Lng加气站bog压缩液化回收系统及方法

文档序号:9862481阅读:1272来源:国知局
Lng加气站bog压缩液化回收系统及方法
【技术领域】
[0001]本发明涉及LNG加气站中产生的BOG回收技术领域,具体涉及一种采用膨胀压缩一体机、真空绝热三位一体螺旋折流板列管式换热器的LNG加气站BOG压缩液化回收系统,及采用所述系统回收BOG的方法。
【背景技术】
[0002]随着“后石油时代”的到来,全球能源重心正在向更加高效、更加环保的天然气能源快速转移。LNG汽车作为国家清洁能源用车,近年来得到了突飞猛进的发展,同时LNG加气站也如雨后春笋般的进行了大面积的建设。目前在LNG加气站运行过程中,因储存条件苛亥IJ、设计工艺不先进等原因,几乎所有加气站都面临着较为严重的能源浪费,其中最突出的是BOG再回收利用冋题。
[0003]在LNG加气站生产运营过程中,由于LNG槽车运输、储罐蒸发、卸车、调压、预冷、管道吸热、储罐闪蒸和栗工作外输等原因都会产生大量的BOG气体。BOG气体不仅造成加气站系统压力升高,更带来较大的安全隐患,最终这部分BOG气体不得不进行安全放散,造成巨大的能源浪费和经济损失。

【发明内容】

[0004]本专利旨在提供一种在LNG加气站中采用膨胀压缩一体机、真空绝热三位一体螺旋折流板列管式换热器的BOG优化压缩液化回收装置,解决目前LNG加气站的安全隐患和BOG气体放空处理造成的环境污染、资源浪费。
[0005]为实现上述技术目的,本发明采用以下的技术方案:
[0006]LNG加气站BOG压缩液化回收系统,包括用于储存LNG液体的LNG储罐和用于收集加气站管道内BOG气体的BOG缓冲罐;LNG储罐和所述BOG缓冲罐分别通过管道与真空绝热三位一体换热器的一级换热区相连通;所述真空绝热三位一体换热器的一级换热区与绝热膨胀压缩一体机的压缩机相连通,所述绝热膨胀压缩一体机的压缩机通过一级空温式换热器与二级压缩机相连通,所述二级压缩机通过二级空温式换热器与真空绝热三位一体换热器的一级换热区相连通;所述真空绝热三位一体换热器的三级换热区与绝热膨胀压缩一体机的绝热膨胀机相连通;所述绝热膨胀压缩一体机的绝热膨胀机连接气液分离器,所述气液分离器的气相口通过管道和调节阀与所述真空绝热三位一体换热器的二级换热区相连通,所述气液分离器的液相口连接低温栗,所述低温栗与所述真空绝热三位一体换热器的三级换热区及所述LNG储罐相连通。
[0007]作为优选,所述真空绝热三位一体换热器将三个管式换热器集成在一个真空壳内,壳内采用螺旋折流板提高换热效率,部分管路集成在壳内,使设备小型化,投资省,配管简单,工艺简化。当然,也可以采用其他形式的三个换热器集成于一个真空壳内,部分管路集成在壳内。
[0008]作为优选,所述膨胀压缩一体机利用绝热膨胀机进行制冷的同时带动压缩机,对富热后的BOG进行一级压缩,制冷效率高,设备小,投资省,工艺简化,节能降耗。
[0009]作为优选,所述BOG压缩液化回收系统采用DCS对BOG回收压缩液化撬进行控制,通过调节阀分别与压力变送器、温度变送器和液位变送器相连锁,安全可靠,操作简单。
[0010]作为优选,LNG槽车的气相部分通过管道与所述BOG缓冲罐上部的管道相连通,管道上分别设置止回阀。所述BOG压缩液化回收系统不仅对LNG储罐内的BOG进行回收,而且对LNG槽车和管线内的BOG气体均可进行回收,杜绝了加气站内的能源浪费。
[0011]作为优选,所述一级压缩机和二级压缩机采用一级空温式换热器和二级空温式换热器进行级间冷凝,从而提供BOG气体液化所需冷能。
[0012]作为优选,所述真空绝热三位一体换热器包括外壳和内胆,所述外壳和内胆之间形成真空真空壳,所述真空绝热三位一体换热器的若干换热管集成设置于所述内胆内部而形成所述一级换热区、二级换热区及三级换热区,各换热区管式换热器采用螺旋折流板提高传热效率。
[0013]作为进一步优选,所述真空绝热三位一体换热器的一级换热区与二级换热区之间、二级换热区与三级换热区之间的管程分别通过管程连接腔相连通;所述真空绝热三位一体换热器的一级换热区与二级换热区之间、二级换热区与三级换热区之间的壳程分别通过壳程连接管相连通。
[0014]本发明的另一目的在于提供采用以上所述系统回收BOG的方法,包括如下步骤:
[0015]S1.将LNG加气站的管线BOG收集至缓冲罐内,并在缓冲罐的气相出口安装调节阀,卸车装置的气相也通过此调节阀连接压缩回收撬;LNG储罐的气相出口安装调节阀和压缩回收撬相连;待储罐内的压力超过规定的要求,DCS将连锁启动压缩回收撬,对LNG储罐内BOG气体进行回收,将LNG储罐压力降低到规定的值后DCS将停止压缩回收;BOG缓冲罐压力达到一定值时,DCS将连锁启动压缩回收撬,压力降低到规定的压力后,压缩回收装置将自动停止;LNG槽车卸车完成后,通过BOG回收撬将槽车内NG充分回收。回收的BOG气体通过分别调压后送入液化回收装置的真空绝热三位一体换热器进行一级换热,充分回收BOG气体的冷能;
[0016]S2.在真空绝热三位一体换热器中,低温BOG气体与常温的压缩NG进行一级换热,使BOG气体温度升至20 °C左右,变成NG,将其冷能全部由压缩后NG气体回收;
[0017]S3.然后将NG送入第一级压缩机增压,一级压缩机利用绝热膨胀制冷机的机械能带动,绝热膨胀机和一级压缩机整合在一个机座上,不仅投资省,节省占地面积,并且制冷效率提高70%,节电40%。压缩后的NG送入第二级压缩机,压缩至lOMPa,两级压缩采用级间冷凝,使压缩后的NG气体温度控制在30°C左右,然后将压缩NG送至真空绝热三位一体换热器进行降温;
[0018]S4.压缩NG在真空绝热三位一体换热器中分别与低温回收B0G、气液分离器后NG及气液分离器中部分LNG进行三级换热,使压缩NG气体温度降至-110°C左右;然后将NG送入绝热膨胀机,使NG压力降至400KPa,由于NG绝热做功温度降至约-160°C ;大部分NG被液化。
[0019]S5.将气液混合物送入气液分离器,实现气液分离;气态低温NG通过调节阀调压后送至真空绝热三位一体换热器二级换热,LNG—部分栗送至LNG储罐,另一部分送至真空绝热三位一体换热器第三级与压缩NG换热;在三级换热器内LNG温度升至-120 °C而气化成低温NG,出三级换热器的低温NG通过一体化换热器内壳程连接管与气液分离器低温NG—起进入真空绝热三位一体换热器二级换热,换热结束后进入一级换热器与回收BOG—起对压缩NG气体进行冷却;压缩NG从一级换热器被冷却后分别从级间管程腔进入二级换热器,从二级冷却后又进入三级换热器进入冷却;真空绝热三位一体换热器内折流板为螺旋板,提高换热效率30 %。
[0020]本发明具有至少以下有益效果:采用低温BOG绝热膨胀制冷时产生的机械能带动压缩机,同时对富热后的BOG进行一级压缩,降低能耗,提高制冷效率;采用真空绝热三位一体换热器实现BOG压缩制冷液化各工段的冷能充分利用,增强传热效率,提高BOG回收的液化效率;采用DCS对BOG回收压缩液化撬进行控制,安全可靠,操作简单,利于减小LNG加气站的安全隐患,并能够实现BOG气体高效回收,从而避免BOG气体放空处理造成的环境污染和资源浪费。
【附图说明】
[0021]以下附图仅旨在于对本发明做示意性说明和解释,并不限定本发明的范围。其中:
[0022]图1是本发明实施例回收系统的结构示意图;
[0023]图2是三级管式换热器的结构示意图;
[0024]图3是图2中A处的放大结构示意图;
[0025]图4是图2中B处的放大结构示意图。
[0026]图中:1-LNG储罐;11、21、81_管道;12、22、82_调节阀;13、23、83_压力变送器;2-BOG缓冲罐;3-真空绝热三位一体换热器;31-—级换热区;32-二级换热区;33-三级换热区;34-外壳;35-内胆;351-螺旋折流板;36-真空壳;37-换热管;38-壳程;381-壳程连接管;39-管程;391-管程连接腔;4-绝热膨胀压缩一体机;41-压缩机;42-绝热膨胀机;5-—级空温式换热器;6-二级空温式换热器;7-二级压缩机;8-气液分离器;9-低温栗;10-LNG槽车;101-管道;24、102-止回阀。
【具体实施方式】
[0027]下面结合附图和实施例,进一步阐述本发明。在下面的详细描述中,只通过说明的方式描述了本发明的某些示范性实施例。毋庸置疑,本领域的技术人员可以认识到,在不偏离本发明的精神和范围的情况下,可以用各种不同的方式对所描述的实施例进行修正。因此,附图和描述在本质上是说明性的,而不是用于限制权利要求的保护范围。
[0028]如图1至图4所示,LNG加气站BOG压缩液化回收系统,包括用于储存LNG液体的LNG储罐I和用于收集加气站管道内BOG气体的BOG缓冲罐2;所述LNG储罐I和所述BOG缓冲罐2气相部分分别通过管道11、21与真空绝热三位一体换热器3的一级换热区31的壳程38相连通;所述真空绝热三位一体换热器3的一级换热区31的壳程38与所述绝热膨胀压缩一体机4的压缩机41相连通,所述绝热膨胀压缩一体机4的压缩机41通过空温式换热器5与所述三级管式真空绝热三位一体换热器3的一级换热区31的管程39相连通,所述二级压缩机7通过二级空温式换热器6与真空绝热三位一体换热器3的一级换热区31相连通;所述真空绝热三位一体换热器3的三级换热区33的管程与膨胀压缩一体机4的绝热膨胀机42相连通,所述绝热膨胀压缩一体机4的绝热膨胀机42连接气液分离器8,所述气液分离器8的气相口通过管道81与所述真空绝热三位一体换热器3的二级换热区32的壳程38相连通,所述气液分离器8的液相口连接低温栗9,所述低温栗9通过调节阀和管道与所述真空绝热三位一体换热器3的三级换热区33及所述LNG储罐I相连通。
[0029]为了实现系统DCS控制,在BOG缓冲罐2的气相出口管道21安装调节阀22,LNG槽车10的气相部分通过管道101与所述BOG缓冲罐2上部的管道21相连通,LNG槽车10的BOG气相口也通过调节阀22连接压缩液化回收系统(或称压缩回收撬),所述LNG储罐I上部的气相管道11及气液分离器8上部的气相管道81上分别设置有调节阀12、82,所述调节阀12、22、82分别与压缩回收系统的温度变送器、压力变送器13、23和
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1