本发明涉及一种臭氧非均相氧化固体催化剂的制备方法,属环保和化工催化剂技术领域。
背景技术:
臭氧氧化技术利用臭氧氧化能力强的特点,能将许多有机污染物氧化分解,广泛用于废水处理。臭氧催化氧化技术分为臭氧均相催化氧化和臭氧非均相催化氧化,臭氧均相催化氧化存在催化剂较难分离回收重复使用、臭氧利用率低导致水处理运行成本较高,同时有机污染物去除率较低和易造成水体二次污染使其应用受到局限;臭氧非均相催化氧化技术具有催化剂易于分离回收并可重复使用、臭氧利用率高、有机污染物去除率较高,降低了水处理运行成本和不会造成二次污染等优点使其应用受到广泛关注。臭氧非均相催化氧化有机物分解是经过催化剂表面吸附有机物达到局部有机物富集,同时臭氧分子吸附在催化剂表面在催化剂作用下产生高活性的羟基自由基使有机物分解。臭氧非均相催化氧化处理废水技术中,核心技术是臭氧非均相氧化固体催化剂的制备。
臭氧非均相氧化固体催化剂通常由载体、活性中心和助剂组成。由于废水中污染物种类繁多、化学成分复杂的特征,会对催化剂的使用性能如吸附、抗毒性产生不良影响。目前制备臭氧非均相氧化固体催化剂使用的载体结构较单一,吸附性较低;活性中心普遍采用普通过渡金属盐,抗毒性较差;制备方法主要有浸渍法、沉淀法、混合法及溶胶凝胶等方法附着活性中心和助剂组分于载体表面,活性中心和助剂组分容易熔析出,导致催化剂容易失去催化活性。针对目前臭氧非均相氧化固体催化剂制备方法中存在催化剂吸附性较低、抗毒性较差和容易失去催化活性问题,开发采用多组分多孔载体经扩孔、表面活化增强催化剂吸附性,使用稀土金属有机化合物作催化活性助剂前驱物、普通过渡金属有机化合物和贵金属化合物作催化活性中心前驱物与多组分多孔载体经水热反应、高温灼烧制备含多元金属的臭氧非均相氧化固体催化剂以提高催化剂抗毒性和催化活性的制备方法,具有较大的环境效益和较高的实用价值。
技术实现要素:
针对目前臭氧非均相氧化固体催化剂制备方法中存在催化剂吸附性较低、抗毒性较差和容易失去催化活性问题,开发采用多组分多孔载体经扩孔、表面活化增强催化剂的吸附性,使用稀土金属有机化合物作催化活性助剂前驱物、普通过渡金属有机化合物和贵金属化合物作催化活性中心前驱物与多组分多孔载体经水热反应、高温灼烧制备含多元金属的臭氧非均相氧化固体催化剂以提高催化剂抗毒性和催化活性的制备方法,其特征是在可密闭反应器中加入a组分和去离子水搅拌制备水溶液,控制a组分的重量浓度为2%~6%,溶液制备完成后,在搅拌下加入b组分,升温至35℃~50℃,继续搅拌反应3h~6h,过滤,反应产物在102℃~106℃干燥恒重后得到扩孔改性载体;扩孔改性载体投入超声波反应器,加入由c组分和去离子水配制的水溶液,c组分的重量浓度为3%~8%,搅拌混合均匀,控制超声功率密度为0.3~0.8w/m3、频率20khz~30khz、40℃~55℃,超声振荡2h~5h,得到超声表面活化载体混合液;超声表面活化载体混合液转移至水热反应釜中,再加入d组分和去离子水配制的水溶液,d组分的重量浓度为40%~55%,按重量计,d组分去离子水溶液:超声表面活化载体混合液的重量比=1:(1.5~2),控制温度120℃~180℃,水热反应时间为8h~16h,然后烘干得细颗粒物;细颗粒物在马弗炉内,600℃~950℃,灼烧3h~8h,得到臭氧非均相氧化固体催化剂。所述a组分由次氯酸锂、双(乙酰丙酮)铍组成,按重量计,次氯酸锂:双(乙酰丙酮)铍的重量之比=1:(1~1.6),b组分由毛沸石、石榴石、硅藻纯、蓝晶石、伊利石、钠硼解石组成,按重量计,毛沸石:石榴石:硅藻纯:蓝晶石:伊利石:钠硼解石的重量之比=(5~15):(7~17):(9~19):(11~21):(13~23):(15~25),按重量计,a组分:b组分的重量之比=1:(10~20);c组分是氯化十二烷基三甲基铵,按重量计,c组分:扩孔改性载体的重量之比=1:(5~10);d组分由复合矿化剂硼砂、硫酸钾,催化活性助剂前驱物异丙氧化钪(iii)、三(六氟乙酰丙酮)钇(iii)二水合物、三(3-三氟乙酰基-d-樟脑)镨(iii)、碳酸镥水合物稀土金属有机化合物,催化活性中心前驱物普通过渡金属有机化合物二茂钛环取代水杨酸配合物、丙酮酸异烟酰腙钒、谷氨酸铜和贵金属化合物四氯二水合铱,乳化剂n-十六烷基二甲基-n’-三甲基-丙基二氯化铵组成,按重量计,硼砂:硫酸钾:异丙氧化钪(iii):三(六氟乙酰丙酮)钇(iii)二水合物:三(3-三氟乙酰基-d-樟脑)镨(iii):碳酸镥水合物:二茂钛环取代水杨酸配合物:丙酮酸异烟酰腙钒:谷氨酸铜:四氯二水合铱:n-十六烷基二甲基-n’-三甲基-丙基二氯化铵的重量之比=(4~8):(6~10):(3~6):(4~7):(5~8):(6~9):(10~15):(12~18):(4~7):(6~9):(6~20)。所述b组分中的毛沸石、石榴石、硅藻纯、蓝晶石、伊利石、钠硼解石分别进行粉碎,去离子水洗涤干燥除去水分后,经标准筛进行-200目、+400目筛分,控制粒径为0.0370mm~0.0750mm。
本发明的技术方法是这样实现的:在可密闭反应器中加入次氯酸锂liclo、双(乙酰丙酮)铍c10h14beo4和去离子水搅拌制备水溶液,加入筛分后粒径为0.0370mm~0.0750mm的毛沸石、石榴石、硅藻纯、蓝晶石、伊利石和钠硼解石多孔材料载体,在一定温度和搅拌条件下,水溶液中离子半径小的be2+(0.31å)、li+(0.60å)置换出多孔材料中部分离子半径大的ca2+(0.99å)、k+(1.33å)、ba2+(1.35å)等离子,多孔材料载体的孔径变大、表面粗糙度增加,过滤,干燥恒重后的扩孔改性载体投入超声波反应器,再加入氯化十二烷基三甲基铵[c12h25n(ch3)3]+cl-水溶液,控制超声功率密度、超声波频率、温度和超声振荡时间,在超声波空化作用下,氯化十二烷基三甲基铵[c12h25n(ch3)3]+cl-易于从水溶液逸出进入扩孔改性载体孔道或附着在扩孔改性载体表面,有益于载体孔道的相互连通和载体表面活化,增强了吸附性;超声活化完成后,超声表面活化载体混合液转移至水热反应釜中,与硼砂na2b4o7·10h2o、硫酸钾k2so4复合矿化剂,催化活性助剂异丙氧化钪(iii)c9h21o3sc、三(六氟乙酰丙酮)钇(iii)二水合物c15h3f18o6y·2h2o、三(3-三氟乙酰基-d-樟脑)镨(iii)c36h42f9o6pr、碳酸镥水合物c3h2lu2o10稀土金属有机化合物,催化活性中心组分过渡金属有机化合物二茂钛环取代水杨酸配合物(c10h10)ti(c7h4o3)、丙酮酸异烟酰腙钒[vo2(c9h8n3o5)](c5h5n)、谷氨酸铜c5h7no4cu和四氯二水合铱ir(h2o)2cl4贵金属化合物,在乳化剂n-十六烷基二甲基-n’-三甲基-丙基二氯化铵c16h33n+(ch3)2ch2ch2ch2n+(ch3)3cl2-作用下进行水热反应,矿化剂加速扩散作用、使反应物晶格活化,促进了固相反应的进行,超声表面活化载体与稀土金属有机化合物、普通过渡金属有机化合物、贵金属化合物均匀掺杂,乳化剂n-十六烷基二甲基-n’-三甲基-丙基二氯化铵使反应液形成准稳态的乳液防止了固液分离、沉降,同时对多孔载体进一步表面活化,通过在一定温度、时间的水热反应,烘干得到均匀掺杂的细粉粒物;均匀掺杂的细粉粒物在马弗炉内,经高温灼烧,其中的有机物完全碳化进一步强化了多孔载体的微孔结构,得到多孔载体负载稀土金属氧化物、过渡金属氧化物和贵金属形成的催化活性中心的臭氧非均相氧化固体催化剂,提高了催化剂的抗毒性和催化活性。
相对于现有技术方法,本发明突出优点是制备技术中使用毛沸石、石榴石、硅藻纯、蓝晶石、伊利石和钠硼解石多孔材料作载体,由于次氯酸锂liclo和双(乙酰丙酮)铍c10h14beo4的扩孔效应、氯化十二烷基三甲基铵[c12h25n(ch3)3]+cl-、n-十六烷基二甲基-n’-三甲基-丙基二氯化铵c16h33n+(ch3)2ch2ch2ch2n+(ch3)3cl2-对孔道的相互连通和表面活化作用,有机物完全碳化强化了多孔载体的微孔结构;通过水热反应使稀土金属有机化合物、普通过渡金属有机化合物和贵金属化合物达到均匀掺杂并附着于载体表面和孔道内,高温灼烧使有机物完全碳化强化和形成了多层次的微孔结构,多孔载体负载稀土金属氧化物、过渡金属氧化物和贵金属形成的多元金属催化活性中心与多孔载体结合更加牢固,制备的臭氧非均相氧化固体催化剂具有更强的吸附性,多元金属的协同效应、特别是掺杂贵金属具有的稳定性和高活性,可以抑制金属催化活性组分的熔析出,提高了催化剂的抗毒性和催化活性,具有良好的环境效益和经济效益。
具体实施方式
实施例1:1.4g次氯酸锂,1.7g双(乙酰丙酮)铍,140ml去离子水,加入到容积为500ml的可密闭反应器中搅拌混合均匀,该水溶液的重量浓度为2.2%,次氯酸锂:双(乙酰丙酮)铍的重量之比=1:1.2;加入去离子水洗涤至中性、103℃干燥除去水分后过筛-200目~+400目标准筛的2.8g毛沸石、3.8g石榴石、4.7g硅藻纯、5.8g蓝晶石、6.7g伊利石、7.8g钠硼解石,次氯酸锂和双(乙酰丙酮)铍的重量(3.1g):多孔材料的重量(31.6g)=1:10.2,升温至36℃,继续搅拌反应3.2h,过滤,103℃干燥恒重后得到扩孔改性载体30g;在500ml超声波反应器中,投入扩孔改性载体30g,再加入3.3g氯化十二烷基三甲基铵溶于100ml去离子水的水溶液,该水溶液的重量浓度为3.2%,搅拌混合均匀,氯化十二烷基三甲基铵(3.3g):扩孔改性载体(30g)=1:9.1;控制超声功率密度为0.4w/m3、超声波频率21khz、温度41℃,超声振荡2.2h;超声活化完成后,把超声波反应器中的超声表面活化载体混合液转移至500ml水热反应釜中,再加入由2.1g硼砂、3.1g硫酸钾、1.6g异丙氧化钪(iii)、2.1g三(六氟乙酰丙酮)钇(iii)二水合物、2.6g三(3-三氟乙酰基-d-樟脑)镨(iii)、3.1g碳酸镥水合物、5.1g二茂钛环取代水杨酸配合物、6.1g丙酮酸异烟酰腙钒、2g谷氨酸铜、3.1g四氯二水合铱、3.1gn-十六烷基二甲基-n’-三甲基-丙基二氯化铵和50ml去离子水配制的水溶液,该水溶液的重量浓度为40.5%,该水溶液的重量:超声表面活化载体混合液的重量=84g:133.3g=1:1.6,控制温度125℃,水热反应时间为8.3h,然后过滤,105℃烘干得细粉粒物;细粉粒物在马弗炉内,620℃,灼烧3.2h,降温冷却后,可得到细粉颗粒状的臭氧非均相氧化固体催化剂。
实施例2:0.24g次氯酸锂,0.36g双(乙酰丙酮)铍,10ml去离子水,加入到容积为100ml的可密闭反应器中搅拌混合均匀,该水溶液的重量浓度为5.7%,次氯酸锂:双(乙酰丙酮)铍的重量之比=1:1.5;加入去离子水洗涤至中性、103℃干燥除去水分后过筛-200目~+400目标准筛的1.45g毛沸石、1.65g石榴石、1.85g硅藻纯、2.05g蓝晶石、2.25g伊利石、2.45g钠硼解石,次氯酸锂和双(乙酰丙酮)铍的重量(0.6g):多孔材料的重量(11.7g)=1:19.5,升温至48℃,继续搅拌反应5.8h,过滤,105℃干燥恒重后得到扩孔改性载体11.5g;在100ml超声波反应器中,投入扩孔改性载体11.5g,再加入2.2g氯化十二烷基三甲基铵溶于26ml去离子水的水溶液,该水溶液的重量浓度为7.8%,搅拌混合均匀,氯化十二烷基三甲基铵(2.2g):多扩孔改性载体(11.5g)=1:5.2;控制超声功率密度为0.7w/m3、超声波频率29khz、温度54℃,超声振荡4.7h;超声活化完成后,把超声波反应器中的超声表面活化载体混合液转移至100ml水热反应釜中,再加入由0.78g硼砂、0.97g硫酸钾、0.58g异丙氧化钪(iii)、0.67g三(六氟乙酰丙酮)钇(iii)二水合物、0.78g三(3-三氟乙酰基-d-樟脑)镨(iii)、0.87g碳酸镥水合物、1.48g二茂钛环取代水杨酸配合物、1.77g丙酮酸异烟酰腙钒、0.68g谷氨酸铜、0.87g四氯二水合铱、1.98gn-十六烷基二甲基-n’-三甲基-丙基二氯化铵和10ml去离子水配制的水溶液,该水溶液的重量浓度为53.3%,该水溶液的重量:超声表面活化载体混合液的重量=21.4g:39.7g=1:1.9,控制温度175℃,水热反应时间为15.5h,然后105℃烘干得细粉粒物;细粉粒物在马弗炉内,930℃,灼烧7.5h,降温冷却后,可得到细粉颗粒状的臭氧非均相氧化固体催化剂。
比较例1:制备过程不加次氯酸锂、双(乙酰丙酮)铍、氯化十二烷基三甲基铵、n-十六烷基二甲基-n’-三甲基-丙基二氯化铵、硼砂和硫酸钾外,整个制备过程、制备条件和实施例1完全相同。
实施例1、实施例2和比较例1制备的臭氧非均相氧化固体催化剂的参数列入表1。
应用实施例1:实施例1、实施例2和比较例1制备的臭氧非均相氧化固体催化剂分别在相同条件下用于邻苯二甲酸氢钾、乙二胺和直接红棕r配制的废水进行臭氧非均相氧化处理。处理条件是:有机物废水与催化剂的投料比=1000l:1g,有机废水codcr值1125.5mg/l,臭氧投加量60mg/l,处理时间1hr,臭氧尾气用ki溶液吸收检测臭氧利用率。试验数据列入表2。
表1实施例和比较例制备臭氧非均相氧化固体催化剂参数
表2臭氧非均相氧化固体催化剂应用实施例