本发明涉及一种具有输入级的信号隔离器,输入级成型为,向位于输入级下游的输出电路输送相当于测量信号的输入测量信号。输出电路包括线性调节器并且成型为在其输出端上提供与输入测量信号相应的输出测量信号。
背景技术:
已知多种用于例如0或4mA到20mA的输入测量电流或者用于例如0到1伏特的输入测量电压的信号隔离器。
DE102007006503A1中已知一种应当减少其功率损耗的信号隔离器。该信号隔离器具有用于测量电流的输入端。电位隔离的直流电变压器位于输入端下游,该直流电变压器传输测量电流到输出电路。输出电路具有线性调节器,线性调节器包括运算放大器和输出晶体管并且作为电压-电流转换器工作。信号隔离器的输出端子位于线性调节器的输出电流电路中,在输出端子上能够连接负载。此外,输出电路包括设置在输出端子之间的开关调节器。开关调节器和线性调节器成型为分开的功能单元。开关调节器从线性调节器接收调节信号,该调节信号这样调节开关调节器,即,使线性调节器的输出电压最小化。
DE102010061433A1中同样已知一种信号隔离器,该信号隔离器具有作为输出级的逆变器、变压器和整流器,通过该信号隔离器将测量输入电流输送到线性调节器。线性调节器由运算放大器和输出晶体管组成,可以将负载连接到输出晶体管。为了减少输出晶体管的功率损耗,已知的信号隔离器具有成型为开关电源部件的调节装置,调节装置这样调节辅助电压,即线性调节器的输出晶体管的功率损耗基本上无关于在运行状态下连接的负载。线性调节器和开关电源部件构成分开的功能单元。
技术实现要素:
本发明的目的在于提供一种信号隔离器,其电路复杂性相对于已知的信号隔离器明显减少,从而能够进一步地减少信号隔离器的信号输出级的功率损耗。
本发明的核心思想在于,在线性调节器中直接集成开关调节器。由此可以去掉线性调节器的输出晶体管,从而信号隔离器的功率损失至少以输出晶体管所需部分的大小而减少。
本发明的另一要点在于,开关调节器的输出端直接供应模拟的输出测量信号。
上述技术问题通过权利要求1的特征实现。
随后设置信号隔离器,信号隔离器具有输入级,输入级成型为,向位于输入级下游的输出电路提供相当于测量信号的输入测量信号。输出电路包括线性调节器并且成型为在其输出端上提供与输入测量信号相应的输出测量信号。线性调节器具有运算放大器和开关调节器。开关调节器的输入端与运算放大器的输出端连接,而开关调节器的输出端则反馈到运算放大器的第一输入端。运算放大器这样调节开关调节器,即,使开关调节器在其输出端上为负载提供输出测量信号,该输出测量信号与输入测量信号相应。
值得注意的是,测量信号可以是例如在0或4到20mA的范围内的模拟的测量电流或者例如在0到1伏特范围内的模拟的测量电压。输入级可以以已知的方式包括成型为振动变流器(Zerhacker)的逆变器,变压器和位于变压器下游的整流器。
根据有利的设计方案,开关调节器的输出端通过反馈网络,例如被动的电阻网络与运算放大器的第一输入端连接。以这种方式,运算放大器这样调节开关调节器,即,在开关调节器的输出端上为负载提供输出测量信号,该输出测量信号以预定的方式与输入测量信号相应。以预定的方式的意思是,输出测量信号相当于将输入测量信号以定义的加强值相乘。
测量信号与输入测量信号相应的这一特征因而包括这种情况, 即输出测量信号的大小恰好或者基本上与输入测量信号的大小或者输入信号的大小相应,输入信号的大小由反馈网络定义的因数改变。
线性调节器以有利的方式实施为电流-电流转换器、电压-电压转换器、电流-电压转换器或者电压-电流转换器。
开关调节器可以例如是降压转换器、升压转换器、反激转换器或SEPIC转换器。
附图说明
下面借助两个实施例结合附图详细阐述本发明。附图中示出了:
附图1示出了具有输出电路的示例性的信号隔离器,本发明在该输出电路中实现,
附图2示出了具有替代性的输出电路的示例性的信号隔离器,本发明在该输出电路中实现,并且
附图3示出了附图1和附图2中象征性地示出的输入级的详细的框图。
具体实施方式
附图1中示出了示例性的信号隔离器。信号隔离器具有输入级40,其作为受控制的电流源象征性地示出。输入级40可以供应作为输入测量信号的模拟的输入测量电流IMess,其大小与位于输入级40的输入端的测量信号相应地例如达到0或4mA到20mA。输入级40可以以已知的方式具有成型为振动变流器的逆变器41,逆变器将模拟的恒定的测量信号转换为交变信号,交变信号接着通过变压器42传输并且在变压器42下游的整流器43中再次整流并且以输入测量信号的形式提供。附图3中示出了这个示例性的输出级40。
需要注意的是,受控的电流源在附图1中用IMess表示的电流与输入测量电流相应,输入测量电流由输入级40在输出电路5的输入端12上提供。输出电路5例如仅具有一个线性调节器10,该线性调节器在所示实施例中作为电流-电流转换器工作。线性调节器30也可以例如实施为电压-电流转换器。
线性调节器10在输入端一侧具有运算放大器20,其阴极的输入端与输出电路5的输入端12连接。运算放大器20的阳极的输入端接地。运算放大器20的输出端直接与开关调节器30连接,开关调节器是线性调节器10的组成部分。
开关调节器30例如成型为降压转换器。其例如具有比较器31,其阴极的输入端与运算放大器20的输出端连接。运算放大器20的输出端因而直接为开关调节器30供应调节电压UR。将例如三角形或者锯齿形的电压施加在比较器31的阳极的输出端上。比较器31以已知的方式供应矩形的控制信号到下游的晶体管32的基极端子上,以便于以已知的方式实施脉冲宽度调制。在晶体管32的发射极端子上施加工作电压UB。晶体管32的集流器可以通过π电路与输出电路5的输出端子16连接,π电路包括二极管33、线圈35和平滑电容器34。因此,线性调节器10的开关调节器30直接向连接的负载50提供输出测量信号。输出测量信号在所示实施例中是模拟的输出测量电流Ia,该输出测量电流与在输入端12提供的输入测量电流相应。线性调节器10或输出电路5具有另一输出端子14。负载50因而可以连接到输出端子14和16。开关调节器30的供应到输出端子16上的输出测量电流Ia通过负载50和输出端子14经由反馈路径60反馈到运算放大器20的阴极的输入端。
下面阐述附图1所示的线性调节器10的运行方式。
运算放大器20将调节电压UR供应到比较器31的阴极的输入端,调节电压用于这样操控晶体管32,即,使开关调节器30在输出端子16上提供输出测量电流Ia,当通过负载50反馈到运算放大器20的阴极的输入端上时,该输出测量电流使得在运算放大器20的阴极的输入端在0V的电位,从而在运算放大器的两个输入端之间产生虚拟的短路。换言之,运算放大器20这样调节开关调节器30,即开关调节器30在输出端子16上为负载50提供输出测量电流Ia,该输出测量电流恰好或者至少基本上与输入测量电流IMESS相应。当输入测量电流在0或4到20mA的范围中时,输出测量电流在0或4mA到20mA的范围中。
附图2示出了替换性的示例性的信号隔离器。信号隔离器具有输入级140,该输入级以受控的电压源来象征性地表示。输入级140可以供应作为输入测量信号的模拟的输入测量电压UMess,其大小与在输入级140的输入端施加的测量信号相应地例如达到0到1V。输入级140可以以已知的方式具有成型为振动变流器的逆变器,该逆变器将模拟的测量信号转换为交变信号,交变信号接着通过变压器传输并且在变压器下游的整流器中再次整流并且以输入测量信号的形式提供。该示例性的输入级140可以与附图3中示出的输入级40相应。
需要注意的是,受控的电压源在附图2中用UMess表示的电压与输入测量电压相应,输入测量电压由输入级140在输出电路100的输入端112上提供。输出电路100例如仅具有一个线性调节器110,该线性调节器在所示实施例中作为电压-电压转换器工作。线性调节器110也可以例如实施为电流-电压转换器。
线性调节器110在输入端一侧具有运算放大器120,其阳极的输入端与输出电路100的输入端112连接。因此运算放大器120的阴极的输入端与输入级140连接。运算放大器120的阳极的输入端通过用162表示的电阻R2接地。运算放大器120的输出端直接与开关调节器130连接,开关调节器是线性调节器110的集成的组成部分。运算放大器120的输出端因而直接地向开关调节器130供应调节电压UR。可以由提供工作电压UB的工作电压源用能量供应开关调节器130以及运算放大器120。
电阻162是反馈网络160的一部分,反馈网络具有用161表示的另一电阻。电阻161和162构成了分压器,其中电阻161和162的整个连接点与运算放大器120的阴极的输入端连接。电阻161的自由端子与开关调节器130的输出端连接。以这种方式,施加在开关调节器130的输出端上的恒定的输出测量电压通过反馈网络160反馈到运算放大器120的阴极的输入端。开关调节器130的输出端与输出电路100或者线性调节器110的输出端子114连接,开关调节器直接提供输出电路100的输出测量电压Ua。第二输出端子116例如接地。输出端子114和116可以连接负载150,在负载上施加输出测量电压Ua。
在此值得注意,开关调节器130例如可以是在附图1中示出的降压转换器。开关调节器130还可以例如是升压转换器、反激转换器或SEPIC转换器。
下面阐述附图2中所示的线性调节器110的工作原理。
运算放大器120将调节电压UR供应到开关调节器130的输入端,调节电压用于使开关调节器130在输出端子114上提供输出电位,当通过反馈网络160反馈到运算放大器20的阴极的输入端上时,输出电位使得在运算放大器120的阴极的输入端上存在与由输入级140在输入端112上提供的电位相应的电位。换言之,运算放大器120这样调节开关调节器130,即,使开关调节器130在输出端子114和116上为负载150提供输出测量电压Ua,该输出测量电压相当于乘以受控的电压源的加强值(1+R1/R2)的输入测量电压UMess。假定,电阻的大小例如是这样确定,即,当受控的电压源供应0到1V之间范围内的输入测量电压时,输出测量电压的值为0到10V之间。
借助将开关调节器直接集成到线性调节器中的措施,免除了线性调节器的以常规方式存在的输出晶体管,从而至少减少了输出晶体管所需的那部分的、信号隔离电路功率损耗。
此外,该措施还能够使线性调节器的运算放大器直接调节开关调节器,开关调节器的输出端于是直接供应模拟的输出测量信号,该输出测量信号与由输入级供应的输入测量信号相应。