本实用新型涉及一种用于分离含有一氧化碳、氢气、甲烷和少量氮气等混合气的深冷分离系统,属于低温气体分离领域。
背景技术:
合成气(CO和H2)是重要的基础化工原料,可用于合成乙二醇、醋酸、醋酐、光气、醋酸二甲酯、甲酸、丙酸、草酸和二甲基甲酰胺等。随着C1化工新技术的持续发展,合成工艺对CO和H2的纯度要求逐渐增加,合成气(CO和H2)的获得大多是以煤为原料转化得到的,根据煤种的差异,通常煤气化经变换后含少量甲烷和氮气,而对于后续合成装置对这两种气体的要求也比较高,所以获得高纯度的CO产品(99%以上),需将原料气中的氢气、氮气和甲烷脱除。目前CO提纯分离方法主要有深冷分离法、物理吸收法、变压吸附法和膜分离法等,其中深冷分离法是利用气体沸点组成的差异、通过低温精馏的方法实现气体的分离,与其它方法相比具有处理量大、分离效率高、运行成本低、占地面积小和投资少等优势,因此受到大量用户青睐。
目前,CO和H2深冷分离方法所发表的专利大多都是CO/H2两元组分的单塔流程,其分离获得的CO纯度最大达到98.5%,纯度比较低,无法满足高纯度CO产品气(≥99%以上)的要求,而对于杂质N2、CH4的进一步提纯分离在中国专利(公开号CN201480063530.9)曾提及,但该专利的不足之处在于流程能耗较高,设备投资大,操作适应性不太好。
技术实现要素:
本实用新型的目的在于克服现有技术存在的不足,而提供一种用于分离含有一氧化碳、氢气、甲烷和少量氮气的新型深冷分离系统,分离获得的CO纯度比较高,达到99%以上,其中H2和CH4含量均小于50ppm,回收率比较高,满足多种合成装置对CO的纯度要求;同时,优化冷量补充方案,节省能耗,降低了设备运行成本;简化动设备的配置,节省成本投资。
为实现上述目的,本实用新型可采取下述技术方案:一种用于分离混合气的深冷分离系统,该系统主要包括分子筛净化单元和深冷分离装置冷箱两部分,至少含有一氧化碳、氢气、甲烷和少量氮气的混合气体与分子筛净化单元入口管道连通,分子筛净化单元经脱除二氧化碳、甲醇和水在低温下易凝固的杂质后、通过第一管道与深冷分离装置冷箱中的第一主换热器、气提塔塔底再沸器、脱甲烷塔塔底再沸器、第二主换热器依次连通,在连接于氢气分离罐的中部入口,所述氢气分离罐的顶部接出三路富氢气管道分别经两个主换热器复热富氢气以回收冷量后与外部富氢气收集系统连通;所述氢气分离罐的底部接出有两股液体管道,一股液体管道经第一节流阀、第二主换热器与气提塔中部入口管道连通,另一股液体管道经第二节流阀与气提塔上部入口管道连通;
所述的气提塔塔顶部接出有第一闪蒸气管道,并分别通过两路管道经两个主换热器与外部第一闪蒸气收集系统连通;气提塔塔底接出的液体管道经第二主换热器、节流阀与脱氮塔中部的入口管道连接;
所述的脱氮塔塔顶接出有第二闪蒸气管道,并分别通过三路管道经两个主换热器与外部第二闪蒸气收集系统连通;脱氮塔底部接出的液体管道经节流阀、脱氮塔塔顶冷凝器与脱甲烷塔中部入口管道连接;
所述的脱甲烷塔塔顶接出有CO产品气管道,该CO产品气管道通过三路管道经两个主换热器与CO产品气收集系统连通;脱甲烷塔底部接出有粗甲烷液体管路,该粗甲烷液体管路通过三路管道经两个主换热器与外部粗甲烷气收集系统连通。
作为优选:所述气提塔设置有气提塔塔底再沸器,为外部热虹吸再沸器,其热流流股管道与进冷箱的工艺气管道连通,冷流流股管道与气提塔底部液体管道连通,由工艺气为气提塔再沸器提供热量;
所述脱氮塔顶部设置脱氮塔塔顶冷凝器和塔底再沸管道,脱氮塔塔顶冷凝器热流流股管道与脱氮塔顶部气相管道和塔顶回流管道连通,冷流管道与脱氮塔塔底液体管道及氮气制冷循环系统连通,此塔顶冷凝器采用的是液氮热虹吸冷凝器;脱氮塔底部再沸进出口通过管道与第二主换热器连通,由第二主换热器为脱氮塔提供再沸热量。
作为优选:所述的氮气制冷循环系统的氮气压缩机出口气体通过管道经两个主换热器分为两股,其中一股通过管道与节流阀连接,另一股通过管道与节流阀、脱氮塔塔顶冷凝器冷流管道依次连接,然后两股低压氮气混合后通过管道经两个主换热器后与氮气压缩机入口管道连通,从而形成闭式循环,为系统提供冷量。
作为优选:所述的两个主换热器设置有液氮补充通道,外部液氮补充系统与主换热器、节流阀、液氮管道连通,采用液氮的蒸发为系统提供冷量。
作为优选:所述的主换热器、设置于气提塔塔底再沸器,设置于脱氮塔的塔顶冷凝器,设置于脱甲烷塔塔底再沸器均为板翅式换热器;
所述的气提塔为板式精馏塔、脱氮塔为填料精馏塔、脱甲烷塔为填料精馏塔。
作为优选:所述脱甲烷塔型式为洗涤塔,塔底设置脱甲烷塔塔底再沸器,置于脱甲烷塔内部为内部热虹吸再沸器,热流流股管道与进冷箱的工艺气管道连通,冷流流股与脱甲烷塔底部液体管道连通,由工艺气为脱甲烷塔再沸器提供热量,进系统的循环CO气体通过管道经两个主换热器、节流阀与脱甲烷塔上部的洗涤液管道连通,经冷却、冷凝节流后的CO液体作为脱甲烷塔的洗涤液。
本实用新型的积极效果是:本实用新型设置有三个精馏塔,分别为采用板式精馏塔的气提塔、采用填料塔的脱氮塔、采用填料塔的脱甲烷塔,板式塔操作弹性比较好,填料塔分离效率高,脱甲烷塔采用CO洗涤工艺,分离获得的CO纯度比较高,达到99%以上,其中H2和CH4含量均小于50ppm,回收率比较高,满足合成装置对CO的纯度要求。但对于原料气中N2含量比较高的,如达到3%(mol%)以上时,采用本实用新型的能耗比较高,经济性比较差。
本实用新型进一步的积极效果是:本实用新型采用原料气本身节流制冷、氮气循环制冷和液氮冷量配合使用,优化了冷量补充方案,总体达到节省能耗目的,降低了装置运行成本。
本实用新型进一步的积极效果是:本实用新型采用氮气循环制冷系统,单独设置氮气压缩机闭式循环制冷流程,无需技术要求比较高的CO产品气压缩机用于制冷循环,降低CO压缩机的规模和投资,总体上降低了动设备的投资,同时独立的氮气制冷循环系统又增加了设备的可操作性。
附图说明
图1是本实用新型的连接结构示意图。
具体实施方式
下面将结合附图对本实用新型作详细的介绍: 图1所示,本实用新型所述的一种用于分离混合气的深冷分离系统,该系统主要包括分子筛净化单元Ⅰ和深冷分离装置冷箱Ⅱ两部分,至少含有一氧化碳、氢气、甲烷和少量氮气的混合气体与分子筛净化单元Ⅰ入口管道101连通,分子筛净化单元Ⅰ经脱除二氧化碳、甲醇和水在低温下易凝固的杂质后、通过第一管道102与深冷分离装置冷箱Ⅱ中的第一主换热器1、气提塔塔底再沸器3、脱甲烷塔塔底再沸器4、第二主换热器2依次连通,在连接于氢气分离罐5的中部入口,所述氢气分离罐5的顶部接出三路富氢气管道108、109、110分别经两个主换热器2、1复热富氢气以回收冷量后与外部富氢气收集系统Ⅳ连通;所述氢气分离罐5的底部接出有两股液体管道,一股液体管道111经第一节流阀6、第二主换热器2与气提塔8中部入口管道112连通,另一股液体管道111经第二节流阀7与气提塔8上部入口管道113连通;
所述的气提塔8塔顶部接出有第一闪蒸气管道114,并分别通过两路管道115、116经两个主换热器2、1与外部第一闪蒸气收集系统Ⅲ连通;气提塔8塔底接出的液体管道117经第二主换热器2、节流阀9与脱氮塔10中部的入口管道118连接;
所述的脱氮塔10塔顶接出有第二闪蒸气管道,并分别通过三路管道121、122、123经两个主换热器2、1与外部第二闪蒸气收集系统Ⅴ连通;脱氮塔10底部接出的液体管道126经节流阀11、脱氮塔塔顶冷凝器12与脱甲烷塔13中部入口管道127连接;
所述的脱甲烷塔13塔顶接出有CO产品气管道,该CO产品气管道通过三路管道128、129、130经两个主换热器2、1与CO产品气收集系统Ⅵ连通;脱甲烷塔13底部接出有粗甲烷液体管路,该粗甲烷液体管路通过三路管道135、136、137经两个主换热器2、1与外部粗甲烷气收集系统Ⅶ连通。
图中所示,所述气提塔8设置有气提塔塔底再沸器3,为外部热虹吸再沸器,其热流流股管道与进冷箱的工艺气管道104、105连通,冷流流股管道与气提塔底部液体管道147、148连通,由工艺气为气提塔再沸器3提供热量;
所述脱氮塔10顶部设置脱氮塔塔顶冷凝器12和塔底再沸管道124、125,脱氮塔塔顶冷凝器12热流流股管道与脱氮塔10顶部气相管道119和塔顶回流管道120连通,冷流管道与脱氮塔10塔底液体管道126及氮气制冷循环系统17、141~146连通,此塔顶冷凝器12采用的是液氮热虹吸冷凝器,其特征进一步包括脱氮塔10底部再沸进出口通过管道124、125与第二主换热器2连通,由第二主换热器2为脱氮塔10提供再沸热量。
本实用新型所述的氮气制冷循环系统的氮气压缩机17出口气体通过管道141经两个主换热器1、2分为两股,其中一股通过管道143与节流阀19连接,另一股通过管道143与节流阀18、脱氮塔塔顶冷凝器12冷流管道依次连接,然后两股低压氮气混合后通过管道144经两个主换热器2、1后与氮气压缩机17入口管道146连通,从而形成闭式循环,为系统提供冷量。
本实用新型所述的两个主换热器1、2设置有液氮补充通道,外部液氮补充系统Ⅷ与主换热器1、2、节流阀15、液氮管道138、139、140连通,采用液氮的蒸发为系统提供冷量。
本实用新型所述的主换热器1、2、设置于气提塔塔底再沸器3,设置于脱氮塔的塔顶冷凝器12,设置于脱甲烷塔塔底再沸器4均为板翅式换热器;
所述的气提塔8为板式精馏塔、脱氮塔10为填料精馏塔、脱甲烷塔13为填料精馏塔。
本实用新型所述脱甲烷塔13型式为洗涤塔,塔底设置脱甲烷塔塔底再沸器4,置于脱甲烷塔13内部为内部热虹吸再沸器,热流流股管道与进冷箱的工艺气管道105、106连通,冷流流股与脱甲烷塔底部液体管道149、150连通,由工艺气为脱甲烷塔再沸器4提供热量,进系统的循环CO气体通过管道131、133经两个主换热器1、2、节流阀14与脱甲烷塔上部的洗涤液管道134连通,经冷却、冷凝节流后的CO液体作为脱甲烷塔的洗涤液。
实施例:图1所示,本实用新型用于分离含有一氧化碳、氢气、甲烷和少量氮气混合气的深冷分离装置及方法,包括用于脱除杂质气体的分子筛净化单元Ⅰ和深冷分离冷箱Ⅱ,所述深冷分离冷箱Ⅱ包括第一主换热器1、第二主换热器2、氢气分离罐5、气提塔8及所设置再沸器3、脱氮塔10及所设置冷凝器12、脱甲烷塔13及所设置再沸器4、氮气制冷循环系统17、141~146和液氮通道138、139、140。含有一氧化碳(30%~90%)、氢气(70%~10%)、甲烷、少量氮气(≤3%)及微量CO2和甲醇混合气(压力:2.0MPaG~8.0MPaG)通过管道101进入分子筛净化单元Ⅰ,脱除微量的二氧化碳、甲醇或水等低温下易凝固的杂质,后通过管道102送至深冷分离装置冷箱Ⅱ。
经分子筛净化单元Ⅰ脱除杂质的满足深冷分离要求的混合气体通过管道102经第一主换热器1、气提塔塔底再沸器3、脱甲烷塔塔底再沸器4和第二主换热器2冷却、冷凝至-170℃~-188℃(此温度越低富氢气中氢气纯度越高,CO回收率越高,可根据需求进行调整),通过管道107送入氢气分离罐5的中部入口,在氢气分离罐5内进行气液分离,罐顶富氢气通过管道108、109、110经第二主换热器2和第一主换热器1回收冷量后出深冷分离冷箱Ⅱ与富氢气收集系统Ⅳ连接,可经变压吸附PSA进一步提纯得到高纯度氢气,PSA的解析气经压缩机压缩后与原料气混合后送至冷箱,这样可提高CO的回收率,氢气分离罐底部液体经管道111分为两股,一股经节流阀6节流至一定压力(1.0MPaG~2.0MPaG)后送至第二主换热器2部分蒸发,然后送至气提塔8中部入口,另一股经节流阀7节流制一定压力(1.0MPaG~2.0MPaG)后直接送至气提塔8上部入口,两股流体的比例可根据气提塔8的气液比进行调节。
气提塔8塔顶气相为第一闪蒸气,经第二主换热器2和第一主换热器1回收冷量后出冷箱与外部第一闪蒸气收集系统Ⅲ连通,气提塔8底部液体经第二主换热器2冷却后,再经节流阀9节流至一定压力(0.4MPaG~0.8MPaG)送至脱氮塔10中部入口,气提塔设置塔底再沸器3,其热量由原料气提供,型式为热虹吸再沸器。
脱氮塔10塔顶气相为闪蒸气2,经第二主换热器2和第一主换热器1回收冷量后出冷箱与外部第二闪蒸气收集系统连通,脱氮塔10底部液体经节流阀11节流至一定压力(0.1MPaG~0.4MPaG)后送至脱氮塔塔顶冷凝器12全部蒸发,然后送至脱甲烷塔13中部入口,脱氮塔设置塔顶冷凝器12,其冷量由脱氮塔塔底液体蒸发和氮气制冷循环系统17、141~146提供,型式为热虹吸换热器。
脱甲烷塔13顶气相得到高纯度CO产品气(≥99%),经第二主换热器2和第一主换热器1回收冷量后出冷箱送至CO压缩机16压缩至所需压力(0.5MPaG~4.0MPaG),脱甲烷塔底部液体经第二主换热器2和第一主换热器1回收冷量后出冷箱为粗甲烷气,与外部粗甲烷气收集系统Ⅶ连通。脱甲烷塔13采用的是CO洗涤工艺,经CO压缩机压缩后的CO产品气,部分抽出经第一主换热器1和第二主换热器2冷却冷凝后,经节流阀14节流至一定压力送至脱甲烷塔上部入口作为洗涤液,将工艺气中的甲烷脱除。脱甲烷塔设置塔底再沸器4,其热量由原料气提供,型式为热虹吸再沸器。
同时,装置配备了氮气循环制冷系统,将经氮气压缩机17压缩至一定压力(1.0MPaG~3.5MPaG)的出口气体经第一主换热器1、第二主换热器2冷却冷凝后分为两股,其中一股经节流阀19节流至一定压力(0.2MPaG~0.5MPaG)后产生冷量,另一股经节流阀18节流至一定压力(0.2MPaG~0.5MPaG)后为脱氮塔塔顶冷凝器12提供冷量,然后节流后的两股混合气经第二主换热器2和第一主换热器1回收冷量后出冷箱送至氮气压缩机17入口,重新进行压缩,构成氮气制冷闭式循环。
另外,为优化装置的冷量补充方案,主换热器设置了液氮通道15、138、139、140,需采用少量液氮为装置提供冷量。
上述实施例是本实用新型的具体实施方式。对于分离含有一氧化碳、氢气、甲烷和少量氮气混合气的深冷分离装置及方法可以做出多种等同的组合或变化,均属于本实用新型的保护范围。