旋转齿单牙轮钻头的利记博彩app

文档序号:11109457阅读:652来源:国知局
旋转齿单牙轮钻头的制造方法与工艺

本发明属于石油天然气、矿山工程、建筑基础工程施工、地质、水文等钻探设备技术领域,尤其涉及一种单牙轮钻头。



背景技术:

钻头是钻井工程中用以破碎岩石、形成井筒的破岩工具。现今钻井工程中所使用的钻头主要有牙轮钻头和PDC(聚晶金刚石复合片)钻头。

牙轮钻头上的牙轮通过轴承系统与钻头体形成转动连接,钻头工作时,钻头体旋转带动牙轮绕钻头轴线转动的同时,牙轮还会绕自身的轴线转动,牙轮上的切削齿在上述两种运动的合成下作复杂的复合运动,牙轮钻头属非固定切削齿钻头。

单牙轮钻头是牙轮钻头中的一种,是钻井工程中使用的主要破岩工具之一,特别是在深井超深井的小井眼钻井中发挥着重要的作用。单牙轮钻头主要利用牙轮上的牙齿(切削齿)对岩石的挤压刮切作用破岩,牙轮上的切削齿在井底以网状形式刮切岩石。单牙轮钻头牙轮上的切削齿一部分(牙轮前端)始终与井底接触破岩,一部分切削齿轮换与井底接触破岩,这就把单牙轮钻头的牙轮分成了恒接触区(牙轮前端,如图9的附图标记21)和交替接触区(如图9的附图标记22)。

单牙轮钻头钻进过程中牙轮绕钻头轴线旋转的同时还绕自身的轴线自转,牙轮上的切削齿相对井底岩石的刮切方向在不断地变化:牙轮恒接触区上的切削齿在刮切岩石过程中,其相对岩石的刮切方向在0~360°之间不断变化;牙轮交替接触区上的切削齿在刮切岩石过程中,其相对岩石的刮切方向在0~180°之间变化。这使单牙轮钻头上无法直接应用极适合于以刮切形式破岩的聚晶金刚石复合片(PDC齿)等耐磨性极强的金刚石类切削齿。原因在于聚晶金刚石复合片(PDC齿)是由基体和聚晶金刚石层两部分组成,对岩石起主要刮切效果的是聚晶金刚石层,PDC齿刮切工作时具有方向性,只能是聚晶金刚石层在前基体在后。如果PDC齿在工作过程中直接受到反向作用力,很容易造成聚晶金刚石层的崩裂,严重降低PDC齿的工作寿命,甚至在极短的时间内使PDC齿损坏失效。

因此,现有单牙轮钻头上的切削齿一般为硬质合金齿,硬质合金齿的耐磨性远不及PDC齿等金刚石类切削齿。切削齿的耐磨性不足是单牙轮钻头的致命弱点,切削齿易磨损严重影响了单牙轮钻头的使用寿命。



技术实现要素:

本发明的目的在于:提供一种切削齿可旋转的单牙轮钻头,解决现有技术牙轮钻头无法采用复合齿(例如PDC齿)的问题,同时其即使采用与现有技术一致的切削齿(如硬质合金齿)时,切削齿的磨损及磨损钝化速度也均更好。

本发明目的通过下述技术方案来实现:

一种旋转齿单牙轮钻头,包括钻头体,以及转动连接于钻头体上的牙轮,牙轮上设置有切削齿,牙轮上的切削齿至少有一颗为旋转齿,旋转齿与牙轮形成转动连接,旋转齿的前切削面或旋转齿的前切削面的几何中心相对旋转齿的旋转轴线偏移,且旋转齿的后切削面或后切削面的几何中心在前切削面的偏移方同侧,前切削面相对后切削面靠近旋转齿的旋转轴线,并能绕旋转轴线在牙轮上旋转。

本专利所述前切削面(也可以称为前刀面)是指切削齿对井底地层切削工作时,切下的切屑沿其流出的表面。而后切削面(也可以称为后刀面)则是指切削齿与井底地层相对的表面,后切削面一般是正对着切削深度(进给方向)的面。通常而言,前切削面与后切削面的交线形成切削刃,它担任主要切削工作。

相对于常规的硬质合金齿而言,由基体和固结于基体上的耐磨层复合而成的复合齿,其前切削面为耐磨层的前端面,而后切削面则是耐磨层和/或基体的侧面。所谓耐磨层是相对基体而言,其耐磨性更强,对于聚晶金刚石复合片或聚晶金刚石复合齿或聚晶金刚石与孕镶金刚石相复合而成的复合齿而言,其耐磨层为聚晶金刚石层,而基体则是硬质合金或孕镶金刚石等,基体处在耐磨层的后部推持支撑着耐磨层的前端面在前进行破岩工作。

因此,本专利主要想保护一种旋转齿单牙轮钻头,包括钻头体,以及转动连接于钻头体上的牙轮,牙轮上设置有切削齿,牙轮上的切削齿至少有一颗为旋转齿,旋转齿与牙轮形成转动连接,旋转齿具有耐磨层和基体,并以耐磨层的前端面的几何中心为临界点,旋转齿整体或包括该几何中心的大部分相对旋转齿的旋转轴线偏移,且耐磨层的前端面相对基体靠近旋转齿的旋转轴线,并能绕旋转轴线在牙轮上旋转。

此外,显然,本专利的旋转齿也可以应用于硬质合金齿、立方碳化硼或孕镶金刚石齿(块)等齿,此时旋转齿就无耐磨层和基体之分。

对于聚晶金刚石复合片或聚晶金刚石复合齿或聚晶金刚石与孕镶金刚石相复合而成的复合齿而言,其耐磨层为聚晶金刚石层,而基体则是硬质合金或孕镶金刚石等,此时聚晶金刚石层的前端面则是前切削面,根据其前端面形状的不同,前切削面可以是平面(例如最常见的规则圆柱体PDC齿,其聚晶金刚石层的前端面为一圆形平面)、曲面(例如金刚石层在基体上形成一锥形、半球形或屋脊形/楔形等的前端面)或异形面等各种表面。同样的,后切削面根据金刚石层或基体侧面形状的不同,可以是圆柱面(例如常见的规则圆柱体PDC齿,其聚晶金刚石层的侧面为圆柱面)或其他柱面,也可以是平面等。

聚晶金刚石复合片又称PDC齿(Polycrystalline Diamond Compact)或PDC复合片,由聚晶金刚石层和基体两部分组成(参见图10)。PDC齿采用金刚石微粉与硬质合金基片在超高压高温条件下烧结而成。金刚石微粉形成PDC齿的聚晶金刚石层,硬质合金基片成为PDC齿的基体。PDC齿既具有金刚石的高硬度、高耐磨性,又具有硬质合金的强度与抗冲击韧性,是制造切削刀具、钻井钻头及其他耐磨工具的理想材料。PDC齿适合于以刮切的方式工作,由于PDC齿的聚晶金刚石层的硬度和耐磨性远远高于硬质合金材料的基体,因此PDC齿在刮切工作时具有自锐性,即聚晶金刚石层的磨损速度明显慢于基体,使PDC齿的切削刃(硬而耐磨的金刚石层)始终保持锐利状态。

PDC齿刮切工作时,起主要刮切作用的是聚晶金刚石层。PDC齿的聚晶金刚石层硬而脆,基体相对软但具有很好的抗冲击韧性,因此PDC齿刮切工作时具有方向性,只能是聚晶金刚石层在前基体在后进行刮切(如图11),即基体处在聚晶金刚石层的后部推持支撑着聚晶金刚石层。如果PDC齿在工作过程中反向运动,基体在前聚晶金刚石层在后进行刮切,聚晶金刚石层直接受到反向作用力,很容易造成聚晶金刚石层的崩裂或脱落,严重降低PDC齿的工作寿命,甚至在极短的时间内使PDC齿损坏失效。

本专利较现有技术的有益效果是:

1、本专利牙轮上的旋转齿接触岩石与岩石互作用破岩时,无论切削齿与岩石接触时的开始状态如何,当切削齿受到岩石的作用力时,由于牙轮上的旋转齿能相对牙轮转动,旋转齿的前切削面或旋转齿的前切削面的几何中心相对旋转齿的旋转轴线偏移,且旋转齿的后切削面均在偏移方同侧或旋转齿的后切削面的几何中心在偏移方同侧。在岩石反力的作用下,旋转齿均会旋转至齿的前切削面在前,旋转齿的前切削面的背面在后来刮切岩石,且在刮切破岩过程中,无论牙轮如何旋转,牙轮上的旋转齿均会是以前切削面在前、前切削面的背面在后的方位来刮切破岩。旋转齿上的切削元件相对旋转齿的旋转轴线偏移,在外力的作用下,沿垂直于旋转轴线的平面的力(分力)将会推动旋转齿绕其旋转轴线旋转,使旋转齿的前切削面的法线顺着刮切方向来切削破岩,切削齿的前切削面法向始终指向刮切方向。本专利偏置的旋转齿具有方位自调节自适应功能,使旋转齿上的切削元件始终以前切削面在前、前切削面的背面在后的方位来刮切破岩。这样,本专利上就能使用耐磨性强的金刚石类切削齿,特别是能使用极适合于以刮切方式破岩的PDC齿。本专利所采用的结构方案为金刚石类切削齿,特别是PDC齿应用在单牙轮钻头上提供了条件。

2、本专利牙轮上的旋转齿可相对牙轮转动且旋转齿的切削元件偏置,旋转齿始终以稳定的刮切面相对岩石刮切工作。无论钻头牙轮如何旋转,牙轮及其上的旋转齿的位置如何,不管牙轮上切削齿的刮切运动方向如何变化,牙轮上的旋转齿始终会以其前切削面在前、前切削面的背面在后的方位刮切岩石,旋转齿相对岩石的刮切工作方向始终不变,这有利于减缓切削齿的磨损。切削齿始终相对岩石的刮切摩擦方向不变,较普通单牙轮上的切削齿工作时相对岩石的刮切方向不断变化的工作方式,本专利即使采用与现有技术一致的切削齿(如硬质合金齿),其切削齿的磨损及磨损钝化速度也均要好。

3、本专利上的旋转齿上的切削元件可采用耐磨性强且极适合以刮切方式破岩的PDC齿,PDC齿在刮切工作时具有良好的自锐性,聚晶金刚石层的磨损速度明显慢于基体。普通单牙轮钻头上的切削齿在钻头破岩工作过程中,切削齿相对岩石之间的刮切方向在不断变化(牙轮恒接触区上的切削齿刮切破岩时相对岩石的刮切方向在0~360°之间不断变化;牙轮交替接触区上的切削齿在刮切破岩时相对岩石的刮切方向在0~180°之间变化),牙轮上的硬质合金齿在刮切方向不断变化的过程中齿顶菱角会被磨圆钝化,刮切效率降低。旋转齿上采用PDC齿,无论牙轮如何旋转,切削齿的方位如何,旋转齿上的PDC齿始终会以聚晶金刚石层在前基体在后的工作方位刮切岩石,PDC齿相对岩石的刮切方向始终保持不变,PDC齿始终以正常的方向刮切破岩,其有利于PDC齿刮切破岩优势的充分发挥,能充分利用PDC齿的耐磨性和自锐特性。PDC齿相对硬质合金齿更易于侵入岩石、更易于刮切破岩。因此,单牙轮钻头的牙轮上使用旋转齿能明显提高钻头使用寿命的同时,提高钻头切削齿的刮切效率和钻头的破岩效率。

4、单牙轮钻头只有一个牙轮,易于小井眼化,本应是深井、超深井钻井中很好的钻井工具,但由于单牙轮钻头现有的切削齿耐磨性差,刮切破岩效率较低,限制了单牙轮钻头的应用效果,因此在钻井施工中已慢慢很少使用单牙轮钻头了。本专利提出的旋转齿结构,使极适合于以刮切形式破岩的PDC齿能应用在单牙轮钻头上,提高了钻头的破岩效率和使用寿命,这将扩宽单牙轮钻头的使用范围,增强单牙轮钻头在钻井中(特别是深井及小井眼中)的应用价值。

作为选择,旋转齿的前切削面朝向其旋转轴线。作为进一步选择,旋转齿的前切削面的过几何中心的法线与其旋转轴线相交。

作为选择,旋转齿包括与牙轮转动连接的旋转轴,以及固定在旋转轴上的切削元件,切削元件选自聚晶金刚石复合片、聚晶金刚石复合齿(即聚晶金刚石与基体采取前述复合片形式以外的复合形式,统称为“聚晶金刚石复合齿”)、热稳定聚晶金刚石复合齿、孕镶金刚石齿(块)、立方碳化硼、陶瓷齿、或聚晶金刚石与孕镶金刚石相复合而成的复合齿中的一种或多种,且切削元件为聚晶金刚石复合片、聚晶金刚石复合齿、或聚晶金刚石与孕镶金刚石相复合而成的复合齿时,其切削齿的聚晶金刚石层的前端面为前切削面。该方案中,由于本专利采用旋转齿的结构,旋转齿上的切削元件可以以稳定的方向相对岩石刮切工作,因此本专利的旋转齿上可使用耐磨性更好的上述切削元件,以提高钻头切削齿及整个钻头的使用寿命和破岩效率。

作为选择,旋转齿的前切削面或旋转齿的前切削面的几何中心相对旋转齿的旋转轴线的偏移距大于旋转齿的旋转轴半径的八分之一,小于旋转轴半径的两倍。该方案中,为使旋转齿与岩石互作用工作时能顺利旋转至正确的刮切方向,并保持良好的刮切方位,旋转齿的前切削面或旋转齿的前切削面的几何中心相对旋转齿的旋转轴线的偏移距不能太小,偏移距越大越易于旋转齿的顺利旋转,驱使旋转齿旋转到正常方位的驱动力也将越足,也越易于保证旋转齿在牙轮不断旋转的过程中能保持良好的刮切方位。但偏移距也不能太大,太大的偏移距将使旋转齿占据较大的旋转空间,造成牙轮布齿空间的浪费。作为进一步选择,旋转齿的前切削面或旋转齿的前切削面的几何中心相对旋转齿的旋转轴线的偏移距在1~32mm之间。

作为选择,旋转齿上的切削元件为1-6个。该方案中,旋转齿上的切削元件可以为1个,也可以为多个,可根据钻头尺寸、旋转齿大小及切削元件的实际大小来设置旋转齿上切削元件的数量。作为进一步选择,旋转齿上的切削元件为1个、2个或3个。

作为选择,旋转齿设置在牙轮的恒接触区上。该方案中,单牙轮钻头破岩工作过程中,牙轮恒接触区上的切削齿始终与井底接触破岩,其磨损速度快于其他区域上的切削齿。牙轮的恒接触区上设置旋转齿将能明显提高该区域切削齿的耐磨性和刮切效率,从而提高钻头的使用寿命和破岩效率。

作为选择,旋转齿设置在牙轮的交替接触区上。该方案中,旋转齿设置在牙轮的交替接触区上将能明显提高该区域切削齿的耐磨性和刮切效率。

作为选择,旋转齿的旋转轴与牙轮之间设置有限制旋转齿在旋转轴线方向上的运动的锁紧结构。该方案中,旋转齿设置在牙轮上时,为防止旋转齿沿旋转轴线的方向窜动或沿轴线脱落,可在旋转齿与牙轮之间设置锁紧结构,增强旋转齿的可靠性和安全性。这里的锁紧是指将旋转齿沿旋转轴线的方向限位,防止旋转齿沿旋转轴线的方向窜动或脱落,并不限制旋转齿相对牙轮的转动。作为进一步选择,旋转齿的旋转轴与牙轮之间采用滚珠锁紧。滚珠锁紧可在尽量减少影响旋转齿旋转运动的同时,能实现将旋转齿沿其旋转轴线方向限位和轴向锁紧,且便于加工。

作为选择,旋转齿的旋转轴与牙轮之间设置有密封结构。该方案中,钻头工作时处在钻井液、岩屑等环境中,旋转齿可相对牙轮旋转,为防止其他物质进入旋转齿与牙轮的旋转副之间可在旋转齿与牙轮之间设置密封结构,以减小旋转副的磨损,延长旋转副的使用寿命。

前述本发明主方案及其各进一步选择方案可以自由组合以形成多个方案,均为本发明可采用并要求保护的方案;且本发明,(各非冲突选择)选择之间以及和其他选择之间也可以自由组合。本领域技术人员在了解本发明方案后根据现有技术和公知常识可明了有多种组合,均为本发明所要保护的技术方案,在此不做穷举。

附图说明

图1、图2为本发明实施例1的结构示意图。

图3为本发明实施例1的旋转齿刮切破岩时的示意图。

图4为本发明实施例1的旋转齿的旋转轴为设置有阶梯的轴颈状的结构示意图。

图5为本发明实施例1的旋转齿的旋转轴为圆柱形的结构示意图。

图6、图7为本发明实施例1的旋转齿上的切削元件为2个的结构示意图。

图8为本发明实施例4、实施例5的旋转齿与牙轮之间设置有锁紧结构及密封结构的结构示意图。

图9为单牙轮钻头的牙轮与井底岩石接触时的接触区域划分示意图。

图10为常规PDC齿结构示意图。

图11为常规PDC齿正常刮切破岩时的示意图。

图12、图13、图14为本发明实施例1的旋转齿上的切削元件的形状分别为半圆柱形、楔形和竖向设置的圆柱形的结构示意图。

图中:1、钻头体,2、牙轮,21、恒接触区,22、交替接触区,3、旋转齿;31、PDC齿基体,32、PDC齿的聚晶金刚石层,33、旋转齿的前切削面,34、旋转齿的旋转轴线,35、旋转齿的后切削面,36、旋转齿的旋转轴,37、旋转齿的前切削面的背面,4、岩石;5、密封结构,6、锁紧结构。

具体实施方式

下列非限制性实施例用于说明本发明。

实施例1:

参考图1-3所示,一种旋转齿单牙轮钻头,包括钻头体1和牙轮2,牙轮2与钻头体1为转动连接,牙轮2能相对钻头体1转动,牙轮2上设置有切削齿,牙轮2上的切削齿至少有一颗为旋转齿3,旋转齿3与牙轮2形成转动连接,旋转齿3能相对牙轮2转动。作为选择,如本实施例所示,旋转齿3包括与牙轮2转动连接的旋转轴36,以及固定在旋转轴36上的切削元件,牙轮2上对应设有容纳匹配旋转齿3的旋转轴36的轴孔,旋转轴36插入轴孔内在牙轮2上旋转。旋转轴36可以有多种形式,例如图4、7为旋转齿3的旋转轴36为设置有阶梯的轴颈状,图5、6为旋转齿3的旋转轴36为圆柱形。切削元件固结于旋转轴36的顶面,其前端面(耐磨层的前端面)与旋转轴36的顶面成一夹角,切削元件与旋转轴36的固结形式也可以有多种方式:例如图4、5所示,其部分基体和耐磨层侧面陷入固定于顶面内,或者如图6、7所示,在顶面内形成一凸台,其基体部分侧面陷入固定于凸台内,而耐磨层则出露于凸台外。旋转齿3的切削元件的前切削面33或前切削面33的几何中心O相对旋转齿3的旋转轴线34偏移,且旋转齿3的切削元件的后切削面35或后切削面35的几何中心在前切削面33的偏移方同侧,前切削面33相对后切削面35靠近旋转齿的旋转轴线34,并能绕旋转轴线34在牙轮2上旋转。作为选择,旋转齿3上的切削元件为聚晶金刚石复合片(PDC齿)、聚晶金刚石复合齿、热稳定聚晶金刚石复合齿、孕镶金刚石齿(块)、立方碳化硼、陶瓷齿、或聚晶金刚石与孕镶金刚石相复合而成的复合齿。作为进一步选择,旋转齿3上的切削元件为聚晶金刚石复合片(PDC齿)。聚晶金刚石复合片由聚晶金刚石层32和基体31两部分组成(参见图10),其中聚晶金刚石层32的前端面即为切削元件的前切削面33,侧面为后切削面35(参考图3)。作为选择,旋转齿3上的切削元件的形状为半圆柱形(参考图12)、楔形(参考图13)或竖向设置的圆柱形(参考图14)等。作为选择,旋转齿3的前切削面33或旋转齿3的前切削面33的几何中心O相对旋转齿3的旋转轴线34的偏移距S大于旋转齿3的旋转轴36半径(旋转轴36置于轴孔内的圆柱或轴颈部分的半径)的八分之一,小于旋转轴36半径的两倍(参考图3、图8)。作为进一步选择,旋转齿3的前切削面33或旋转齿3的前切削面33的几何中心相对旋转齿3的旋转轴线34的偏移距S在1~32mm之间。旋转齿上的切削元件可以为1个,也可以为多个。作为选择,旋转齿3上的切削元件为1-6个。作为进一步选择,旋转齿3上的切削元件为1个(如图1、图2)、2个(如图6、图7)或3个。切削单元1个时,优选旋转齿的前切削面的过几何中心的法线与其旋转轴线相交。当切削单元多个时,各切削单元的前切削面33并排朝向旋转轴线34,并相对旋转轴线34左右均布。

实施例2:

参考图1、2、9所示,本实施例与实施例1基本相同,其区别在于:旋转齿3设置在牙轮2的恒接触区21上。

实施例3:

参考图1、2、9所示,本实施例与实施例2基本相同,其区别在于:旋转齿3设置在牙轮2的交替接触区22上。

实施例4:

参考图8所示,本实施例与实施例1基本相同,其区别在于:旋转齿3的旋转轴与牙轮2之间设置有限制旋转齿3沿旋转轴线34方向相对牙轮2运动的锁紧结构6。旋转齿3与牙轮2之间可设置弹性挡圈结构,以防止旋转齿3沿旋转轴线34的方向窜动或沿轴线脱落,旋转齿3与牙轮2之间可设置螺纹结构,通过螺帽将旋转齿3限位在牙轮2的旋转齿孔内防止旋转齿沿旋转轴线的方向窜动或脱落。作为进一步选择,旋转齿3与牙轮2之间采用滚珠锁紧(如图8)。

实施例5:

参考图8所示,本实施例与实施例1基本相同,其区别在于:旋转齿3与牙轮2之间设置有密封结构5。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1