一种金属负载型催化剂及合成hcn的方法
【技术领域】
[0001]本发明属于等离子体化学合成技术领域,涉及一种金属负载型催化剂及合成HCN的方法。
【背景技术】
[0002]氰化氢(HCN)是一种重要的化学品,可用于合成己二腈、丙酮氰醇、氰化钠、蛋氨酸、氰尿酰氯、氨基羧酸类螯合剂和氮)丨I三乙酸等。
[0003]工业上主要采用甲酰胺法、施瓦尼甘法(Schwanigan)、BMA法和安氏法生产HCN。
[0004]甲酰胺法:以一氧化碳和氨为原料,在450-590°C条件下,用A1203为基础的硅铝酸盐催化剂,经三步制得 HCN (① C0+CH30H — HC00CH3;② HC00CH 3+NH3— CH 30H+HC0NH2;③ HC0NH2— HCN+H 20)。
[0005]施瓦尼甘法:以丙烷(或甲烷)和氨为原料,在无催化剂及1350_1650°C高温条件下反应生成HCN,反应热量是由非催化焦炭颗粒流化床中的电热提供。BMA法:以甲烷和氨为原料,用铂颗粒作为催化剂,在1300°C下反应生成HCN和H2。其中,反应器由8个炉子组成,各炉中装有13根氧化铝管,铂催化剂衬于管内。
[0006]安氏法:以甲烷、氨气和空气为原料,用铂/铑金属丝网作为催化剂,在1000°C以上高温条件下反应,产物有HCN、H2、H20、C0、0)2和痕量高级腈。
[0007]此外,以下专利和公开文献涉及HCN的合成方法。
[0008]专利CN1267347C(申请日期:2000-5-16)披露了一种生成HCN的方法。其主要特征是:以烃类(丙烯和丙烷)、酮类(至少两种酮的混合物)、氨气和空气的混合物为原料,在氨氧化催化剂(BiFeMoOj和405-440°C条件下反应生成丙烯腈、氰化氢和乙腈。其中HCN是副产物。
[0009]专利US20020048544A(申请日期:2001-7-13)披露了一种以氨气与含甲烷和氧气的混合气为原料生成HCN的方法。其主要特征是:反应温度980-1050°C,采用贵金属铂催化剂。
[0010]专利CN1331750C(申请日期:2003-12-03)披露了一种制备HCN的方法。其主要特征是:以甲酰胺为原料,用铂族金属催化剂,在感应加热反应器中生成HCN。
[0011]公开文献《Applied Catalysis A, 2008,334,73-83》揭示了甲烷和氨气可在1100°C和铂催化剂条件下生成HCN。
[0012]到目前为止,有关甲烷和氨气混合物在等离子体条件下直接合成HCN的专利和公开文献较少。
[0013]公开文献《Ind.Eng.Chem.Prod.Res.Develop, 1970,9,388》揭示了 014和 NH 3在微波等离子体条件生成HCN。其特点是反应压力低(10-25torr)。
[0014]此外,以下公开文献涉及甲烷和氨气混合物在等离子体条件下的转化。
[0015]公开文献《功能材料,2007年增刊(38)卷》揭示了 014和NH 3的混合物在硅基镍催化剂和介质阻挡放电等离子体条件下制备含氮碳纳米管的方法。反应温度为630°C和750。。。
[0016]公开文献《Carbon, 2011, 49,266》揭示了 014和NH 3的混合物在铂催化剂和微波等离子体条件下制备含氮碳纳米管的方法。反应温度为1000°c。
[0017]综上所述,已有专利和公开文献未涉及以014和见13的混合气为原料在等离子体和催化剂共同作用下合成HCN。
【发明内容】
[0018]本发明的目的是提供一种金属负载型催化剂及一种一步转化甲烷和氨气高选择性生成HCN的方法。该方法的特点是用介质阻挡放电等离子体和金属催化剂相耦合的方式活化反应物分子。利用介质阻挡放电可以在气体中产生高能电子(高能电子的温度可达1一 10eV)。通过与甲烧、氨气分子发生碰撞,高能电子可将电能传递给甲烧、氨气分子,从而使他们在温和条件下被激发、离解和电离,产生CH3.、CH2.、CH.和C2.和NH3*、NH2.、NH.和N.等活性基团。另外,当把特定催化剂装填于介质阻挡放电等离子体中时,等离子体可活化催化剂表面,从而使活性基团在催化剂表面高选择性地组合生成HCN。
[0019]本发明的技术方案:
[0020]一种金属负载型催化剂,包括活性组分和载体;所述的活性组分包括非贵金属、碱金属、贵金属和稀土金属,活性组分在催化剂中所占的重量百分比为0.4-50% ;所述的载体包括活性炭、纳米碳管、石墨烯、氧化铝、氧化硅、氧化钛、氧化镁、氧化镧、氧化铈和沸石分子筛,优选氧化硅和氧化铝。载体颗粒的等效直径与反应器内径之比为0.01-0.4,首选范围是0.05-0.2。该比值太小会导致气体流动阻力过大。反之,该比值太大,则会造成反应物在催化剂床层中产生沟流,与催化剂接触不好。
[0021]所述的非贵金属包括铁(Fe)、钴(Co)、镍(Ni)、铬(Cr)、钼(Mo)、锰(Μη)、铜(Cu)、钙(Ca)、钡(Ba)钇(Y)、错(Zr)和钨(W);碱金属钠(Na)和钾(K);所述的贵金属银(Ag)、金(Au)、铀(Pt)、.了 (Ru)、铭(Rh)和钯(Pd);所述的稀土金属镧(La)、铺(Ce)和镱(Yb);优选Cu和W。
[0022]一种用金属负载型催化剂合成HCN的方法,该方法所用的等离子体催化反应器为线一筒型构造;反应器壳体为圆筒状,在其外表面缠绕金属导体作为接地电极,接地电极外设有隔热保温层;圆筒状上端设带有中心孔的上封头,通过中心孔沿反应器轴线设有金属棒作为高压放电电极,用绝缘材料对上封头进行密封;反应器上端设氨气和甲烷入口,位于放电区上方,反应器下端设收集装置及尾气出口 ;催化剂置于反应器内的放电区,催化剂床层通过石英砂板支撑;反应器用等离子体电源的输出电压为8?40kV,放电频率为50Hz?IMHzo
[0023]上述等离子体催化反应器的高压电极用表面洁净、耐腐蚀的金属材料制成,首选不锈钢材质。高压电极的金属棒选用:铁、镍、物、铜、锌和不锈钢棒。反应器的壳体用氧化铝陶瓷、硬质玻璃或石英玻璃制成,反应器壳体同时兼作两极间放电的阻挡介质。
[0024]一种用金属负载型催化剂合成HCN的方法,甲烷和氨气在反应区中的停留时间取0.01s-100s,优选0.l-60s ;反应温度取200-650 °C,优选300-500 °C ;反应压力取-0.06MPa-0.2MPa,优选-0.02MPa_0.1MPa ;反应体系中甲烷与氨气物质的摩尔比为0-10,优选 0-2。
[0025]本发明的效果和益处是:反应条件温和,可在较低温(300-500°C )和常压下进行;原料甲烷和氨气廉价易得;等离子体催化合成法属于一步法直接合成工艺,流程简单,方法绿色。
【附图说明】
[0026]附图是具有线一筒型构造的介质阻挡放电甲烷和氨气反应器结构示意图。
[0027]图中:1绝缘材料;2高压放电电极;3催化剂;4反应器壳体(兼作阻挡介质);5隔热保温层;6接地电极;7石英砂板;8尾气出口 ;9收集装置;10接地线;11进气口。
【具体实施方式】
[0028]以下结合技术方案和附图详细叙述本发明的具体实施例。
[0029]对比实施例1
[0030]在0.1MPa压力下,将甲烷与氨气以摩尔比1:2(其中甲烷流速为20ml/min,氨气流速为40ml/min)通入放电反应器,气流稳定后,接通等离子体电源进行介质阻挡放电。反应器采用线筒式电极结构,用外径9_、内径6_的石英管管制成筒状反应器(同时也作为阻挡介质),中心电极为直径3_的不锈钢电极,接地极为壁厚为1_圆柱形铝箔(紧贴在石英管外壁),极间距为3mm,反应器的有效放电长度为lOOmmo
[0031]等离子体放电参数为:电压12kV,频率12kHz ;反应器的其它反应条件为:反应物在放电区停留时间5s,反应温度为300°C。反应产物采用GC-MS进行分析。反应结果为:CH4转化率5%,HCN选择性30% (选择性基于CH4计算),其它副产物包括氨基乙腈、N, N- 二甲基氰胺和甲胩。
[0032]实施例1
[0033]重复对比实施例1,将6g 二氧化硅负载的铁催化剂(表示为Fe/Si02)装填于线筒式介质阻挡放电等离子体反应器的放电区。催化剂颗粒为不规则形状(20-40目),其中以元素铁(Fe)计的活性成分负载量为10% (重量)。放电参数设定为:放电电压13kV(峰-峰值),放电频率12kHz,高压电源功率35W。待反应稳定后反应器的器壁温度稳定在300°C。此时,CH4转化率10 %,HCN选择性45 %。
[0034]实施例2:
[0035]重复实施例1,将6g 二氧化硅负载的铂催化剂(表示为Pt/Si02)装填于线筒式介质阻挡放电等离子体反应器的放电区。催化剂颗粒为不规则形状(20-40目),其中以元素铂(Pt)计的活性成分负载量为2% (重量)。放电参数设定为:放电电压13kV(峰-峰值),放电频率12kHz,高压电源功率34W。待反应稳定后反应器的器壁温度稳定在300°C。此时,CH4转化率9 %,HCN选择性70 %。
[0036]实施例3:
[0037]重复实施例1,将6g 二氧化硅负载的钠催化剂(表示为Na/Si02)装填于线筒式介质阻挡放电等离子体反应器的放电区。催化剂颗粒为不规则形状(20-40目),其中以元素钠(Na)计的活性成分负载量为10% (重量)。放电参数设定为:放电电压13kV(峰-峰值),放电频率12kHz,高压电源功率36W。待反应稳定后反应器的器壁温度稳定在300°C。此时,CH4转化率6 %,HCN选择性30 %。
[0038]实施例4:
[0039]重复实施例1,将6g 二氧化硅负载的铜催化剂(表示为Cu/Si02)装填于线筒式介质阻挡放电等离子体反应器的放电区。催化剂颗粒为不规则形状(20-40目),其中以元素铜(Cu)计的活性成分负载量为10% (重量)。放电参数设定为:放电电压13kV(峰-峰值),放电频率12kHz,高压电源功率33W。待反应稳定后反应器的器壁温度稳定在300°C。此时,CH4转化率7 %,HCN选择性85 %。
[0040]实施例5:
[0041]重复实施例1,将6g 二氧化硅负载的钨催化剂(表示为W/Si02)装填于线筒式介质阻挡