一种应用生物炭促进生物还原硝基苯的方法

文档序号:9590771阅读:1125来源:国知局
一种应用生物炭促进生物还原硝基苯的方法
【技术领域】
[0001]本发明属于污染物的生物处理技术领域,特别是涉及一种应用生物炭促进微生物还原硝基苯的方法。
【背景技术】
[0002]硝基苯作为一种合成染料、炸药、橡胶、农药等其他精细化学品的重要中间体,广泛存在于染料、农药、医药、石油化工等工业废水中。硝基苯属于难降解有机化合物,化学性质稳定,对生物毒性大,进入水体环境后随地下水逐渐渗入土壤,将造成水体和土壤持久性的污染,从而引发一系列的生态影响和环境效应。
[0003]生物法是处理硝基苯废水的常用方法。异化金属还原菌等微生物能够在厌氧条件下将硝基苯还原生成苯胺,进而被其他微生物在好氧条件下降解矿化。异化金属还原菌广泛分布于天然环境中,具有多样化的产能代谢和电子传递途径,能够利用外膜上的细胞色素c、纳米导线以及自身分泌或外加的氧化还原介体三种方式,向胞外水溶性与非水溶性污染物传递电子,进而还原转化多种有机污染物(Fredrickson等,2008 ;Lovley等,2011)。
[0004]通过氧化还原介体促进细胞胞外电子传递的过程称为介导还原,可显著提高生物法还原污染物的速率,为污染物的高效生物转化提供了新方法(van der Zee F P等,2009) ο而活性炭及一些具有纳米尺度的碳材料(如碳纳米管,石墨烯等)可以作为氧化还原介体,在化学和生物还原污染物的电子传递过程中均表现出优良的介导还原能力(FuΗ等,2013)。但这些材料制备工艺复杂,工业化应用成本较高,且对微生物有一定的毒性作用。
[0005]相比石墨烯碳纳米管等材料,生物炭原材料来自天然环境中的各种生物质,对环境中微生物毒性较低,制备工艺相对简单,应用成本低。与其他可以作为氧化还原介体的碳材料类似,生物炭具有良好的导电性、较高的比表面积和丰富的表面官能团。近年来,有研究发现生物炭能够促进硫化物还原硝基苯(Wenen G等,2014),也可以作为氧化还原促进Fe(III)矿物被异化金属还原菌还原转化,生成含Fe304和FeC03的铁氧化物(Kappler A等,2014)。但目前还未见生物炭促进微生物还原硝基苯的相关研究或专利。

【发明内容】

[0006]本发明的目的是提供一种应用生物炭快速有效地促进生物还原硝基苯的方法,以解决现有生物处理技术处理效率低,材料成本高的问题。
[0007]本发明的技术方案,包括以下步骤:
[0008](A)微生物的培养:采用异化金属还原菌作为还原硝基苯的代表性微生物。
[0009](B)配制50mL的20mM磷酸盐缓冲溶液,加入50mM乳酸钠,并转移至50mL的玻璃厌氧瓶中,并用0.lmol/L的NaOH或HC1调节pH至7.0。然后通氮气曝气将厌氧瓶顶空及水溶液中的氧气排尽,放入高压蒸汽灭菌锅灭菌,冷却后转移至厌氧箱中以确保厌氧状态。
[0010](C)在厌氧箱中,用移液枪吸取硝基苯转移至厌氧瓶中,超声lh使硝基苯在溶液中分散均匀,得到50mL浓度为5-400mg/L的硝基苯溶液。
[0011](D)称取生物炭,并在厌氧箱中转移到厌氧瓶中,浓度为0.167-0.667g/L,超声lh使其均匀分散在溶液中。
[0012](E)收集培养至对数期末期的微生物细胞,并转移至厌氧瓶中,使菌浓度为0.5g/Lo然后将厌氧瓶放入150rpm,30°C恒温摇床中,避光反应l_10d。
[0013]本发明所述的生物炭包括使用自然焚烧法和限氧热解法两种方式制备的生物炭。自然焚烧法为,将生物质置于室外空气中充分燃烧,收集燃尽的炭化产物。限氧热解法为,将生物质材料置于管式热解炉中,以5°C /min的升温速率加热至300-800°C,恒定温度热解2h,热解过程中持续通氮气,既保证炉内厌氧环境又可将气态有机产物吹扫出热解炉。自然冷却后取出炭化产物。分别将自然焚烧和限氧热解后的炭化产物用去离子水洗3-5次,放入真空干燥箱40°C干燥24h,研磨,过100目筛,即分别得到本发明所述的自然焚烧和限氧热解生物炭。
[0014]本发明的效果和益处是能够快速有效提高硝基苯在水中的生物还原速率,且生物炭制备工艺简单,原材料来源广泛,成本低,可操作性强,便于在实际中推广应用。
【具体实施方式】
[0015]以下结合技术方案详细叙述本发明的【具体实施方式】。
[0016]实施例1
[0017]不同生物质原材料和制备方法所得生物炭,用于促进微生物还原硝基苯:
[0018]⑷生物炭的制备:
[0019]自然焚烧法为,分别将小麦和棉花秸杆置于室外空气中充分燃烧,收集燃尽的炭化产物。限氧热解法为,分别将小麦和棉花秸杆材料置于管式热解炉中,以5°C /min的升温速率加热至600°C,恒定温度热解2h,热解过程中持续通氮气,既保证炉内厌氧环境又可将气态有机产物吹扫出热解炉。自然冷却后取出炭化产物。分别将小麦和棉花秸杆通过自然焚烧和限氧热解后的炭化产物用去离子水洗3-5次,于真空干燥箱40°C干燥24h,研磨,过100目筛,即分别得到小麦和棉花秸杆为原材料的自然焚烧和限氧热解生物炭。
[0020](B)微生物的培养:米用 Luria-Bertani 培养基培养 Shewanella oneidensisMR-1,作为还原硝基苯的菌种。培养基配方为:NaCl 10g/L,蛋白胨10g/L,酵母浸粉5g/L。调节培养基pH至7.0,并在121°C,20min的条件下高压蒸汽灭菌。S.0neidensis MR-1在无菌操作台接种至培养基,接种比例为1:100 ;接种后的培养基在30°C,150rpm恒温摇床中培养12h,得到对数生长期末期的S.0neidensis MR-1菌液备用。
[0021 ] (C)配制50mL的20mM磷酸盐缓冲溶液,加入50mM乳酸钠,并转移至50mL的玻璃厌氧瓶中,并用0.lmol/L的NaOH或HC1调节pH至7.0。然后通氮气曝气将厌氧瓶顶空及水溶液中的氧气排尽,并放入厌氧箱中以确保厌氧状态。
[0022](D)在厌氧箱中,用移液枪吸取硝基苯转移至厌氧瓶中,得到50mL含100mg/L硝基苯的反应体系。
[0023](E)分别称取不同种类的生物炭(小麦和棉花秸杆均通过自然焚烧和限氧热解两种方式制备),在厌氧箱中转移到厌氧瓶中,使生物炭浓度均为0.5g/L,超声lh使其均匀分散在溶液中。
[0024](F)收集培养至对数期末期的微生物细胞,并转移至厌氧瓶中,使菌浓度为0.5g/Lo然后将厌氧瓶放入150rpm,30°C恒温摇床中,避光反应5d,每24h取样一次,采用高效液相色谱法检测硝基苯及其还原产物苯胺。所有实验均平行3次,同时设置不加入生物炭仅有微生物还原硝基苯的对照实验。
[0025]经以上实验测得:未加生物炭的对照组,反应Id后硝基苯浓度减少了 27.2mg/L,反应5d后硝基苯浓度基本稳定,含量为45.8mg/L,去除率为54.2%。而分别加入通过自然焚烧和限氧热解法制备的小麦和棉花秸杆四种生物炭的实验组,反应速率和去除率明显提高。反应Id后硝基苯浓度均低于50mg/L,反应5d后硝基苯浓度基本稳定,小麦焚烧生物炭、棉花焚烧生物炭、小麦热解生物炭、棉花热解生物炭四个实验组的去除率分别为97.2%,96.9%,89.9%和94.6%。硝基苯的去除包括被吸附和被微生物还原两部分。硝基苯被微生物还原的程度可以通过检测还原产物苯胺来说明。加入小麦焚烧生物炭、棉花焚烧生物炭、小麦热解生物炭、棉花热解生物炭后,苯胺在反应5d后的生成量由30.2mg/L(无生物炭对照组)分别提高至58.2,53.8,41.3,46.2mg/L,表明生物炭对S.0neidensis MR-1还原硝基苯有明显的促进作用,且自然焚烧法制备的生物炭的促进效果比限氧热解法制备的生物炭更明显。
[0026]实施例2
[0027]生物炭促进微生物还原不同浓度的硝基苯:
[0028](A)选择小麦秸杆自然焚烧生物炭作为本实施例中的生物炭材料。
[0029](B)微生物的培养:同实施例1。
[0030](C)配制50mL的20mM磷酸盐缓冲溶液,加入50mM乳酸钠,并转移至50mL的玻璃厌氧瓶中,并用0.lmol/L的NaOH或HC1调节pH至7.0。然后通氮气曝气将厌氧瓶顶空及水溶液中的氧气排尽,并放入厌氧箱中以确保厌氧状态。
[0031](D)在厌氧箱中,用移液枪吸取硝基苯转移至不同的厌氧瓶中,分别得到50mL含5-
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1