二耦合器222,环形器231与波分复用器245同时粘贴于弹性盘片303的下表面,外层光纤环242,内层光纤环243则粘贴于弹性盘片303的上表面,弹性盘片303中间掏空,安装质量感应块321。
所述的传感壳体10,由封装壳上盖110,底座输出端口113部件组成,传感器上盖110通过8个内六角螺丝1101将传感器密封,传感器上盖110下方有气密胶垫1102,与传感器上盖110共同固定;传感探头中部为复用干涉仪;传感光路20输出端的三个光纤接头通过第一输出光纤201a,第二输出光纤202a,第三输出光纤203a连接至光电转换模块140处;光电转换模块140的输出端连接至底座输出端口113的加速度输出信号1132,旋转角速度输出信号1133,光电转换模块140的输入端连接至调相波输入信号1131;窄线宽光源输入法兰盘1134与宽谱光源输入法兰盘1135通过第一输入光纤211a,第二输入光纤212a连接至宽谱光输入211与窄线宽激光输入212。
所述的外围设备,包括窄线宽光源152,宽谱光源153,数据采集卡151与计算机150;数据采集卡151输出调相波信号至相位调制器251,其输入端连接至加速度输出信号1132与旋转角速度输出信号1133,最后连接至计算机150,加速度信号与旋转角速度信号实时显示于计算机150处;窄线宽光源152与宽谱光源153分别连接至窄线宽光源输入法兰盘1134与宽谱光源输入法兰盘1135。
与现有技术相比,本发明的优点在于:
(1)将迈克尔逊干涉仪与萨格纳克干涉仪复用,同时完成对旋转速度与垂直方向加速度的测量。
(2)体积小,质量轻,相比于传统的加速度计与旋转速度测量装置,更便于布设安装。
(3)依托光纤相位调制解调方法,将被测物理量转换成干涉仪的相位变化,具有更高的灵敏度与动态范围。
附图说明
图1是一种同时测量轴向加速度与水平旋转角速度的光纤传感装置结构图;
图2是一种同时测量轴向加速度与水平旋转角速度的光纤传感装置光路接线图;
图3是该传感装置内部光路原理图;
图4是该传感装置弹性盘片背面安装图;
图5是该传感装置弹性盘片正面安装图。
具体实施方式
为清楚地说明一种同时测量轴向加速度与水平旋转角速度的光纤传感装置,结合实施例和附图对本发明作进一步说明,但不应以此限制本发明的保护范围。
1.一种同时测量轴向加速度与水平旋转角速度的光纤传感装置,其特征是:主要由包括传感光路20,传感壳体10与光源采集卡等外围设备。传感光路20中,宽谱光输入211连接至环形器231a端口;环形器231的b、c端口分别连接至1号探测器201与第一耦合器221的一个输入端;第一耦合器221的另一个输入端连接至窄线宽激光输入212;第一耦合器221的一个输出端通过第一连接光纤a连接至外层光纤环242,外层光纤环242通过第三连接光纤c连接至波分复用器245的一个输入端;第一耦合器221的另一个输出端通过第二连接光纤b连接至相位调制器251,之后通过第五连接光纤e连接至内层光纤环243,之后通过第四连接光纤d连接至波分复用器245的一路输出端口;波分复用器245的另外一对输入输出端口连接至第二耦合器222;第二耦合器222的输出端口分别连接至2号探测器202与3号探测器203;第一耦合器221,外层光纤环242,内层光纤环243构成萨格纳克干涉仪;外层光纤环242,内层光纤环243,波分复用器245与第二耦合器222构成马赫泽德干涉仪。第一耦合器221,第二耦合器222,环形器231与波分复用器245同时粘贴于弹性盘片303的下表面,外层光纤环242,内层光纤环243则粘贴于弹性盘片303的上表面,弹性盘片303中间掏空,安装质量感应块321。
2.所述的传感壳体10,由封装壳上盖110,底座输出端口113等部件组成,其特征是:传感器上盖110通过8个内六角螺丝1101将传感器密封,传感器上盖110下方有气密胶垫1102,与传感器上盖110共同固定。传感探头中部为复用干涉仪;传感光路20输出端的三个光纤接头通过第一输出光纤201a,第二输出光纤202a,第三输出光纤203a连接至光电转换模块140处;光电转换模块140的输出端连接至底座输出端口113的加速度输出信号1132,旋转角速度输出信号1133,光电转换模块140的输入端连接至调相波输入信号1131;窄线宽光源输入法兰盘1134与宽谱光源输入法兰盘1135通过第一输入光纤211a,第二输入光纤212a连接至宽谱光输入211与窄线宽激光输入212。
3.所述的外围设备,其特征是:包括窄线宽光源152,宽谱光源153,数据采集卡151与计算机150;数据采集卡151输出调相波信号至相位调制器251,其输入端连接至加速度输出信号1132与旋转角速度输出信号1133,最后连接至计算机150,加速度信号与旋转角速度信号实时显示于计算机150处。窄线宽光源152与宽谱光源153分别连接至窄线宽光源输入法兰盘1134与宽谱光源输入法兰盘1135。
光路复用结构:
本装置用于同时测量垂直地震波与旋转地震波产生的轴向加速度与水平旋转速度,测量原理图如图3所示。其工作方式如下:
整个传感光路由马赫泽德干涉仪与萨格纳克干涉仪复合而成,其中马赫泽德干涉仪用于测量轴向加速度,萨格纳克干涉仪用于测量旋转角速度;马赫泽德干涉仪的工作光路如下:窄线宽激光输入212通过第一耦合器221将光注入到外层光纤环242中,至波分复用器245处;另一路光沿内层光纤环243传输,至相位调制器251处,至波分复用器245处;此时这两束光同时满足波分复用器的分光条件,同时进入波分复用器并传输至第二耦合器222的两个输入端,在第二耦合器222内发生干涉记为M光,干涉光通过第二耦合器分别输出至2号探测器202与3号探测器203处;光电转换模块140输出信号140a,140b,140c分别连接至加速度输出信号1132,旋转角速度输出信号1133,调相波输入信号1131。
萨格纳克干涉仪工作光路如下:宽谱光输入211至环形器231的a端口处,在环形器231的b端口输出,至第一耦合器221的一个输入端口。第一耦合器221输出光同样分成两路,一路沿外层光纤环242传输,至波分复用器245处,此时该宽谱光源输入光不满足波分复用器的选择条件,继续经过波分复用器输出;到达相位调制器251处,再次返回至第一耦合器221处;第一耦合器221的另一路输出光沿内层光纤环243传输,同样到达波分复用器245处;此时该宽谱光源输入光不满足波分复用器的选择条件,继续经过波分复用器输出,再次到达第一耦合器221,并与之前回来的光发生干涉,记做光S;S光经过第一耦合器221输出至环形器231的b端口,在环形器的c端口输出至1号探测器201处。
加速度测量原理:
M光用于测量垂直方向的加速度变化,弹性盘片303固定于封装外壳内侧面,中间有质量感应块321,当传感器受到向下的加速度变化时,此时质量感应块321向下运动,带动弹性盘片303发生形变,粘贴于正向加速度敏感区与反向加速度敏感区的光纤由于受到不同方向的力的作用产生相反方向的拉伸与收缩,此时即对迈克尔逊干涉仪的两个传感臂施加了力的作用,对应改变其长度l。利用相位调制器对迈克尔逊干涉仪进行调制,可以得到M光输出信号形式为:
其中M1M2分别为两束干涉光光强,A为干涉后光强的直流分量,B为干涉后光强的交流分量,为干涉相位变化值,该相位变化可表示为:
其中分别为干涉初相位,加速度引起的相位变化,调制信号引起的相位变化。调制信号变化量与光源调制频率ν有关。
其中n为光纤折射率,l为两臂臂长差,c为光速,若此时的调制电流为i=i0cosω0t则对应光源频率变化为ν=Δνcosω0t,由公式(2-3)可以得到相位变化量为:
其中C为调制深度,是一个与光纤干涉仪以及调相波参数相关的固定常量,若不考虑干涉的初相位,公式(2-1)可化简为:
此时可知相位为加速度引起的相位变化,则相位解调算法需要对该相位变化进行求解。利用光电探测器与AD转换器对光信号进行电信号转换与采集,可以得到干涉信号的电压表示形式
即当惯性加速度作用使干涉仪两臂臂长差l发生改变时,对应干涉仪的相位变化发生改变,此时对加速度的求解即可反应为对M信号相位变化的求解。
旋转速度测量原理:
本装置利用萨格纳克干涉仪完成对旋转速度的测量。S干涉信号光的两个分量同时经过上下光纤环与外围光纤环,即无论光路中任意一段光纤发生任何变化,对这两路干涉信号都是同样的,其走过光路完全相同。设光在光纤中传播速度为c/n,其中c为真空中光速,n为光纤折射率。当整个环发生角速度为ω的旋转时,对应顺逆两束光实际的速度为
式中ca与cb分别为顺时针逆时针经过光路的两束光实际速度,R为外围环半径大小,此时两束光在外围光纤环绕行时间为:
对应顺时逆时针光路相差的时间与光程分别为:
式中A为外围光纤环面积,将光程差转换为相位差:
此时可以看出,外围光纤环旋转速度ω与环面积大小有关,已知外围光纤环面积后,对其旋转速度的测定可转换为对萨格纳克干涉仪输出信号S光信号相位变化的测量。
传感器装置如图1与图2所示,传感使用器件选择与参数如下:
(1)宽谱光源153的中心波长1550nm、半谱宽度大于45nm,出纤功率为1mW~10mW,窄线宽光源152的中心波长1310nm,线宽小于10k,出纤功率为1mW~10mW;
(2)第一耦合器221,第二耦合器222工作波长1550nm&1310nm,分光比50.5%/49.5%,两路插入损耗分别为3.03dB,3.12dB;
(3)环形器231中心波长为1550nm,插入损耗小于1dB,每通道最小隔离度40dB,最大串扰50dB,偏振模式色散0.1ps,结构为三端口,额定功率500mW;
(4)波分复用器245通道波长为ITU 100GHz Grid(约为0.8nm左右),中心波长准确度±0.05nm,最小信道间隔100GHz~(0.8nm),插入损耗IL(<6.0dB),通道插损均匀性(<2.0dB),温度敏感度损耗(<0.003dB/℃),波长位移与温度(<0.002nm/℃),存储温度(-40~+85℃),工作温度(0~+70℃),注入功率(<300mW)
(5)光纤环工作波长1550nm&1310nm,环串扰<-18dB,环衰减<1dB/km,环内径13~250mm,环外径30~260mm,光纤长度80~300m,每层匝数8~250匝,根据干涉仪相干长度计算公式l=λ2/Δλ,则使用100G的波分复用器对应相干长度为3mm,所以此时应保证内外两层光纤环长度差3mm;
(6)质量感应块321为正方体,圆柱体或垂体重物,质量在1~20g之间,材料为铝合金,铝或钢制材料,其质量分布均匀,内部无缺陷,凹洞等,保证其热膨胀系数小于0.9×10-10/℃;
(7)弹性盘片303为铜,铝或合金圆盘,厚度在0.5~3mm,柔韧性好,质量分布均匀,其材质最终应能够良好传导应力变化。内径为10~50mm,外径为100~500mm。
(8)相位调制器251为圆柱形压电陶瓷环,谐振频率为2000Hz,谐振电阻小于200欧姆,电容量为50nF±30%,环厚度0.5~2mm,环高度10~300mm,环外径10~60mm,光纤缠于压电陶瓷环上并用强效胶水粘接。
(9)传感器上盖110为铝,铁或其他钢化合金圆形外壳,高度为100~300mm,外壳壁厚度为2~10mm,外壳外径大小为100~3000mm,其密封性良好,接头连接稳定可靠。
(10)1号探测器,2号探测器,3号探测器为InGaAs探测器,波长宽度为550~1550nm,转换效率为0.12A/W,负载电容为40pF,响应时间为1ns,电压基准为5V,暗电流40nA。