本公开内容涉及在发动机系统中的增压装置(boosting apparatus)的控制方法。
背景技术:
本节中的陈述仅提供与本公开内容相关的背景信息并且可不构成现有技术。
在包括增压装置的发动机系统中,已开发出其中废气的一部分被再循环到进气侧(intake side)的废气再循环(EGR)系统,并且该废气再循环系统被商业化为用于减少从发动机排出的NOx或用于提高燃料效率的技术。
在上面描述的EGR系统中,控制器以流速的形式相对于进气量控制EGR气体。更详细地,基于进气压力与排气压力之间的压力差以及EGR阀的开度(open degree)调节EGR气体的供应,控制EGR的气体的供应量以便满足预先输入到控制器的EGR速率。
此外,涡轮增压器(turbocharger)被设置于发动机的排气管与进气管之间,并且通过排气的压力使涡轮以高速旋转,以使用压缩机压缩进气并将经压缩的空气提供至进气侧从而提高进气的填充效率。因此,在设置有涡轮增压器的发动机中,基于由涡轮增压器所压缩的增压与排气压力的压力差以及EGR阀的开度,通过调节EGR的气体的供应量来控制EGR速率。
然而,我们已经发现,当发动机被过度驱动(突然加速等)时,通过操作涡轮增压器使增压压力和排气压力被大大改变,并且因此可能无法适当地控制EGR速率。如果EGR速率没有被适当地控制,则EGR气体可能过度增加并且因此产生烟雾或EGR气体可能过度减少并且因此增加了NOx或噪声并且使废气净化性能劣化。
技术实现要素:
本公开内容提供了一种增压装置的控制方法,其中,可通过根据发动机的驱动状态(driving condition,驱动条件)来控制涡轮增压器和机械增压器(supercharger)以控制EGR的气体的供应量,从而提高发动机的驱动效率。
本公开内容提供了一种增压装置的控制方法,该方法包括以下步骤:根据预先输入到控制器的驱动图(driving map)驱动增压装置;通过所述控制器判断发动机的驱动状态、选择预先输入到控制器的驱动图并且在所选择的驱动图中反映驱动状态;通过控制器基于发动机的反映了驱动状态的所选择的驱动图来校正增压装置的驱动图并且基于经校正的驱动图驱动增压装置;并且通过控制器确认增压装置的操作量(operating amount,运算量)是否产生变化,并且当确认操作量产生变化时,校正增压装置的操作量并且在驱动图中反映经校正的操作量。具体地,控制器被配置为通过增压装置的操作,根据驱动状态来控制EGR阀,并且由此控制提供给发动机的EGR气体的量。
增压装置可以包括机械增压器和涡轮增压器,并且机械增压器和涡轮增压器可以被同时控制。
在校正增压装置的操作量时,涡轮增压器的操作量的校正值可反映在机械增压器的驱动图中,并且由此可以控制机械增压器的操作量。
控制器可基于由检测单元所检测出的废气中的氧气量,通过对EGR气体的量执行逆向操作(inverse operation,逆向运算)来校正机械增压器的操作量,并且由此控制EGR阀的开度。
在校正增压装置的操作量时,控制器被配置为接收涡轮增压器的增压压力(boost pressure),将增压压力与预先输入到控制器的参考值进行比较并且校正涡轮增压器的压缩机的操作量。
在驱动增压装置时,控制器可基于由检测单元所检测出的气体量控制机械增压器。
在驱动增压装置时,控制器可确认机械增压器是否被驱动,并且当确认机械增压器被驱动时,根据预先输入到控制器的驱动图来控制机械增压器。
可以从再生设备(regenerative device)的一端通过废气循环管、穿过机械增压器供应被引入至发动机中的EGR气体。
在校正增压装置的操作量时,如果通过控制EGR阀而产生EGR气体量的差异时,控制器可校正增压装置的操作量。
从本文中提供的描述中,另外的应用领域将变得显而易见。但是应当理解的是,说明书和具体示例仅用于说明的目的,而并不旨在限制本公开被容的范围。
附图说明
为了可以更好地理解本公开的内容,现将参考附图通过示例的方式描述本公开内容的各种形式,在附图中:
图1是示出增压装置的控制方法的框图;
图2是图1的控制方法的流程图;以及
图3是示出用于实施图1的控制方法的发动机系统的配置的示意图。
在本文中所描述的附图仅用于说明的目的,而不旨在以任何方式限制本公开内容的范围。
具体实施方式
下面的描述在本质上仅是示例性的,而不旨在限制本公开的内容、应用或用途。应当理解,贯穿整个附图,对应的参考标记指示相同或相应的部件和特征。
如在图3中示例性示出的,配置了执行根据本公开内容的一种形式的增压装置的控制方法的发动机系统。也就是说,废气通过排气歧管900排出并传递到涡轮增压器230,并且废气通过涡轮增压器230传递到再生设备600,沿着排气循环管700被引入机械增压器210,由机械增压器210的压缩机进行压缩并随后通过EGR阀400被提供给进气歧管800。再生设备600可包括柴油微粒过滤器(DPF)和选择性催化还原(SCR)-催化剂。
具体地,在本公开内容中,将具有缓慢响应度并且因此难以控制的低压到低压废气再循环(LP到LP EGR)系统转换成低压到高压废气再循环(LP到HP EGR)系统,并且为了根据发动机300的驱动状态通过EGR阀400调节提供给发动机300的EGR气体的供应量,机械增压器210被控制为保持适当的响应度。此外,根据与机械增压器210相连接的发动机300的驱动状态,通过控制涡轮增压器230来调节EGR阀400的叶片的开度和风扇的速度,从而控制EGR的气体的供应量。此外,涡轮增压器230可以是可通过控制器100控制引入到涡轮的废气的流速的可变几何结构涡轮机(VGT)的涡轮增压器。
因此,增压装置的控制方法包括以下步骤:根据预先输入到控制器100的驱动图来驱动增压装置210、230(操作S110和S130);通过控制器判断发动机300的驱动状态,选择预先输入到控制器100的驱动图并且在所选择的驱动图中反映驱动状态(操作S300);基于在操作S300中反映驱动状态的发动机300的驱动图来校正增压装置210、230的驱动图,并且基于由控制器100所校正的驱动图驱动增压装置210、230(操作S500);并且确认增压装置210、230操作量是否产生变化,并且在确认操作量产生变化时,通过控制器校正增压装置210、230的操作量并且在驱动图中反映经校正的操作量(操作S710和S730)。由此,控制器100通过增压装置210和230的操作根据驱动状态控制EGR阀400,从而控制提供给发动机300的EGR的气体量。
在上述的控制方法中,增压装置210、230包括机械增压器210和涡轮增压器230。由控制器100同时控制机械增压器210和涡轮增压器230。在此,通过根据与机械增压器210相连接的发动机300的驱动状态适当地控制机械增压器210和涡轮增压器230,可更精确地控制提供给发动机300的EGR的气体量,从而使发动机300可以在改进的状态下被驱动。
在驱动增压装置210、230(操作S110和S130)时,根据预先输入到控制器100的驱动图驱动增压装置210、230。驱动增压装置210、230(操作S110和S130)可被分成驱动机械增压器210(操作S110)和驱动涡轮增压器230(操作S130)。
在驱动机械增压器210(操作S110)时,控制器100可以基于由检测单元500所检测出的气体量控制机械增压器210。检测单元500可以是空气流量传感器,并且具体地,可以是热膜式空气流量传感器(hot film type air flow sensor)。控制器100基于由空气流量传感器所检测出的气体量计算提供至进气侧的EGR的气体的供应量,从而控制EGR的气体的供应量。
当开始驱动发动机300时,控制器100可通过检测单元500检测被引入进气侧的气体量。在驱动机械增压器210(操作S110)时,控制器100确认机械增压器210是否被驱动,并且在确认机械增压器210被驱动时,基于发动机300的RPM(每分钟转数,最大功率转速)和转矩,根据预先输入到控制器100的机械增压器210的驱动图控制机械增压器210。
以类似的方式,在驱动涡轮增压器230时(操作S130),控制器100基于发动机300的RPM和转矩,根据预先输入到控制器100的涡轮增压器230的驱动图控制涡轮增压器230。
在执行了驱动增压装置S210、S230(操作S110和S130)之后,控制器判断发动机300的驱动状态,选择预先输入到控制器100的驱动图并且在所选择的驱动图中反映驱动状态(操作S300)。这里,控制器100通过检查随时间的变化来确认发动机300是否进入过度区间(transient section),或者判断可以在发动机300中生成的驱动状态,例如,在环保模式、正常模式或者运动模式下,或者在柴油机微粒过滤器(DPF)的再生过程的富NOx捕集的状态下进行驱动时。
因此,控制器100基于在操作S300中反映发动机300的驱动状态的发动机300的驱动图校正增压装置210、230的驱动图,并且控制器100基于经校正的驱动图来驱动增压装置210、230(操作S500)。
根据基于经校正的驱动图执行的对增压装置210、230的驱动,基于经校正的图驱动增压装置210、230(操作S500),并且控制器100控制EGR阀400以便将EGR气体提供至进气侧。
此外,控制器100确认增压装置210、230的操作量是否发生变化,并且在确认了操作量发生变化时,校正增压装置210、230的操作量并且在该驱动图中反映经校正的操作量(操作S710和S730)。在校正操作量(操作S710和S730)时,如果通过控制EGR阀400而出现EGR的气体的供应量上的差异,则控制器100校正增压装置210和230的操作量以控制提供至发动机300的进气侧的EGR的气体的供应量。
将更加详细地描述操作量的校正(操作S710和S730)。操作量的校正(操作S710和S730)可以被分为校正机械增压器210的操作量(操作S710)以及校正涡轮增压器230的操作量(操作S730)。
为了校正机械增压器210(操作S710),控制器100基于由检测单元500'所检测出的废气中的氧气量,通过执行对EGR的气体的供应量的逆向操作来校正机械增压器210的操作量,并且相应地控制EGR阀400的开度。这里,检测单元500'可以是氧气传感器(拉姆达传感器或氧气传感器)。该检测单元500'可检测废气中的氧气量并且将所检测出的氧气量传输给控制器100,并且因此,控制器100可以对适当供应量的EGR气体执行逆向操作并且将EGR气体提供至进气侧。在校正机械增压器210的步骤中(操作S710),如果没有产生机械增压器210的控制量的变化,则控制器将通过检测单元500'由逆向操作所获得的该供应量的EGR气体提供至发动机300的进气侧。
在校正涡轮增压器230的步骤中(操作S730),控制器100接收涡轮增压器230的增压压力,将增压压力与预先输入到控制器100的参考值进行比较并且校正涡轮增压器230的压缩机的操作量以校正涡轮增压器230的操作量。此外,当涡轮增压器230被校正时(操作S730),涡轮增压器230的操作量的校正值被反映在机械增压器210的驱动图中,并且因此相应地控制机械增压器210的操作量,并由此通过控制EGR阀400来控制提供至发动机300的进气侧的EGR的气体的供应量。在校正涡轮增压器230的步骤中(操作S730),如果不需要校正涡轮增压器230,则以相同的RPM持续驱动涡轮增压器230。
从上述描述中明显看出,可用LP到HP EGR系统取代具有慢响应度的LP到LP EGR系统,并且因此通过控制电驱动的机械增压器可保持EGR的气体的供应量的适当的响应度。
此外,根据其中的发动机的驱动状态控制机械增压器和涡轮增压器,可控制EGR阀叶片的开度或者风扇的速度以准确地将EGR的气体量提供至发动机的进气侧。
也就是说,通过控制机械增压器(更具体地,电驱动的机械增压器)的压缩机,可根据与该机械增压器相连接的发动机的驱动状态控制涡轮增压器,从而提高对提供至发动机的进气侧的EGR的气体的量的控制。
虽然出于说明的目的公开了本公开内容的各种形式,但本领域的技术人员将理解,在不背离本公开内容的范围和精神的情况下可以进行各种修改、增加和替换。