塑料‑金属混合组件及其生产方法与流程

文档序号:12282974阅读:336来源:国知局
塑料‑金属混合组件及其生产方法与流程
在许多
技术领域
中,纤维复合材料如今被用于改进组件性能且尤其是为了减小它们的重量。这里,纤维复合材料具有至少两种主要组分,即基质和嵌入在此基质中且起增强作用的纤维。对于本发明的目的来说,只有具有聚合物基质的纤维复合材料是令人感兴趣的。该类纤维复合材料与其它材料,尤其是金属的组合是用于开发新型轻量级建筑技术的出发点,尤其是在汽车工程中。这里,由确保所述纤维复合材料与金属的充分接合引起特殊的问题。因此,如果涉及到生产由金属基体与接合在该基体上的纤维复合材料中间体组成的塑料-金属混合组件,需要开发特殊的接合方法,其中该纤维复合材料中间体由具有聚合物基质的纤维复合材料制成。常用的接合方法包括,例如,纤维复合材料中间体与金属组件通过铆接、环(collar)接或钉接的机械接合。另外,纤维复合材料中间体与金属组件之间的接合也可通过胶粘方法进行。然而,经典的胶粘方法具有的缺点在于必须在额外的工作步骤中施加胶粘剂并使其硬化,这使得自动化更加困难。另外,胶粘剂的材料性能必须使得一方面对所述纤维复合材料,另一方面对所述金属组件建立足够强的胶粘力。另外,还应当选择胶粘剂的其它机械性能以使得所述复合材料的优点确实奏效。在此期间,已经开发了使金属与聚合物接合的特殊热熔胶。例如,欧洲专利说明书EP2435246B1描述了这样一种基于共聚酰胺的热熔胶,其允许通过异氰酸酯和环氧化物官能而与金属表面的整体(integrally)接合连接。德国专利申请DE102008039869A1举例描述了一种用于生产轻量级组件的方法,其用于通过施加胶粘剂而实现纤维复合材料中间体与金属基体的整体接合连接。在这两个元件在压制工具中结合之后,进行热固化。塑料-金属混合组件在汽车工程中的用途的额外实例可在德国专利申请DE102006027546A1和DE102006058601A1中找到。这里,整体接合的连接也是在金属组件与起增强作用的纤维复合材料中间体之间产生,而且这通过施加合适的胶粘剂完成。相应地,现有技术中利用胶粘剂的整体接合连接法在方法顺序中展现出上面提及的缺点,它们阻碍了更大的自动化。特别地,对于通过使聚合物材料与金属接合的压制法进行的工艺集成接合来说,没有已知的合适增粘剂。通过用于生产由金属基体与整体接合在所述基体上的纤维复合材料中间体组成的塑料-金属混合组件的本发明方法,可以消除或至少减少现有技术的所述缺点中的一个或多个。所述方法包括如下步骤:(i)提供基于聚酰胺的纤维复合材料中间体,其中所述中间体的表面的至少一部分由含有如下组分的聚合物组合物制成:a)100重量份的聚酰胺;b)0.5-20重量份的一种或多种具有式(I)的增粘剂;MaM'bDcD'd(I)其中M=[R3SiO1/2]M'=[R'R2SiO1/2]D=[R2SiO2/2]D'=[R'RSiO2/2]其中各个R相互独立地表示甲基或苯基,且R'是具有式(II)的缩水甘油基氧基丙基基团且其中如下数值适用于所述指数:a=0-2b=0-2c=10-500d=0-50a+b=2且b+d≥2;(ii)提供金属基体;(iii)任选地,预处理所述金属基体表面以产生例如OH官能;(iv)将所述金属基体与纤维复合材料中间体放置在压制工具中并闭合所述工具;和(v)通过在压力下和在某一温度下压制它们,在纤维复合材料中间体与金属基体之间制造整体接合的连接。因此,在步骤(i)中,提供其表面至少部分地由已通过加入增粘剂改性的聚合物材料组成的纤维复合材料中间体。因此,为此目的使用的聚合物组合物含有至少两种组分,即聚酰胺和引入到该聚酰胺中的添加剂(或添加剂混合物),这在步骤(v)中允许通过其反应性环氧基团与所述金属基体表面的整体接合连接。此增粘剂——官能化的聚硅氧烷——可以用常规的方法容易地引入到聚酰胺基础中。在此申请的情况中,添加剂起到增粘剂的作用。它仅仅轻微地改变所述聚酰胺的机械、热和流变性能。如果添加剂浓度太低,则胶粘效应不再足够。另一方面,如果添加剂浓度太高,这对所述聚合物的机械、热和流变性能具有负面影响(粘度升高,热膨胀系数增加,且发生添加剂的自交联以及附聚物形成)。尤其优选的是所述聚合物组合物含有0.3-10重量份,尤其优选0.5-5重量份的增粘剂。根据一个优选的变型方案,R表示甲基。一方面,这在生产过程中转化为成本优点,另一方面,简化添加剂与聚酰胺的加工,因为熔融温度和玻璃化转变温度低于用苯基取代的添加剂。另外,优选的是指数a+c的总和与指数b+d的总和之比(a+b)/(b+d)在2-50范围内,尤其是在4-20范围内,和尤其优选5-15范围内。所指明的非官能化硅氧烷单元——就是说,含有甲基和/或苯基基团的聚硅氧烷单元——与带有具有式(II)的缩水甘油基氧基丙基基团的聚硅氧烷单元之比已被证明特别适合于生产所述塑料-金属混合组件。具有式(II)的基团的不足的小比例导致与所述金属基体表面的整体接合连接不足。相反地,过高的比例使得更难以将添加剂加工到聚合物组合物中,并且这些添加剂的合成要复杂得多。还优选的是如下数值适用于指数c:c=15-100,尤其是c=20-50。如果b=2,如下数值优选适用于指数d:d=0-20,尤其是d=1-10。如果b=0,如下数值优选适用于指数d:d=2-20,尤其是d=3-10。上面提及的说明使得可以就聚酰胺基质来说优化所述添加剂的性能以及所述聚合物组合物随后的进一步加工,例如以制造薄膜。具有式(II)的缩水甘油基氧基丙基基团可以统计地分布在具有式(I)的添加剂中。统计分布构筑为具有随机的嵌段数的嵌段形式,其以随机的顺序相互跟随或者它们可以形成随机化的分布,或者它们可以交替构筑或者它们可以沿着聚合物链形成梯度,并且它们也可以尤其是形成其中不同分布的基团可任选地相互跟随的任何混合形式。特殊的构型可导致所述统计分布根据给定构型而受到限制。对于不受所述限制影响的所有区域来说,该统计分布不变化。聚醚改性的硅氧烷可以通过烯丙基缩水甘油醚(1-烯丙基氧基-2,3-环氧基丙烷;CAS号106-92-3)用具有式(III)的氢硅氧烷的贵金属催化的氢化硅烷化来生产MaM'bDcD'd(III)其中M=[R3SiO1/2]M'=[HR2SiO1/2]D=[R2SiO2/2]D'=[HRSiO2/2]其中各个R相互独立地表示甲基或苯基,且其中下面数值适用于所述指数:a=0-2b=0-2c=10-500d=0-50a+b=2且b+d≥2,这如例如在欧洲专利申请EP1520870A1的实施例4中所描述。用于生产所述聚醚改性的硅氧烷的具有式(III)的氢硅氧烷又可以如现有技术中,例如在欧洲专利申请EP1439200A1中所描述那样生产。根据本发明的聚合物组合物的聚酰胺优选选自聚酰胺6、聚酰胺12和聚酰胺6.6。特别地,所述聚酰胺是聚酰胺6。已经特别开发了所述增粘剂用于在聚酰胺中使用。所述添加剂可以与聚酰胺,尤其是与聚酰胺6一起非常好地进行加工,而在添加剂与聚合物之间并没有发生分离或不希望的反应。除了所述聚酰胺和增粘剂之外,所述聚合物组合物也可以含有其它添加剂。这些添加剂例如用于更好地加工该聚合物组合物,赋予颜色或确立其它材料性能。优选地,该聚合物组合物累积具有0-100重量份,尤其是0-20重量份的这类额外的添加剂。所述聚合物组合物由单独的组分,优选通过在捏合机中的熔体混合来制造。所述增粘剂和,如果适用的话,额外的添加剂可以单独地或以混合物的形式一起直接加入到聚酰胺颗粒中或加入到聚酰胺熔体中。如果适用的话,所述聚合物组合物例如在用于薄膜生产的系统的挤出机中进一步加工之前不久才由单独的组分制成。所述组分同样可以作为母料形式的混合物加入。使用的通常具有10-10000mPas粘度的增粘剂可以在所述聚合物组合物的生产过程中通过液体计量加入模式加入到所述聚酰胺,或者所述添加剂作为固体形式的母料制备。后者是优选的,因为液体组分在挤出机中的加工在技术上是难以实现的,尤其是在大于10%浓度时。可选择各种方法用于由所述聚合物组合物生产薄膜:在流延法的情况下,所述聚合物组合物在挤出机(通常为单螺杆挤出机)中液化,并通过平膜挤出模头流延在旋转和经水冷却的辊上,其结果是可以以高生产率制造层厚度25µm-600µm的薄膜。在吹塑薄膜法的情况下,挤出物同样在挤出机(通常为单螺杆挤出机)中液化且聚合物组合物的熔体管使用环形垂直模头用空气流制造,且所述熔体管然后在空气流中冷却。通常的薄膜厚度是10µm-500µm。还可以使用上面提及的两种方法生产多层薄膜。这里,该多层薄膜的外层中的至少一个由根据本发明的聚合物组合物组成。因此,例如可以以下面的方式形成给定厚度的层:第1层=由聚酰胺和至少一种增粘剂组成的根据本发明的聚合物组合物第二层=聚酰胺第3层=由聚酰胺和至少一种增粘剂组成的根据本发明的聚合物组合物。步骤(i)中使用的纤维复合材料中间体因此可以由含有添加剂的聚酰胺使用熟悉的方法(例如,在双带压制法的熔体、薄膜或粉末浸渍、间隔热压制中)制造。由此,所述纤维复合材料中间体的特征在于至少在某些区域中,所述表面由该聚合物组合物组成。只有在随后的加工步骤中应制造与金属基体的整体接合连接的地方,才需要在表面附近的区域中提供添加剂。因此,添加剂不必存在于纤维复合材料中间体的整个体积中或在表面附近的整个区域中。在成品纤维复合中间体的生产之后任选是进一步的加工步骤,如装配、任选的成型等。将所述纤维复合材料中间体预热用于随后的加工步骤。根据所述方法的步骤(ii),提供金属基体。合适的金属材料尤其是包括钢,例如热浸镀锌高强度钢HX420LAD+Z100MB。也可以使用其它金属材料,例如不锈钢、铝和钛。所述方法的步骤(iii)任选地包括金属基体表面的预处理以产生官能(例如,羟基-OH、氨基-NH2、羧基-COOH),优选OH-官能。此预处理可以是这样的,以通过干化学或湿化学法、或通过高能辐射例如激光和等离子体(杂质蒸发)的热方式、或机械方式例如喷射法(喷砂法、压力喷射、吸入喷射)预清洁所述待处理的金属表面。优选地,尤其是如果金属基体由镀锌钢板制成,在步骤(iii)中,在金属基体表面上产生OH官能,特别是硅质(SiOx)的。该类覆盖层的产生可以例如通过所谓的喷砂和涂覆进行,该涂覆是其中通过利用摩擦化学作用的喷射法涂覆基底表面的方法。通过此涂覆法,尤其是使用其表面含有有机官能硅烷的改性的喷射剂。经涂覆的颗粒的冲击在基底表面上产生涂层。SiOx层的顶部提供用于整体接合连接增粘剂的OH-官能。另外,所述接合表面区域通过喷砂和涂覆而扩大。预处理之后,将所述金属基体置于压制工具中并加热到高达80℃-100℃范围的温度。随后,将经预热的纤维复合材料中间体放置到位并闭合所述压制工具(步骤(iv))。最后,在压力下的加热产生纤维复合材料中间体与金属基体立即的整体接合连接。所述方法的步骤(v)优选在高于所述纤维-塑料复合材料的热塑性聚合物的熔融温度的温度下进行。特别地,步骤(v)中的温度优选在230℃-260℃的范围内。此温度优选保持0.5-10秒。步骤(v)中的压力优选在10-200bar范围内,优选25-150bar。紧接步骤(v)之后,为了冷却的目的,规定70℃-130℃范围的工具温度持续15-90秒的时间段。本发明的另一个方面涉及塑料-金属混合组件,其由金属基体与整体接合在该基体上且通过上面提及的方法产生的纤维复合材料中间体组成。用于汽车工程的塑胶-金属混合组件尤其是包括在底座以及在车身(底座:例如,座椅横梁、纵向底盘梁、通道增强件;车身:例如,柱和柱增强件、纵梁(pillar)和纵梁增强件以及车顶横梁)中的纵向和横向支撑结构。本发明的其它优选实施方案来自从属权利要求中所引用的其它特征以及下面的描述。下面在实施方案中和基于所附附图将更详细地解释本发明。所示如下:图1根据叠膜法生产的纤维复合材料中间体的结构示意图;和图2根据热熔体直接法生产的纤维复合材料中间体的结构示意图;图3修补(patched)的座椅横梁形式的根据本发明的塑料-金属混合组件;图4用于图3的修补的座椅横梁的生产方法示意流程图;图5贯穿经预热的金属基体的示意显微截面;图6贯穿其边缘层已改性的根据本发明的增强中间体的示意显微截面;图7具有简化几何的根据本发明的另一种塑料-金属混合组件;和图8a和8b说明用图7的塑料-金属混合组件的落塔实验的试验设备图。下面通过举例描述根据本发明的聚合物组合物、含有根据本发明的聚合物组合物的根据本发明的纤维复合材料中间体和用于生产所述纤维复合材料中间体的根据本发明的方法。每当在下面说明范围、通式或化合物类别时,则它们意味着不仅包括明确引用的所属范围或化合物组,而且包括可以通过去除个别数值(范围)或化合物获得的所有的部分范围和部分化合物组。每当在本说明书的范围内引用文献时,则它们的内容被认为全部属于本发明的公开内容。每当下面引用百分比数字时,则除非另有说明,这些都是关于重量百分比的数字。在组成的情况下,除非另有说明,所述百分比数字涉及整个组合物。每当下面给出平均值时,除非另有说明,这些是质量平均值(重量平均值)。如果下面给出测量值,除非另有说明,这些测量值在101325Pa的压力和25℃的温度下测定。用于生产所述聚合物组合物的一般指示在挤出机中,具有式(I)的增粘剂通过液体计量加入模式直接加入或作为固体形式的母料加入到聚酰胺(聚酰胺6或聚酰胺6.6)中,MaM'bDcD'd(I)其中M=[R3SiO1/2]M'=[R'R2SiO1/2]D=[R2SiO2/2]D'=[R'RSiO2/2]其中各个R表示甲基,且R'是具有式(II)的缩水甘油基氧基丙基基团在液体计量加入的情况(例如,使用由荷兰的Movacolor公司制造的系统)下,添加剂(相对于所述聚合物组合物的总重量计0.1重量%-20重量%)在所述挤出线的前三分之一中均匀地混合。作为替代方案,在高粘度添加剂的情况下,使用具有经加热的进料管线和经加热的接收器的泵。作为替代方案,制造在聚酰胺中的50%-添加剂母料。使用单独的进料器,将该母料计量加入到其中也加入相应聚酰胺的挤出生产线主要入口中。表1:使用的根据式(I)的添加剂abcdOMS102180OMS220897OMS320435OMS4207325OMS502162使用符合聚酰胺制造商推荐的挤出机中的温度分布。如果水分含量高于0.1重量%,必要的话,将聚酰胺预干燥。所述聚合物组合物取决于填充水平和聚合物而以3-10kg/小时的机器输出量进行加工。测试根据本发明的聚合物组合物聚酰胺中使用的添加剂的分布品质通过在挤出物从挤出机头出现时检查外观而直接评价。如果形成均匀的挤出物且没有气泡,挤出物没有表现出任何撕裂,且挤出物厚度的变化不超过20%,则假定添加剂均匀地分布于聚酰胺中。在下面的实施方案中,此状态表征为“OK”。表2:基于聚酰胺6(PA6)和聚酰胺6.6(PA6.6)的聚合物组合物MB的意思是作为母料计量加入,无添加的意思是通过液体计量加入模式进行计量加入;无录入的意思是没有生产这些组合物。所有这些生产的聚合物组合物都满足上面提及的所有品质标准。薄膜生产薄膜通过流延薄膜法生产,这就是说,流延薄膜具有50µm-600µm的层厚度(Collin公司制造的流延薄膜系统)。薄膜的品质通过测量和比较薄膜不同区域中的层厚度进行评价,其中在下面的应用实施例中小于15%的层厚度变化指定为OK。由所述聚合物组合物制成的所得薄膜没有必要为透明的;相反,它可以具有不透明的外观。表3:薄膜-聚合物组合物和层厚度无录入的意思是没有制造这些薄膜。可以看出所有这些制造的薄膜都满足所引用的品质标准。基于薄膜的纤维复合材料中间体的制造将成品薄膜通过叠膜法或通过热熔体直接法进一步加工成纤维复合材料中间体。图1示意性说明了叠膜法过程中所述纤维复合材料中间体的结构,图2是热熔体直接法过程中。用于进行这两种方法的所述系统技术的配置是充分为公众熟知的,并包含用于材料进料的单元、具有浸渍和复合段的间隔压制单元以及其下游的轧机和装配单元。材料进料包含用于单个聚酰胺薄膜和纺织中间体如所讨论的方法中使用的织物或无纺布的辊支架。在热熔体直接法的情况下,还存在用于用塑料熔体直接浸渍的塑化单元。将这些进料的薄膜、纺织中间体和任选的熔体组合的浸渍和复合段由间隔压制单元规定。该类系统是众所周知的;参见例如NeueMaterialienFürthGmbH的公司出版物。图1通过举例示出了可用于根据叠膜法生产纤维复合材料中间体的类型的各种材料的交替层序列。在此实施方案中,为了制造基质材料,将总计5个基质薄膜40供入间隔压制单元中。每个基质薄膜40由聚酰胺,尤其是聚酰胺6组成。将四层增强中间体42交替设置在基质薄膜40之间。所述增强中间体42含有起增强作用的纤维。可想到的纤维类型包括例如玻璃纤维、碳纤维或芳族聚酰胺纤维。可能的增强中间体包括织物和无纺布。最后,在所示层叠的边缘区域中,改性的边缘薄膜44由根据本发明的聚合物组合物制成。同样在热熔体直接法的情况下,将增强中间体42和改性的边缘薄膜44的各层以图2中示出的顺序供入间隔压制单元中。另外,将由聚酰胺,尤其是聚酰胺6制成的塑料熔体46通过塑化单元供入。图1和2中示出的结构,尤其是所述层序列和增强中间体42与基质薄膜40的层数,是可变的且可以适应于应用要求。对于本发明的目的,对于所述纤维复合材料中间体的边缘层改性来说,仅仅重要的是在一侧上或在两侧上通过与由根据本发明的聚合物组合物制成的改性的边缘薄膜44一起层压。不包括薄膜生产的纤维复合材料中间体的生产方法用于生产其边缘层已改性但没有事前薄膜生产的纤维复合材料中间体的另一选择是双带压制法。这里,将一层或多层经连续纤维增强的干燥(未浸渍)纤维复合材料中间体牵引到双带压制机中。在各个层之间的互相结合(intermeshing)区域中——与热熔体直接法类似——基质材料优选通过平膜挤出模头施加到纺织物上。塑料-金属混合组件的生产图3的下部示出了根据本发明的塑料-金属混合组件10,这里为座椅横梁形式。该座椅横梁由整体接合在金属基体14上的纤维复合材料中间体12组成。这里,所述金属基体14由已以仍将要阐述的方式预处理的镀锌钢板组成。生产纤维复合材料中间体12并以上面提及的方式装配。在这两个组件整体接合之前,金属基体14通过用改性的喷射剂的喷砂和涂覆进行处理。所述改性的喷射剂具有其表面含有有机官能硅烷的颗粒(该类改性的喷射剂例如由3MESPE公司市购可得)。使用所述喷射剂清洁镀锌钢板的表面,该方法也伴随着峰-谷高度增加。由于该喷射剂的经涂覆的颗粒的碰撞,与各个颗粒结合的有机官能硅烷由于所谓的摩擦化学作用转移到基底表面上,由此形成SiOx层。图5示意性示出了贯穿预处理的金属基体的接近表面的区域的显微截面。大体积的钢体20被薄锌层22覆盖。由于附加的喷砂和涂覆,所述锌层22之后是SiOx层24。图4说明了用于由金属基体14和整体接合在金属基体14上的纤维复合材料中间体12组成的塑料-金属混合组件10的生产方法的顺序。在步骤S1中,首先生产金属基体14,就是说,例如用于座椅横梁的金属板部件。在已输送成型的金属板部件(步骤S2)之后,其通过如上所述的喷砂和涂敷(步骤S3)进行预处理。随后,将该预处理的金属板部件置经加热的压制工具中,在那里将其预热(步骤S4)至高于纤维复合材料中间体12的基质材料的熔融温度的范围内的温度。取决于所述基质,220℃-300℃范围的温度是优选的。特别地,对于聚酰胺6作为纤维复合材料中间体12的基质材料来说,规定230℃-260℃范围的温度。在已输送用于该纤维复合材料中间体的材料(步骤S5)之后,将其合适地装配(步骤S6)。然后将该纤维复合材料中间体在步骤S7中预热。加热步骤可通过红外辐射进行。温度应当在比纤维复合材料中间体12的基质材料的熔融温度高30℃-70℃的范围内(优选比其高大约50℃)。然后将所述经加热的纤维复合材料中间体12放置(步骤S8)到已预热和置于压制工具中的金属基体14上。随后,在步骤S9中,闭合压制工具并进行金属基体14与纤维复合材料中间体12的实际的物质化学(substance-chemical)接合。随后,将塑料-金属混合组件10在10-200bar,优选25-150bar,尤其优选30-70bar,特别是50bar范围的压力下接合或压制0.5-10秒。然后——任选地在保持压力的同时——通过将工具温度调节(步骤S10)至70℃-130℃持续15-90秒的时间段,将所述压制工具冷却下来。最后,将成品塑料-金属混合组件10从压机移去(步骤S11)。图6示出了来自贯穿改性的纤维复合材料中间体12,即在其边缘区域中的显微截面的示意性局部。改性区域25在底部通过在纤维截面制造过程中使用的嵌入化合物27界定。换言之,改性区域25形成边缘层或纤维复合材料中间体12的接近表面的区域,其含有上面提及的具有聚酰胺基础基质和增粘剂的聚合物组合物。在改性区域25上方,存在具有聚酰胺基质材料的未改性区域26。它也含有增强纤维28。在图6的改性区域25与图5的SiOx层24之间的界面上,通过使添加剂上的环氧官能与SiOx层24的接近表面的OH官能反应而产生整体接合连接。为了测试机械性能,以上面提及的方式生产具有简化的几何的塑料-金属混合组件10。通过各种试验设备测定成品塑料-金属混合组件10的变形行为。在落塔实验中,首先检查纯轴向载荷,其次用平行元件30检查多轴向载荷。下落高度为大约1.20米且下落重量为140kg。所述塑料-金属混合组件的钢板具有1mm的厚度且纤维复合材料具有2mm的厚度。使用具有1.6mm和1mm厚度的钢板作为参考。可以看出,在两种试验设备中所述塑料-金属混合组件的变形路径都对应于1.6mm厚的钢板组件的。然而,所述修补的组件的重量比该1.6mm钢板组件小25%。附图标记列表:10塑料-金属混合组件12纤维复合材料中间体14金属基体20钢体22锌层24SiOx层25改性区域26未改性区域27嵌入化合物28增强纤维30平行元件40基质薄膜42增强中间体44改性的边缘薄膜46熔体。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1