本发明涉及应用于能够实施减缸运转的内燃机的控制装置。
背景技术:
已知有如下内燃机,该内燃机能够实施通过将多个汽缸的一部分汽缸的进气门和排气门中的至少一方关闭来使一部分汽缸停歇并使余下的汽缸工作的减缸运转。虽然已知减缸运转对于为了减少进气阻力而谋求燃料经济性提高而言是有效的,但有时减缸运转的实施会因各种状况而受到限制。
例如,已知有如下控制装置:该控制装置在从收纳蒸发燃料的罐将蒸发燃料向进气系统吹扫的情况和/或制动助力器内的负压下降了的情况下,禁止伴随有稳压罐内的负压的下降的减缸运转(专利文献1)。另外,也已知有如下控制装置:该控制装置基于内燃机的启动时的发动机水温来设定减缸运转的实施的等待时间,直至油温成为使用于对减缸运转的实施所使用的汽缸停歇机构进行驱动的油的粘度变得足够低的油温(专利文献2)。除此之外,作为与本发明关联的现有技术文献,已知有专利文献3以及4。
现有技术文献
专利文献
专利文献1:日本特开2004-143989号公报
专利文献2:日本特开2004-346903号公报
专利文献3:日本特开2008-128016号公报
专利文献4:日本特开平10-18872号公报
技术实现要素:
发明要解决的问题
作为成为内燃机的排气限制的对象的指标,有颗粒状物质的个数(PN:particulate number),该PN具有如下特性:每一汽缸的燃料喷射量越多则该PN越增加,且燃烧室内温度(缸内温度)越低则该PN的增加率变得越高。
上述的减缸运转,在以与全缸运转相同的空燃比获得相同输出的情况下,每一汽缸的吸入空气量和燃料喷射量变得比全缸运转多。专利文献1等的控制装置不是从PN是否会增加的观点考虑而限制减缸运转的实施的控制装置,所以PN有可能因减缸运转的实施而增加。
于是,本发明的目的在于,提供一种能够抑制PN的增加的内燃机的控制装置。
用于解决问题的技术方案
本发明的内燃机的控制装置应用于如下内燃机,该内燃机具有多个汽缸,能够以预定的目标空燃比实施使所述多个汽缸中的一部分汽缸工作并使余下的汽缸停歇的减缸运转和工作的汽缸的数量比所述减缸运转多的特定运转,且能够从间歇停止起再启动,所述内燃机的控制装置在所述内燃机的要求工作点属于预定的可减缸运转区域的情况下,控制所述内燃机以实施所述减缸运转,其中,在从间歇停止起再启动时的所述内燃机的要求工作点属于所述可减缸运转区域的情况下,在处于高负荷侧时,实施所述特定运转后切换成所述减缸运转,在处于低负荷侧时,不实施所述特定运转地切换成所述减缸运转(权利要求1)。
在采用能够进行间歇停止的内燃机的情况下,在内燃机的运转停止时,缸内温度随着停止时间的推移而下降,从而在再启动时会成为PN容易增加的状况。因此,若以在从间歇停止起再启动时要求工作点属于可减缸运转区域为起因而立即实施减缸运转,则PN因每一汽缸的燃料喷射量的增加而增加的可能性升高。并且,在内燃机处于高负荷的情况下每一汽缸的燃料喷射量比处于低负荷的情况下多,所以在再启动时PN增加的问题变得更加显著。根据本发明的控制装置,即使在要求工作点属于能够实施减缸运转的可减缸运转区域的情况下,在从间歇停止起再启动时且处于高负荷侧的情况下,也实施工作的汽缸的数量比减缸运转多的特定运转后实施减缸运转。通过实施该特定运转,能够一边抑制每一汽缸的燃料喷射量的增加一边使缸内温度上升。因此,能够避免PN增加的可能性升高的状况地实施减缸运转,所以与在再启动后立即实施减缸运转的情况相比能够抑制PN的增加。另外,即使在从间歇停止起再启动时要求工作点属于可减缸运转区域的情况下,若处于低负荷侧则每一汽缸的燃料喷射量比较少,所以实施特定运转的必要性也小。因此,本发明的控制装置,在从间歇停止起再启动时要求工作点属于可减缸运转区域且处于低负荷侧的情况下,不实施特定运转地切换成减缸运转,所以有能够确保使减缸运转的实施期间长的优点。
在本发明的控制装置的一技术方案中,也可以以从上次的停止起到本次的再启动时为止的时间即间歇停止时间越长则越长期间地实施所述特定运转的方式控制所述内燃机(权利要求2)。由于间歇停止时间越长则缸内温度越下降,所以通过再启动后的特定运转的实施来使缸内温度上升需要时间。根据该技术方案,在间歇停止时间短从而缸内温度比较高的情况下,能够在避免特定运转的实施变得过长的同时尽早地切换成减缸运转。由此,能够减少在间歇停止时间短从而缸内温度比较高的情况下因特定运转延长而导致的燃料经济性恶化等缺点。
若特定运转的工作的汽缸的数量比减缸运转的工作的汽缸的数量多,则特定运转能够相应地抑制每一汽缸的燃料喷射量的增加,所以对PN的增加抑制是有效的。其中,也可以实施使所述多个汽缸中的全部汽缸工作的全缸运转,作为所述特定运转(权利要求3)。在该情况下,能够最大限度地获得PN的增加抑制效果。
发明的效果
如以上所说明那样,根据本发明的控制装置,能够通过特定运转的实施来一边抑制每一汽缸的燃料喷射量的增加一边使缸内温度上升。因此,能够避免PN增加的可能性升高的状况地实施减缸运转,所以与在再启动后立即实施减缸运转的情况相比能够抑制PN的增加。
附图说明
图1是示出应用本发明的一实施方式的控制装置的混合动力车辆的整体结构的图。
图2是示出进行全缸运转与减缸运转的切换的各种区域的图。
图3是示出每一汽缸的燃料喷射量与PN的关系根据缸内温度变化的特性的图。
图4是示出用于使内燃机停止的第1实施方式的控制例程的一例的流程图。
图5是示出用于内燃机的再启动以及之后的运转的第1实施方式的控制例程的一例的流程图。
图6是示出用于内燃机的再启动以及之后的运转的第1实施方式的变形例的控制例程的一例的流程图。
图7是示出用于内燃机的再启动以及之后的运转的第1实施方式的另一变形例的控制例程的一例的流程图。
图8是示出用于使内燃机停止的第2实施方式的控制例程的一例的流程图。
图9是示出用于内燃机的再启动以及之后的运转的第2实施方式的控制例程的一例的流程图。
图10是示出用于内燃机的再启动以及之后的运转的第2实施方式的变形例的控制例程的一例的流程图。
图11是示出用于内燃机的再启动以及之后的运转的第2实施方式的另一变形例的控制例程的一例的流程图。
具体实施方式
(第1实施方式)
如图1所示,车辆1作为组合有多个动力源的混合动力车辆而构成。车辆1具备内燃机3和两个电动发电机4、5,作为行驶用动力源。内燃机3作为具备多个汽缸(未图示)的往复式的火花点火型内燃机而构成,以预定的目标空燃比(例如理论空燃比)运转。另外,内燃机3能够实施作为使多个汽缸全部汽缸工作的特定运转的全缸运转和使多个汽缸中的一部分汽缸停歇并使余下的汽缸工作的减缸运转。全缸运转与减缸运转的切换由未图示的汽缸停歇机构实施。如周知那样,汽缸停歇机构能够通过将多个汽缸的一部分汽缸的进气门以及排气门中的至少一方关闭来使一部分汽缸停歇。
内燃机3和第1电动发电机4连结于动力分配机构6。第1电动发电机4作为接受由动力分配机构6分配的内燃机3的动力来发电的发电机而发挥功能,并且也作为由交流电驱动的电动机而发挥功能。同样,第2电动发电机5分别作为电动机和发电机而发挥功能。第1电动发电机4和第2电动发电机5分别与电池7电连接。
动力分配机构6作为单小齿轮型的行星齿轮机构而构成,具有作为外齿轮的太阳轮S、配置成与太阳轮S同轴的内齿轮齿圈R、以及将与上述齿轮S、R啮合的小齿轮P保持成能够自转和公转的行星架C。内燃机3所输出的发动机转矩经由扭振减振器10向动力分配机构6的行星架C传递。在扭振减振器10的输入侧连结有内燃机3的曲轴3a,在扭振减振器10的输出侧连结有行星架C。第1电动发电机4连结于动力分配机构6的太阳轮S。
在动力分配机构6的齿圈R的外周设置有作为外齿轮的输出齿轮12。输出齿轮12与从动齿轮13啮合。在第2电动发电机5的马达轴14设置有与从动齿轮13啮合的马达齿轮15。从动齿轮13固定于中间轴17,在中间轴17固定有传动齿轮18。传动齿轮18与差动机构20的齿圈21啮合。因此,从输出齿轮12输出的转矩以及第2电动发电机5的马达转矩经由从动齿轮13以及传动齿轮18向差动机构20传递。传递到差动机构20的转矩被分别分配到左右的驱动轮25。
从车辆1的结构可知,通过对连结于动力分配机构6的第1电动发电机4的马达转矩以及马达转速进行控制,能够在维持输出齿轮12的转速的状态即维持车速的状态下,变更由内燃机3的发动机转速以及发动机转矩(负荷)定义的内燃机3的工作点。
车辆1的各部分的控制由作为计算机而构成的电子控制装置(ECU)30进行控制。ECU30对内燃机3以及各电动发电机4、5等进行各种控制。向ECU30输入车辆1的各种信息。例如,分别向ECU30输入:输出与加速器踏板26的踩踏量对应的信号的加速器开度传感器31的输出信号、输出与车辆1的车速相应的信号的车速传感器32的输出信号、以及输出与内燃机3的曲轴角对应的信号的曲轴角传感器33的输出信号等。
ECU30参照加速器开度传感器31的输出信号和车速传感器32的输出信号来计算驾驶员所要求的要求输出,一边切换各种模式一边控制车辆1以使得针对该要求输出的系统效率成为最佳。例如,在内燃机3的热效率下降的低负荷区域,选择使内燃机3的燃烧停止并驱动第2电动发电机5的EV模式。另外,在若只依靠内燃机3行驶则会出现转矩不足的情况和/或电池7的余量不足等情况下,选择将内燃机3作为行驶用驱动源或选择将内燃机3与第2电动发电机5一起作为行驶用驱动源的混合动力模式。
在车辆1的行驶期间运转条件变化了的情况下,ECU30从混合动力模式使内燃机3的燃烧停止而切换到EV模式、或从EV模式启动内燃机3而切换到混合动力模式。这样,作为混合动力车辆的特征,车辆1实施在较短期间反复进行内燃机3的启动和停止的间歇运转模式。在间歇运转模式的实施期间,有时将为了从混合动力模式向EV模式切换而使内燃机3停止的情况称为间歇停止。间歇停止的停止时间越长则缸内温度越下降。本实施方式的特征在于内燃机3在从间歇停止起再启动时所实施的控制。以下,参照图2~图5对ECU30所实施的控制进行说明。
如图2所示,内燃机3的全缸运转与减缸运转的切换基于内燃机3的要求工作点是否属于设定于内燃机3的运转区域的可全缸运转区域A1以及可减缸运转区域A2中的任一方来实施。即,在内燃机3的要求工作点属于可全缸运转区域A1的情况下实施全缸运转,在要求工作点属于可减缸运转区域A2的情况下实施减缸运转。不过,在从间歇停止起再启动时,即使要求工作点属于可减缸运转区域A2,在内燃机3的发动机转矩高的情况下即处于高负荷的情况下,也限制减缸运转的实施而实施全缸运转。为了实施这样的控制而在可减缸运转区域A2内在高负荷侧设定有以剖面线所示的减缸运转限制区域a。ECU30在从间歇停止起再启动时内燃机3的要求工作点属于减缸运转限制区域a的情况下,即使能够进行减缸运转也实施全缸运转。之后,ECU30继续进行全缸运转直至特定运转时间,经过该特定运转时间后切换成减缸运转,所述特定运转时间例如被设定成使得缸内温度成为使PN产生量为预定值以下的缸内温度。另一方面,在要求工作点不属于减缸运转限制区域a的情况下,即要求工作点处于低负荷侧的情况下,ECU30基于可减缸运转区域A2而不实施全缸运转地切换成减缸运转。
如上所述,在减缸运转以与全缸运转相同的空燃比获得相同输出的情况下,每一汽缸的吸入空气量以及燃料喷射量比全缸运转多。如图3所示,PN具有如下特性:每一汽缸的燃料喷射量越多,则PN越增加,且缸内温度越低,则PN增加率越高。另外,存在如下关系:全缸运转的实施期间越长,则缸内温度越上升。因此,由于减缸运转的实施以及由间歇停止引起的缸内温度的下降有可能成为使PN增加的原因,所以在从间歇停止起再启动时即使能够进行减缸运转也实施全缸运转并之后切换成减缸运转。
作为实现这样的控制的实施方式的一例,ECU30一并实施图4和图5所示的各控制例程。图4和图5的各控制例程的程序被保存于ECU30,且被适时地读出并以预定间隔反复执行。由此,ECU30作为本发明的控制装置而发挥功能。
内燃机3的停止由图4的控制例程实施。首先,在步骤S1中,ECU30判定发动机停止条件是否成立。例如,ECU30参照加速器开度传感器31和/或车速传感器32的输出信号来掌握车辆1的状态,在车辆1停止了的情况和/或在要求输出低而适于EV模式下的行驶等情况下,判断为发动机停止条件成立。在发动机停止条件成立了的情况下进入步骤S2,在发动机停止条件未成立的情况下跳过之后的处理并结束本次的例程。
在步骤S2中,ECU30判定内燃机3的停止是否完毕。在内燃机3的停止完毕了的情况下进入步骤S4,在内燃机3的停止未完毕的情况下进入步骤S3。
在步骤S3中,ECU30实施内燃机3的停止控制。该停止控制是包括在预定的活塞位置使曲轴停止以备内燃机3的再启动的周知的控制,所以省略详细说明。
在步骤S4中,ECU30使间歇停止计时Ts计数增加。间歇停止计时Ts是用于管理自内燃机3停止起的时间的变量,例如,通过更新为向间歇停止计时Ts的值加1而得到的值来使间歇停止计时Ts计数增加。接着,在步骤S5中,ECU30将启动经过计时Tc复位。启动经过计时Tc是用于管理自内燃机3再启动起的时间的变量。
从内燃机3的间歇停止起的再启动以及之后的运转由图5的控制例程进行实施。在步骤S11中,ECU30判定发动机运转条件是否成立。与发动机停止条件同样地,发动机运转条件的成立与否通过由ECU30掌握车辆1的状态来进行判定。例如,ECU30,在EV模式下的行驶期间要求输出升高等应该再启动内燃机3而向混合动力模式切换等情况下,判断为发动机运转条件成立。
在步骤S12中,ECU30判断内燃机3的启动是否已完毕。例如,该判断通过由ECU30参照曲轴角传感器33的输出信号判断发动机转速是否超过了启动完毕判定值来实施。在内燃机3的启动完毕了的情况下进入步骤S23。另一方面,在内燃机3的启动未完毕的情况下,ECU30为了启动内燃机3而实施步骤S13~步骤S19的处理。
在步骤S13中,ECU30读取通过未图示的其他例程计算的、内燃机3再启动了的情况下的要求工作点。要求工作点如上所述由内燃机3的发动机转速和发动机转矩定义。
在步骤S14中,ECU30判定要求工作点是否属于可减缸运转区域A2(参照图2)。在要求工作点属于可减缸运转区域A2的情况下,进入步骤S15。另一方面,由于在要求工作点不属于可减缸运转区域A2的情况下要求工作点属于可全缸运转区域A1,所以ECU30在步骤S17中选择以全缸运转的方式再启动内燃机3的全缸启动模式,作为再启动内燃机3的启动模式。
在步骤S15中,ECU30参照间歇停止计时Ts,判定间歇停止计时Ts的值是否为阈值T1以上。阈值T1是为了在缸内温度降低得少而不会带来PN增加影响的短时间的间歇停止的情况下避免减缸运转的实施限制而设定的值。因此,在间歇停止计时Ts的值小于阈值T1的情况下无需限制减缸运转的实施,所以ECU30在步骤S18中选择以减缸运转的方式再启动内燃机3的减缸启动模式,作为内燃机3的启动模式。另一方面,在间歇停止计时Ts的值为阈值T1以上的情况下,进入步骤S16。
在步骤S16中,ECU30判定要求工作点是否属于减缸运转限制区域a,在要求工作点属于减缸运转限制区域a的情况下,在步骤S17中选择全缸启动模式,在要求工作点不属于减缸运转限制区域a的情况下,在步骤S18中选择减缸启动模式。
在步骤S19中,ECU30控制内燃机3和第1电动发电机4等,以使内燃机3以在步骤S17和步骤18中选择的启动模式再启动。由此,在内燃机3的要求工作点属于可减缸运转区域A2(步骤S14)、且处于高负荷侧的情况下(步骤S16),以全缸运转的方式再启动内燃机3。即,即使在要求工作点属于能够实施减缸运转的可减缸运转区域A2的情况下,在处于高负荷侧时,也实施全缸运转。
在步骤S20中,ECU30设置启动经过计时Tc的初始值。作为该初始值,例如可以设定为1。在步骤S21中,ECU30参照间歇停止计时Ts的值,以间歇停止计时Ts的值越大则使阈值T2越大的方式确定阈值T2。该阈值T2是用于确定限制减缸运转而实施全缸运转的期间(特定运转时间)的阈值,被设定成使缸内温度成为使PN产生量为预定值以下的缸内温度。接着,在步骤S22中,ECU30将间歇停止计时Ts复位。然后,结束本次的例程。
在步骤S23中,ECU30使启动经过计时Tc计数增加。例如,在启动经过计时Tc的初始值被设定为1的情况下,ECU30通过将其更新为向启动经过计时Tc的值加1而得到的值,来使启动经过计时Tc计数增加。
在步骤S24中,ECU30判定启动经过计时Tc的值是否为阈值T2以上。在启动经过计时Tc的值小于阈值T2的情况下,进入步骤S26,ECU30继续全缸运转。另一方面,在启动经过计时Tc的值为阈值T2以上的情况下,进入步骤S25,ECU30从全缸运转向减缸运转切换并结束本次的例程。
根据本实施方式,即使在要求工作点属于能够实施减缸运转的可减缸运转区域A2的情况下,也在属于减缸运转限制区域a时实施全缸运转后实施减缸运转。通过实施该全缸运转,能够一边抑制每一汽缸的燃料喷射量的增加一边使缸内温度上升。因此,能够避免PN增加的可能性升高的状况地实施减缸运转,所以与在刚再启动后立即实施减缸运转的情况相比,能够抑制PN的增加。
另外,如上所述,间歇停止计时Ts的值越大,则用于确定实施全缸运转的期间的阈值T2为越大的值,且间歇停止时间即从内燃机3的上次的停止起到本次的再启动为止的时间越长,则间歇停止计时Ts的值为越大的值。因此,在因在再启动时要求工作点属于减缸运转限制区域a而实施全缸运转的情况下,间歇停止时间越长,则该全缸运转实施越长的期间。如上所述,确定全缸运转的实施期间的特定运转时间被设定成使缸内温度成为使PN产生量为预定值以下的缸内温度,所以在间歇停止时间短从而缸内温度比较高的情况下,能够在避免过长地实施特定运转的的同时,尽早地切换成减缸运转。由此,由于能够在间歇停止时间短而缸内温度比较高的情况下避免过长地实施全缸运转的同时尽早地切换成减缸运转,所以能够减少因全缸运转延长而导致的燃料经济性恶化等缺点。
不过,例如也可以将阈值T2预先确定为不根据间歇停止时间而变化的恒定值,将全缸运转的实施期间设为恒定,来代替如下控制:ECU30通过利用图5的步骤21的处理确定阈值T2,从而在步骤S24中确定全缸运转的实施期间。该控制可以通过代替图5的控制例程地,由ECU30实施将图5的步骤S21删去而得到的图6的控制例程来实现。在这样的变形例中,也可限制减缸运转的实施,所以能够抑制PN的增加。
另外,也可以与间歇停止时间无关地进行减缸运转的实施限制,而代替如下控制:通过ECU30执行步骤S15的处理,从而在间歇停止时间为短时间的情况下避免减缸运转的实施限制。该控制可以通过代替图5的控制例程地,由ECU30实施将图5的步骤S15删去而得到的图7的控制例程来实现。由此,在内燃机3的要求工作点属于可减缸运转区域A2(步骤S14)、且处于高负荷侧的情况下(步骤S16),与间歇停止时间无关地以全缸运转的方式再启动内燃机3,之后,从全缸运转切换成减缸运转。在这样的变形例中,由于可与间歇停止时间无关地限制减缸运转的实施,所以也能够抑制PN的增加。此外,也可以进一步变更为将图7的步骤S21删去而得到的实施方式。
(第2实施方式)
接着,参照图8和图9对本发明的第2实施方式进行说明。第2实施方式的物理结构以及基本的控制内容与第1实施方式共通,但使用累计空气量作为用于确定全缸运转的实施期间的参数这一点与第1实施方式不同。由于第2实施方式的物理结构与图1相同所以省略说明。另外,在第2实施方式的控制中,对与第1实施方式共通的处理省略或简化说明。
第2实施方式的控制通过由ECU30执行图8和图9的各控制例程来实施。图8和图9的各控制例程的程序被保存于ECU30,且被适时地读出并以预定间隔反复执行。由此,ECU30作为本发明的控制装置而发挥功能。
内燃机3的停止由图8的控制例程实施。在步骤S51中,ECU30判定发动机停止条件是否成立,在发动机停止条件成立了的情况下进入步骤S52,在发动机停止条件没有成立的情况下跳过之后的处理而结束本次的例程。
在步骤S52中,ECU30判定内燃机3的停止是否已完毕。在内燃机3的停止未完毕的情况下,进入步骤S53,ECU30实施内燃机3的停止控制。另一方面,在内燃机3的停止完毕了的情况下进入步骤S54,ECU30进行间歇停止计时Ts的计数增加。接着,在步骤S55中,ECU30将被吸入内燃机3的累计空气量Gs复位而结束本次的例程。累计空气量Gs是由ECU30设定的变量,从其算出开始起到被复位为止依次更新。吸入空气量的检测通过ECU30参照未图示的空气流量计的输出信号来实施。
自内燃机3的间歇停止起的再启动以及之后的运转以图9的控制例程实施。由于图9的步骤S61~步骤S69的各处理与第1实施方式的图5的步骤S11~步骤S19的各处理相同所以省略说明。通过步骤S61~步骤S69的各处理,即使在要求工作点属于能够实施减缸运转的可减缸运转区域A2的情况下,在处于高负荷侧时,也实施全缸运转。
在步骤S70中,ECU30开始累计空气量Gs的算出。接着,在步骤S71中,ECU30参照间歇停止计时Ts的值,以间歇停止计时Ts的值越大则使阈值T3越大的方式确定阈值T3。该阈值T3是用于确定限制减缸运转而实施全缸运转的期间(特定运转时间)的阈值,被设定成使缸内温度成为使PN产生量为预定值以下的缸内温度。接着,在步骤S72中,ECU30将间歇停止计时Ts复位。然后,结束本次的例程。
在步骤S73中,ECU30读取当前的累计空气量Gs。接着,在步骤S74中,ECU30判定当前的累计空气量Gs是否为阈值T3以上。在累计空气量Gs的值小于阈值T3的情况下进入步骤S76,ECU30继续全缸运转。另一方面,在累计空气量Gs的值为阈值T3以上的情况下进入步骤S75,ECU30从全缸运转向减缸运转切换而结束本次的例程。
根据本实施方式,与第1实施方式同样地能够抑制PN的增加。另外,由于用于确定实施全缸运转的期间的阈值T3在间歇停止计时Ts的值越大时则被设定成越大的值,所以与第1实施方式同样,间歇停止时间越长则越长久地实施全缸运转。由此,与第1实施方式同样地能够减少因全缸运转延长而导致的燃料经济性恶化等缺点。
尤其是,在第2实施方式中,使用自内燃机3的再启动起的累计空气量,所以与如第1实施方式那样地基于自再启动起的经过时间确定全缸运转的实施期间的情况相比,能够在筒内温度充分上升而能切实地抑制PN的增加的定时切换成减缸运转。虽然全缸运转的运转时间越长则再启动后的缸内温度越上升,但是再启动后的全缸运转不一定是稳定运转。例如,在负荷(空气量)随时间而变化的情况下,即使仅以运转时间为基准来推定缸内温度,若负荷不同,则实际的缸内温度在相同的运转时间下也有所不同。因此,第2实施方式通过使用累计空气量来将负荷的不同反映于缸内温度的推定,所以即使在全缸运转不是稳定运转的情况下也能够准确地掌握内燃机3的缸内温度。由此,与第1实施方式相比,能够更适当地确定全缸运转的实施期间,所以能够在抑制PN的增加的同时,切实地避免全缸运转延长。
不过,例如可以变更为通过将阈值T3预先确定为不根据间歇停止时间而变化的恒定值来确定全缸运转的实施期间的控制,而代替如下控制:通过ECU30利用图9的步骤71的处理确定阈值T3,从而在步骤S74中确定全缸运转的实施期间。该控制可以通过代替图9的控制例程地,由ECU30实施将图9的步骤S71删去而得到的图10的控制例程来实现。在这样的变形例中,也可限制减缸运转的实施,所以能够抑制PN的增加。
另外,也可以与间歇停止时间无关地进行减缸运转的实施限制,而代替如下控制:通过ECU30执行步骤S65的处理,从而在间歇停止时间为短时间的情况下避免减缸运转的实施限制。该控制可以通过代替图9的控制例程地,由ECU30实施将图9的步骤S65删去的图11的控制例程来实现。由此,在内燃机3的要求工作点属于可减缸运转区域A2(步骤S64)、且处于高负荷侧的情况下(步骤S66),与间歇停止时间无关地以全缸运转的方式再启动内燃机3,之后,从全缸运转切换成减缸运转。在这样的变形例中,由于可与间歇停止时间无关地限制减缸运转的实施,所以也能够抑制PN的增加。此外,也可以进一步变更为将图11的步骤S71删去而得到的实施方式。
本发明不限定于上述各实施方式,在本发明的要旨的范围内能够以各种实施方式实施。在上述各实施方式中,将本发明应用于搭载于混合动力车辆的内燃机,来作为从间歇停止起实施再启动的内燃机,但本发明的应用对象不限于搭载于混合动力车辆的内燃机。例如,也可以将本发明应用于搭载于实施怠速停车的车辆的内燃机,所述怠速停车在车辆停止时使内燃机停止、在行驶开始时进行再启动。另外,作为本发明的应用对象的内燃机不限于火花点火型的内燃机,而也可以是柴油机。
在上述各实施方式的控制中,从实施作为特定运转的全缸运转切换到减缸运转,但全缸运转只不过是特定运转的一例。例如,在将能够使工作的汽缸数从减缸运转到全缸运转逐级变更的内燃机作为本发明的应用对象的情况下,也可以以将汽缸的工作数比减缸运转多的运转作为特定运转而代替上述的全缸运转的方式实施。在该情况下,由于每一汽缸的燃料喷射量比减缸运转的该燃料喷射量少,所以也可获得抑制PN的增加的效果。
在上述各实施方式的控制中,根据要求工作点是否属于减缸运转限制区域a来判断内燃机3是否处于高负荷侧,但利用减缸运转限制区域a的情况只不过是一例。例如,也可以在要求工作点属于可减缸运转区域A的情况下计算内燃机的负荷,在该负荷超过预定的阈值的情况下判断为处于高负荷侧而限制减缸运转。该情况下的负荷也可以用燃料喷射量代替。
附图标记说明
3:内燃机;
30:ECU(控制装置);
A2:可减缸运转区域。