本发明属于光催化材料相关技术领域,更具体地,涉及一种基于g-碳化氮和ag3po4的复合光催化剂制备方法及其产品。
背景技术:
自1972年fujishima和honda发现了二氧化钛(tio2)电极上光分解水的现象以来,半导体光催化技术以tio2为主导步入了一个全新的阶段。tio2材料无毒、高化学稳定性、制备成本低廉,但存在可见光响应性差及量子效率低等缺点,对此国内外学者进行了大量的研究但仍无法大幅度地提高其可见光催化活性。
2010年5月,叶金花课题组在naturematerials上报道了磷酸银(ag3po4)是一种新型的、高效的光催化材料,在太阳光照射下具有令人震撼的氧化光解水的能力,为可见光响应型光催化剂的研究开辟了新的领域。然而,进一步的研究表明,与其它银系半导体类似,磷酸银的应用存在着一个致命的缺点,即在可见光或者紫外光的照射下自身会发生分解。其原因是水溶液中ag-ag3po4的电极电势(+0.45vvsnhe)高于h2-h+的电极电势,意味着光致电子会优先与ag+结合,使之还原为ag0。因此,磷酸银在光催化反应中较差的稳定性一直是限制其广泛应用的一大技术难题。
技术实现要素:
针对现有技术的以上不足或改进需求,本发明提供了一种基于g-碳化氮和ag3po4的复合光催化剂制备方法及其产品,其中采取将窄带g-氮化碳半导体材料与窄带磷酸银半导体材料等进行复合的制备路线,同时对其关键反应物的配料比和重要反应参数等多个方面做出针对性研究和设计,相应可获得更高可见光催化活性的z型光催化剂,而且具备便于质量操控、无需高温工况、产品稳定性高等优点,因而尤其适用于大批量规模化生产的应用场合。
为实现上述目的,按照本发明的一个方面,提供了一种基于g-碳化氮和ag3po4的复合光催化剂制备方法,其特征在于,该方法包括下列步骤:
(i)烧制g-氮化碳纳米颗粒
以三聚氰胺作为前驱体,烧制获得g-氮化碳纳米颗粒;
(ii)制备g-氮化碳/ag3po4的纳米颗粒
以银作为前驱体,将其与步骤(i)所获得的g-氮化碳纳米颗粒混合在去离子水中制得a液,其中所述银驱体与g-氮化碳纳米颗粒之间的摩尔比被设定为0.7~1.5:1;然后,配置摩尔浓度为0.015mol/l~0.15mol/l的磷酸盐溶液也即b液,并将b液逐滴加入a液中,同时充分搅拌及反应;
(iii)制备g-氮化碳/ag/ag3po4的复合光催化剂
将步骤(ii)反应后的混合液放置在氙灯下照射和水洗,然后置入真空干燥箱中烘干,由此制得呈纳米颗粒形式的g-氮化碳/ag/ag3po4复合光催化剂产品。
作为进一步优选地,在步骤(i)中,所述烧制温度优选被设定为520℃~550℃,烧制时间为180min~240min。
作为进一步优选地,在步骤(ii)中,所述银驱体与g-氮化碳纳米颗粒之间的摩尔比优选被设定为0.9~1.2:1,所述磷酸盐溶液的摩尔浓度优选被设定为0.05mol/l~0.12mol/l。
作为进一步优选地,在步骤(ii)中,所述银前驱体优选为硝酸银或乙酸银,所述磷酸盐优选为磷酸钠、磷酸氢二钠或磷酸二氢钠。
作为进一步优选地,在步骤(iii)中,所述氙灯照射的时间优选为30min~60min,所述烘干温度优选为40℃~60℃。
按照本发明的另一方面,还提供了相应的复合光催化剂产品。
按照本发明的又一方面,还提供了该复合光催化剂产品在水处理、空气净化和杀菌消毒等领域的应用。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:
1、本发明中通过对反应路线进行设计,相应可提供一种稳定的窄带g-氮化碳半导体材料与窄带磷酸银半导体材料进行复合的工艺过程,而且这两种基本原材料均具有较好的可见光响应性能,复合后所述光催化材料对太阳光及可见光的利用率高;
2、本发明中的g-氮化碳/银/磷酸银纳米颗粒采用液相沉淀法制备,不需要高温即可得到光催化活性较高的晶体,制备方法简单并且便于质量控制;此外,由于本发明提供的可见光响应型g-碳化氮与银磷酸银复合光催化剂为z型光催化剂,磷酸银导带上产生的电子与g-碳化氮价带上产生的空穴会转移到金属银的表面结合,抑制了磷酸银的分解,提高了材料的稳定性;
3、本发明还针对制备工艺过程中的一些重要参数如关键反应物的摩尔比、反应条件等进行研究和对比测试,实际测试表明可进一步提高反应过程的效率和质量,并确保获得所需高活性的复合光催化剂产品;
4、本发明提供的g-氮化碳半导体材料与磷酸银半导体材料良好的能级匹配,制备出的可见光响应型g-碳化氮与银磷酸银复合光催化剂为z型光催化剂,与单独的g-碳化氮和磷酸银材料相比,该光催化剂表现出更高的可见光催化活性,表明该光催化剂具有更强的氧化还原性和更高的量子效率;
5、本发明提供的可见光响应型g-碳化氮与银磷酸银复合光催化剂在可见光照射下有相当强的降解有机污染物的作用,在水处理、空气净化和杀菌消毒等领域都有广阔的应用前景。
附图说明
图1是以实施例1的样品为例,对所制得的g-氮化碳/银/磷酸银纳米颗粒的扫描电子显微镜图;
图2是以实施例1的样品为例,对所制得的g-氮化碳/银/磷酸银纳米颗粒的紫外-可见吸收光谱图;
图3是以实施例1的样品为例,对所制得的-氮化碳/银/磷酸银的红外图谱;
图4是以实施例1的样品为例,对所制得的g-氮化碳/银/磷酸银可见光催化降解苯酚测试曲线图;
图5是以实施例1的样品为例,对所制得的g-氮化碳/银/磷酸银材料的可见光催化稳定性测试曲线图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
参见图1,按照本发明的复合光催化剂制备方法主要包括下列步骤:
首先,是烧制g-氮化碳纳米颗粒的步骤。在此步骤中,可以三聚氰胺作为前驱体,并譬如使用马弗炉来烧制g-氮化碳纳米颗粒,其工艺参数被设定如下:烧制温度为520~550℃,烧制时间为180~240min。
接着,是制备g-氮化碳/ag3po4的纳米颗粒的步骤。在此步骤中,以银作为前驱体,将其与前面所获得的g-氮化碳纳米颗粒混合在去离子水中制得a液,其中所述银驱体与g-氮化碳纳米颗粒之间的摩尔比被设定为0.7~1.5:1,进一步优选为0.9~1.2:1,最优选1:1;然后,配置摩尔浓度为0.015mol/l~0.15mol/l的磷酸盐溶液也即b液,并将b液逐滴加入a液中,同时充分搅拌及反应;
最后,制备g-氮化碳/ag/ag3po4的复合光催化剂。在此步骤中,将前面已充分反应后的混合液譬如放置在氙灯下照射和水洗,然后置入真空干燥箱中烘干,由此制得呈纳米颗粒形式的g-氮化碳/ag/ag3po4复合光催化剂产品。
下面将结合具体实施例来进一步解释按照本发明的测试系统的工作过程。
实施例1
取5g三聚氰胺放入加盖容器后置于马弗炉中520℃煅烧4h,热缩聚后制得g-氮化碳。接着,将乙酸银和g-氮化碳颗粒按照摩尔比1:1分散于去离子水中。将混合溶液搅拌均匀后,乙酸银可全部溶解,g-氮化碳颗粒可均匀分散于溶液中。
将上述混合物继续搅拌,同时逐滴加入0.15mol·l-1磷酸氢二钠溶液,持续搅拌4小时。将上述混合物转移至氙灯下照射60min后,离心分离所述g-氮化碳/ag/磷酸银复合光催化剂的水溶液,用去离子水清洗2次后置于真空干燥箱中50℃烘干,得到所述g-氮化碳/银/磷酸银复合光催化剂。
实施例2
取5g三聚氰胺放入加盖容器后置于马弗炉中520℃煅烧4h,热缩聚后制得g-氮化碳。接着,将乙酸银和g-氮化碳颗粒按照摩尔比0.7:1分散于去离子水中。将混合溶液搅拌均匀后,乙酸银可全部溶解,g-氮化碳颗粒可均匀分散于溶液中。
将上述混合物继续搅拌,同时逐滴加入0.12mol·l-1磷酸钠溶液,持续搅拌4小时。将上述混合物转移至氙灯下照射60min后,离心分离所述g-氮化碳/ag/磷酸银复合光催化剂的水溶液,用去离子水清洗2次后置于真空干燥箱中50℃烘干,得到所述g-氮化碳/银/磷酸银复合光催化剂。
实施例3
取5g三聚氰胺放入加盖容器后置于马弗炉中550℃煅烧3h,热缩聚后制得g-氮化碳。接着,将硝酸银和g-氮化碳颗粒按照摩尔比0.9:1分散于去离子水中。将混合溶液搅拌均匀后,硝酸银可全部溶解,g-氮化碳颗粒可均匀分散于溶液中。
将上述混合物继续搅拌,同时逐滴加入0.12mol·l-1磷酸氢二钠溶液,持续搅拌4小时。将上述混合物转移至氙灯下照射60min后,离心分离所述g-氮化碳/ag/磷酸银复合光催化剂的水溶液,用去离子水清洗2次后置于真空干燥箱中60℃烘干,得到所述g-氮化碳/银/磷酸银复合光催化剂。
实施例4
取5g三聚氰胺放入加盖容器后置于马弗炉中520℃煅烧4h,热缩聚后制得g-氮化碳。接着,将乙酸银和g-氮化碳颗粒按照摩尔比1.5:1分散于去离子水中。将混合溶液搅拌均匀后,乙酸银可全部溶解,g-氮化碳颗粒可均匀分散于溶液中。
将上述混合物继续搅拌,同时逐滴加入0.05mol·l-1磷酸二氢钠溶液,持续搅拌4小时。将上述混合物转移至氙灯下照射60min后,离心分离所述g-氮化碳/ag/磷酸银复合光催化剂的水溶液,用去离子水清洗2次后置于真空干燥箱中50℃烘干,得到所述g-氮化碳/银/磷酸银复合光催化剂。
实施例5
取5g三聚氰胺放入加盖容器后置于马弗炉中550℃煅烧3h,热缩聚后制得g-氮化碳。接着,将乙酸银和g-氮化碳颗粒按照摩尔比1.2:1分散于去离子水中。将混合溶液搅拌均匀后,乙酸银可全部溶解,g-氮化碳颗粒可均匀分散于溶液中。
将上述混合物继续搅拌,同时逐滴加入0.015mol·l-1磷酸钠溶液,持续搅拌4小时。将上述混合物转移至氙灯下照射60min后,离心分离所述g-氮化碳/ag/磷酸银复合光催化剂的水溶液,用去离子水清洗2次后置于真空干燥箱中50℃烘干,得到所述g-氮化碳/银/磷酸银复合光催化剂。
实施例6
取5g三聚氰胺放入加盖容器后置于马弗炉中530℃煅烧3.5h,热缩聚后制得g-氮化碳。接着,将乙酸银和g-氮化碳颗粒按照摩尔比1:1分散于去离子水中。将混合溶液搅拌均匀后,乙酸银可全部溶解,g-氮化碳颗粒可均匀分散于溶液中。
将上述混合物继续搅拌,同时逐滴加入0.12mol·l-1磷酸氢二钠溶液,持续搅拌4小时。将上述混合物转移至氙灯下照射60min后,离心分离所述g-氮化碳/ag/磷酸银复合光催化剂的水溶液,用去离子水清洗2次后置于真空干燥箱中50℃烘干,得到所述g-氮化碳/银/磷酸银复合光催化剂。
下面以实施例所获得样品作为示范,对此进行性能参数分析。
如图1所示,对于所制得的g-氮化碳/ag/磷酸银光催化剂而言,g-氮化碳为具有粗糙褶皱表面的层状结构,为磷酸银晶体的生长提供了大量的生长位点。磷酸银为具有光滑表面的小颗粒,具有菱形十二面体的结构,大小从几十至几百纳米不等。从图中可以看出,磷酸银晶体生长于g-氮化碳的表面,两者有较好的接触。
图2显示了所制得的g-氮化碳/ag/磷酸银光催化剂的紫外-可见吸收光谱,其中从图中带边位置引出的切线可知对应的波长为550nm,从而证明了该光催化剂具有可见光响应能力。同时由于磷酸银材料的复合,延伸了g-氮化碳的可见光响应范围。
如图3所示,实施例制得的g-氮化碳/银/磷酸银纳米颗粒在1100–1650cm-1波段范围内出现多个峰,分别为1246、1321、1404、1561和1629cm-1处,对应为c-n和c=n杂环化合物的伸缩振动特征峰;810cm-1处的吸收峰为三嗪环的特征峰;541cm-1处的吸收峰为po43-的特征峰,以上表明该复合材料中确实含有g-氮化碳和磷酸银。
以下为采用实施例1的样品以及银/磷酸银和g-氮化碳光催化剂对苯酚的光降解性能测试实验。其中,银/磷酸银光催化剂为对照实验,即制备过程中不加入g-氮化碳颗粒,而其余制备步骤与g-氮化碳/银/磷酸银相同。苯酚初始浓度为10mg·l-1,溶液体积为50ml。分别取银/磷酸银光催化剂、g-氮化碳和实施例的产物作为光催化剂,浓度为1g·l-1,以氙灯为光催化反应的光源(波长大于420nm)。
实验前先在暗处吸附一小时,达到吸附平衡后开始光照,每隔一分钟取一次样,然后使用高效液相色谱来检测苯酚浓度,实验结果如图5所示。参见图4所示,实施例得到的光催化剂在光照4分钟后,苯酚的降解率即达到100%,其光催化性能相对优于磷酸银光催化剂,并且明显优于g-氮化碳光催化剂。
以下为采用实施例对苯酚的光降解性能的稳定性测试实验,通过降解苯酚的重复实验进行评估。重复实验采用实施例1制得的g-氮化碳/银/磷酸银材料作为光催化剂,实验条件与苯酚的光降解实验相同。每次光降解实验结束后,用抽滤的方式将光催化剂从水溶液中分离出来,并用去离子水清洗后烘干待用,下一次光降解实验则采用新的苯酚溶液(10mg·l-1)。
如图5所示,与第一次光催化降解实验比较,后面的四次降解效果均有稍微的下降。然而,在光催化剂重复进行四次光降解实验后,5分钟内苯酚的降解效果能达到75%,仍然能够保持较高的光催化活性。由此证明该催化剂具有较好的可见光催化稳定性。
通过上述分析可知,本实施例的方法制备的g-氮化碳/银/磷酸银光催化剂具有比g-氮化碳和磷酸银更强的可见光催化活性,能够快速高效地降解有机污染物,并且具有较好的光催化稳定性,可应用于水处理、空气净化和杀菌消毒等领域。
综上,本发明中可提供一种稳定的窄带g-氮化碳半导体材料与窄带磷酸银半导体材料进行复合的工艺过程,而且这两种基本原材料均具有较好的可见光响应性能,复合后所述光催化材料对太阳光及可见光的利用率高;此外,本发明提供的可见光响应型g-碳化氮与银磷酸银复合光催化剂为z型光催化剂,与单独的g-碳化氮和磷酸银材料相比,该光催化剂表现出更高的可见光催化活性,表明该光催化剂具有更强的氧化还原性和更高的量子效率。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。