2015年7月1日提交的日本专利申请No.2015-132769的包括说明书、附图和摘要在内的公开内容以其整体通过引用并入本申请中。
技术领域
本发明涉及一种混合动力驱动装置,发动机和电动发电机设置在所述混合动力驱动装置上作为驱动源。
背景技术:
在混合动力驱动装置中,一种系统是本身已知的,其中在第一电动发电机MG1的转子轴和混合变速驱动桥的外壳C之间设置有爪形离合器DC3和单向离合器OC3,并且其中爪形离合器DC3的一个接合部件与单向离合器OC3连接,而爪形离合器DC3的另一接合部件固定在外壳C上(参见日本专利申请公报No.2010-36880(JP-A-2010-36880))。对于这种类型的混合动力驱动装置,通过在高速行驶期间将爪形离合器DC3控制为处于其接合状态,建立了这样一种状态,在该状态下,由于单向离合器OC3,阻止第一电动发电机MG1的正旋转,同时容许第一电动发电机MG1的负旋转。由于因此实现了作为与高速段(Hi)并行的模式的Hi挡位锁定模式,所以相应地可以提高高速行驶期间的能量效率。
此外,一种可选择的单向离合器是本身已知的,其能够选择锁定模式或自由模式,在所述锁定模式中,在旋转期间,其容许两个部件之间仅在预定的一个旋转方向上的转矩传递,而在所述自由模式下,在旋转期间,其切断这两个部件之间在两个方向上的转矩传递。由于这种可选择的单向 离合器被赋予这种功能,因此可以利用作为单一装置的该可选择的单向离合器来替换JP-A-2010-36880的上述混合动力驱动装置的爪形离合器DC3和单向离合器OC3。具体而言,可以通过将其两个部件中的一个部件固定在外壳C上——外壳C因而用作固定部件——同时将两个部件中的另一个部件与第一电动发电机MG1的转子轴连接——所述转子轴因而用作旋转部件——来以与JP-A-2010-36880的混合动力驱动装置相似的方式实现这种可选择的单向离合器功能。
在其中已进行上述替换的混合动力驱动装置中,可选择的单向离合器的旋转部件接收并承受由发动机输出的发动机转矩的反作用转矩。在发动机燃烧稳定的状态下,发动机转矩继续沿正方向输出。由此,在阻止旋转部件的正旋转的状态下的锁定模式期间,转矩沿正方向作用在旋转部件上的状态继续。因此,在发动机中的燃烧保持稳定的状态下,在锁定模式下,可选择的单向离合器的接合被维持。
然而,如果在锁定模式下发生发动机燃烧异常并引起发动机转矩的下降,则发动机转速下降。随着该下降,其正旋转被阻止的旋转部件上的转矩消除,使得接合暂时被释放并且发生负旋转。当此后发动机燃烧回归正常时,发动机转速上升。由此,存在可选择的单向离合器的构件在其再接合发生时可能损坏的可能性。此外,存在由于棘轮效应的发生而产生磨损或异常噪音的可能性,所述棘轮效应是这样一种现象,即在于上述回归正常期间发动机转矩大的状况下,旋转部件沿正旋转方向旋转,所述正旋转方向是本来不容许的旋转方向。
因此,本发明的一个目的是提供一种混合动力驱动装置,其在发生发动机燃烧异常时能够避免由于棘轮效应的发生而引起的可选择的单向离合器的构件的劣化和磨损或异常噪音的发生。
技术实现要素:
本发明的混合动力驱动装置包括:发动机;电动发电机;输出部,所述输出部向驱动轮输出转矩;差动机构,所述差动机构具有能相对于彼此 差动地旋转的多个旋转元件,所述发动机与所述多个旋转元件中的一个旋转元件连结,所述电动发电机与所述多个旋转元件中的另一个旋转元件连结,并且所述输出部与所述多个旋转元件中的又一个旋转元件连结;可选择的单向离合器,所述可选择的单向离合器包括能接收所述发动机的发动机转矩的反作用转矩并设置在所述差动机构上的旋转部件,并且能在以下模式之间切换:锁定模式,在所述锁定模式中,在接收所述反作用转矩的状态下,阻止所述旋转部件的正旋转,同时容许所述旋转部件沿与所述正旋转相反的方向进行的负旋转;和自由模式,在所述自由模式中,在接收所述反作用转矩的状态下,容许所述旋转部件的所述正旋转和所述负旋转两者;和控制装置,所述控制装置在满足预定条件时将所述可选择的单向离合器从所述自由模式切换为所述锁定模式;其中,所述控制装置在已发生会伴随所述发动机的发动机转矩下降的燃烧异常的情况下或在已发生与这种燃烧异常相关的装置异常的情况下将所述可选择的单向离合器保持在所述自由模式下。
根据该混合动力驱动装置,如果已发生会伴随发动机转矩下降的燃烧异常,或如果已发生与这种燃烧异常相关的装置异常,则不论是否满足将可选择的单向离合器切换为锁定模式的预定条件,都将可选择的单向离合器保持在自由模式下。由此,如果在锁定模式期间发生如上所述的这种燃烧异常,则可以避免可能由于可选择的单向离合器的再接合而发生的可选择的单向离合器的构件的劣化,并且还可以避免由于棘轮效应的发生而引起的磨损或异常噪音的产生。
根据本发明的混合动力驱动装置的一个方面,当所述可选择的单向离合器处于所述锁定模式时,所述控制装置可控制所述电动发电机以停止其作为电动机和作为发电机的功能而使得其处于其能够空转的关停状态下。由于当电动发电机被控制为处于关停状态时电动发电机的电机转矩不能支撑发动机转矩的反作用转矩,因此,如果发生发动机的燃烧异常并且发动机转矩下降,则旋转部件上的转矩会容易消除。然而,根据本发明的该方面,如果发生发动机的燃烧异常或装置异常,则可以避免上述不利作用, 而这是源于可选择的单向离合器的旋转部件上的转矩能容易地解除的事实。
差动机构的结构并不特别地仅限于包括与发动机、电动发电机和输出部分别连结的多个旋转元件。例如,根据本发明的另一个方面,所述差动机构可设置有四个旋转元件,其中所述电动发电机与所述四个旋转元件中的第一旋转元件连结,所述可选择的单向离合器的所述旋转部件与所述四个旋转元件中的第二旋转元件连结,所述发动机与所述四个旋转元件中的第三旋转元件连结,且所述输出部与所述四个旋转元件中的第四旋转元件连结;并且,当这四个旋转元件被配置在速度线图上时,它们可按以下次序出现:所述第一旋转元件、所述第二旋转元件、所述第三旋转元件和所述第四旋转元件。此外,根据本发明的又一个方面,所述差动机构可设置有三个旋转元件,其中所述电动发电机和所述可选择的单向离合器的所述旋转部件与所述三个旋转元件中的第一旋转元件连结,所述发动机与所述三个旋转元件中的第二旋转元件连结,且所述输出部与所述三个旋转元件中的第三旋转元件连结;并且,当这三个旋转元件被配置在速度线图上时,它们可按以下次序出现:所述第一旋转元件、所述第二旋转元件和所述第三旋转元件。在上述本发明的任一方面中,与发动机连结的旋转元件和与可选择的单向离合器的旋转部件连结的旋转元件在速度线图上彼此相邻。因此,当发动机正在输出转矩并且此外可选择的单向离合器处于锁定模式时,可选择的单向离合器的旋转部件开始接收发动机的反作用转矩。而且,与输出部连结的旋转元件和与发动机连结的旋转元件在速度线图上在与可选择的单向离合器的旋转部件连结的旋转元件的相反侧彼此相邻。由此,由于可选择的单向离合器被操作为其锁定模式并且旋转部件的正旋转由此被阻止,输出部相对于发动机转速的变速比可以处于固定状态下。
发动机的燃烧异常可以是任何类型的异常,只要它是伴随着发动机转矩下降的异常即可;并且本发明也可以适用于各种类型的异常可相结合地发生的情形。此外,装置异常可以是任何类型的异常,只要它是伴随着燃烧异常的装置异常即可。
附图说明
图1是示出已应用了根据本发明的第一实施方式的混合动力驱动装置的混合动力车辆的结构的示意图;
图2是示出设置在图1的混合动力车辆上的可选择的单向离合器的图;
图3是示出该可选择的单向离合器的结构元件的示意图;
图4是示出保持板的一部分的图;
图5是在单向离合器处于锁定模式时示出的沿图2的结构的线V-V截取的剖视图;
图6是在单向离合器处于自由模式时示出的沿图2的结构的线V-V截取的剖视图;
图7是示出根据第一实施方式的动力分割机构的速度线图的图;
图8是示出根据第一实施方式的控制例程的一个示例的流程图;
图9是示出已应用了根据本发明的第二实施方式的混合动力驱动装置的混合动力车辆的结构的示意图;以及
图10是示出根据该第二实施方式的动力分割机构的速度线图的图。
具体实施方式
实施方式#1
如图1所示,车辆1A被构成为应用了根据本发明的第一实施方式的混合动力驱动装置的混合动力车辆。该车辆1A包括用作发动机(ENG)的火花点火式内燃发动机2、用作差动机构的动力分割机构5以及两个电动发电机7(MG1)和8(MG2)。动力分割机构5、电动发电机7和8以及各种动力传递元件接纳在外壳10内。
动力分割机构5被构成为单小齿轮型的两个行星齿轮机构3和4的组合。第一行星齿轮机构3的太阳齿轮S1和第二行星齿轮机构4的太阳齿轮S2连结在一起以便一体地旋转,并且第一行星齿轮机构3的行星架C1和第二行星齿轮机构4的齿圈R2连结在一起以便一体地旋转。由此,在动 力分割机构5内限定出了相对于彼此差动地旋转的四个旋转元件。内燃发动机2的曲轴2a与行星架C1连结。第一电动发电机7与太阳齿轮S2连结,而第二电动发电机8与齿圈R1连结。为了向驱动轮Dw输出转矩,包括图中未示出的齿轮系等的输出部11与齿圈R1连结。在该第一实施方式中,太阳齿轮S2(和太阳齿轮S1)对应于权利要求的“第一旋转元件”,行星架C2对应于权利要求的“第二旋转元件”,行星架C1(和齿圈R2)对应于权利要求的“第三旋转元件”,而齿圈R1对应于权利要求的“第四旋转元件”。如从图7的速度线图将显而易见的,当这四个旋转元件配置在该速度线图上时,它们按以下次序出现:对应于第一旋转元件的太阳齿轮S2(和太阳齿轮S1);对应于第二旋转元件的行星架C2;对应于第三旋转元件的行星架C1(和齿圈R2);和对应于第四旋转元件的齿圈R1。
在车辆1A上设置有可选择的单向离合器(以下简称为“离合器”)12。该离合器12介设在动力分割机构5的行星架C2和外壳10之间,并且用作制动器。如图2所示,离合器12的动作模式可以在以下模式之间选择:锁定模式,在该锁定模式中,当行星架C2的旋转方向为正旋转方向Ra时,离合器12容许转矩从行星架C2传递到外壳10以使得行星架C2处于固定状态,而当旋转方向为相反的负旋转方向Rb时,离合器12切断该转矩传递以使得行星架C2处于释放状态;和自由模式,在该自由模式中,无论行星架C2的旋转方向是正旋转方向Ra还是负旋转方向Rb,离合器12都切断从行星架C2到外壳10的转矩传递,从而保持行星架C2处于释放状态。
如图2和图3所示,离合器12包括:保持板20,该保持板设置在固定于外壳10上的固定轴15上并且处于它不能围绕轴线Ax旋转的状态;旋转板21,该旋转板用作旋转部件并且在它围绕轴线Ax与行星架C2一体地旋转的状态下设置在行星架C2上;和选择板22,该选择板配置在保持板20和旋转板21之间并且可围绕轴线Ax旋转。
如图2、4和5所示,在保持板20中形成有多个保持室25,并且这些保持室向保持板20的与旋转板21对向的一侧开口并且沿其周向布置。在 这些保持室25中的每个保持室上都设置有一个有能接合在旋转板21中的爪部件26。每个爪部件26的基端部26a经由沿保持板20的径向延伸的支承轴P安装在保持板20上以使得爪部件26能围绕轴线Ax1旋转,此外,各爪部件26由弹簧27沿朝向旋转板21突出的方向偏压。由此,各爪部件26能在它朝保持板20退回并收纳在保持室25中以使得它从保持板20的突出被限制的状态和它从保持板20朝旋转板21突出的状态之间作动。换言之,各爪部件26以使得它能够从保持板20突出的方式设置在保持板20上。
如图2和5所示,在旋转板21中形成有多个凹部30,并且这些凹部向旋转板21的与保持板20对向的一侧开口并沿其周向布置。这些凹部30中的每个凹部都具有壁部30a,当爪部件26突出并与旋转板21接合时,爪部件26的末端部26b可与该壁部30a靠接。虽然这些特征在图中未被示出,但凹部30的数量大于爪部件26的数量,而且,凹部30的位相和爪部件26的位相互不相同(参照图5)。因此,多个爪部件26中的一部分(但不是全部)爪部件在它们突出时可以接合在多个凹部30中的一部分(但不是全部)凹部中。
选择板22形成有多个孔洞31,这些孔洞围绕选择板22的周向布置并且爪部件26的一部分在它们突出时能从这些孔洞通过,并且这些孔洞与爪部件26同相。选择板22的旋转位置能在图5所示的锁定位置和图6所示的释放位置之间切换,在所述锁定位置,爪部件26从选择板22中的孔洞31通过并且能够与旋转板21的凹部30中的一个或多个凹部接合,而在所述释放位置,全部爪部件26的突出由于爪部件26的末端部26b与选择板22的未形成孔洞31的非形成部位22a靠接而被限制。由此,能选择性地实现离合器12的上述锁定模式或自由模式。
如图2所示,在选择板22上设置有沿径向延伸的操作臂29,并且选择板22的旋转位置通过该操作臂29由驱动装置40驱动而切换。驱动装置40包括致动器41和将致动器41的动作传递到选择板22的操作臂29的传递机构42。致动器包括固定在外壳10上的主体43和能相对于主体43向 前和向后移动而且与操作臂29结合连接的驱动杆44。而且,传递机构42包括固定在外壳10上并引导致动器41的驱动杆44的导引部件45、固定在驱动杆44上的弹簧座46以及安装在导引部件45与弹簧座46之间以便能够被压缩在其间的回位弹簧47。
图2中用实线示出的状态是这样的状态,即在该状态下,由于驱动装置40的致动器41的作动,驱动杆44已抵抗回位弹簧47的弹力从主体43突出,并且选择板22已切换至其锁定位置。在此状态下,离合器12处于上述锁定模式。另一方面,当驱动装置40的致动器41从图2中用实线示出的状态切换为非作动时,驱动杆44由于回位弹簧47的弹力而朝主体43退回,并且操作臂29移动到其用双点划虚线表示的位置,使得选择板22被切换至其释放位置。由此,离合器12被置于自由模式下。
在图5所示的锁定模式期间,当旋转板21的旋转方向是正旋转方向Ra时,至少一个爪部件26的末端部26b与凹部30之一的壁部30a靠接。因此,该爪部件26与旋转板21的该凹部30接合,并且保持板20和旋转板21联接在一起,使得它们之间的转矩传递可以进行并且行星架C2相对于外壳10固定。另一方面,当旋转板21的旋转方向为负旋转方向Rb时,由于爪部件26变成朝负旋转方向Rb倾斜,因此,即使爪部件26确实在一定程度上与旋转板21的凹部30干涉,爪部件26也仅仅是由旋转板21朝保持板20回压。由此,爪部件26不与凹部30接合。因此,如果离合器12处于锁定模式,则当旋转板21的旋转方向为负旋转方向Rb时,保持板20和旋转板21之间的转矩传递被切断,并且旋转板21被释放。
另一方面,在图6所示的自由模式期间,全部爪部件26的突出受选择板22限制,并且爪部件26被保持在朝保持板20回推的状态下,使得它们不会到达旋转板21的凹部30。因此,不论旋转板21的旋转方向是正旋转方向Ra还是负旋转方向Rb,从旋转板21到保持板20的转矩传递都被切断,使得旋转板21被释放。图6所示的该自由模式状态由于上述回位弹簧37的弹力而被维持。
车辆1A的运行模式通过离合器12的动作模式在锁定模式和自由模式 之间切换而在固定变速模式和无级变速模式之间切换。在固定变速模式期间,离合器12被控制为处于锁定模式下,而且第一电动发电机7被控制为处于其关停状态下,在关停状态下其停止用作电动机和发电机且其能空转。另一方面,在无级变速模式期间,离合器12被控制为处于自由模式下,而且第一电动发电机7的电机转矩和电机转速被控制成使得内燃发动机2在高效率动作点运转。
如图7中用实线所示,当离合器12处于锁定模式时,由于接收内燃发动机2的反作用转矩的旋转板21被阻止沿正旋转方向Ra旋转,因此,假如发动机转矩正沿正方向从内燃发动机2输出,则在沿正旋转方向Ra的该转矩正作用在旋转板21上的状态下转速变成零。由此,如从图7显而易见的,输出部11相对于内燃发动机2的转速的变速比由动力分割机构5的传动比唯一地决定,使得该变速比处于固定状态。另一方面,如图7中用虚线所示,当离合器12处于自由模式时,由于无论旋转板21的旋转方向是正旋转方向Ra还是负旋转方向Rb,旋转板21都被释放,因此,通过控制电动发电机7的电机转矩和电机转速,可以以无级或连续的方式改变输出部11相对于内燃发动机2的转速的变速比。
如图1所示,车辆1A的运行模式的切换由包括控制车辆1A各部的计算机的电子控制装置(即ECU)50经由对离合器12的控制来实施。为了控制车辆1A而采用的各种传感器的输出信号输入给该ECU 50。例如,来自输出对应于内燃发动机2的曲柄角的信号的曲柄角传感器51、来自输出对应于车辆1A的速度的信号的车速传感器52、来自输出对应于图中未示出的加速器踏板被踏压的量的信号的加速器开度传感器53等的输出信号可输入给ECU 50。
ECU 50通过参照车速传感器52和加速器开度传感器53的输出信号来计算车辆1A当前要求的功率,并在针对该当前要求的功率适当地切换车辆1A的运行模式的同时控制车辆1A。例如,在内燃发动机2的热效率不良的低速区域中,ECU 50可切换至内燃发动机2的运转停止并且采用第一电动发电机7和/或第二电动发电机8作为驱动力源的电动车辆模式。 此外,在热效率在仅通过发动机功率供给要求功率的情况下将下降的条件或类似条件下,ECU 50可切换至采用内燃发动机2和第二电动发电机8两者作为驱动力源的混合动力模式。
在混合动力模式期间,根据各种条件预先设定选择固定变速模式和无级变速模式中的哪一者,所述条件例如为车辆1A的行驶状态、内燃发动机2的运转状态、第一电动发电机7的温度、图中未示出的电池的蓄电率等。例如,在固定变速模式的实施期间,当满足某一预定条件——例如可能会期待车辆1A的系统效率的改善等——时,ECU 50可决定切换至无级变速模式而不是继续固定变速模式,且然后ECU 50将离合器12从自由模式切换至锁定模式。由此,车辆1A的运行模式从固定变速模式切换至无级变速模式。
如上所述,当离合器12处于锁定模式时,发动机的反作用转矩由旋转板21接收和承受。由于在内燃发动机2的燃烧稳定的状态下发动机的转矩继续沿正方向输出,因此,在锁定模式期间,在旋转板21沿正旋转方向Ra的旋转被阻止的状态下,转矩沿正方向作用的状态继续。如从图5将显而易见的,正旋转方向Ra是离合器12的爪部件26与旋转板21的凹部30的接合更强的旋转方向。因此,在内燃发动机2的燃烧稳定的状态下,离合器12的爪部件26与凹部30的接合被维持。
然而,当内燃发动机2在锁定模式期间发生燃烧异常(例如内燃发动机2的失火)并且该异常会伴随发动机转矩的下降时,发动机转速下降。由此,被阻止沿正旋转方向Ra旋转的旋转板21上的转矩可被消除,并且旋转板21可沿负旋转方向Rb旋转,这是不希望的。特别地,由于在锁定模式期间第一电动发电机7被控制为处于关停状态下,因此,如果发生内燃发动机2的失火,则离合器12的旋转板21上的转矩能容易地解除。如从图5将显而易见的,由于负旋转方向Rb是离合器12的爪部件26和旋转板21的凹部30之间的接合被破坏的方向,因此,离合器12的爪部件26和凹部30之间的接合暂时被释放。此后,当内燃发动机2的燃烧回归正常时,由于发动机转速在已暂时下降之后上升回归,正沿负旋转方向Rb 旋转的旋转板2的转速接近并达到零,并且离合器12再接合。该再接合可能导致离合器12中的构件的劣化。此外,在回归正常后的发动机转矩大的状况下,有时可能发生爪部件26无法恰当地接合在任何一个凹部30中,从而发生旋转板21沿正旋转方向Ra旋转的棘轮效应,尽管这种正旋转本不应被容许且迄今为止尚未被容许。由于在这种棘轮效应期间爪部件26和旋转板21之间产生强摩擦力,因此这些部分发生磨损,而且爪部件26与旋转板21之间随着它们的接触等可能产生异常噪音。
ECU 50检测作为内燃发动机2的燃烧异常的一个示例的失火的发生,并且如果已检测到失火的发生,则不论是否满足将离合器12从自由模式切换至锁定模式的预定条件,ECU 50都将离合器12保持在自由模式下。
ECU 50通过例如执行图8的控制例程来实行上述控制。用于图8的控制例程的程序存储在ECU 50中,并被适时读出且以预定间隔反复执行。首先,在步骤S1中,ECU 50执行失火检查,并且检查内燃发动机是否正在发生失火。在该失火检查中,ECU 50通过参照曲柄角传感器51的输出信号来监视发动机转速,并且在发动机转速已下降预定阈值以上的情况下判断为发动机已发生失火。然后,在步骤S2中,ECU 50基于步骤S1中的失火检查的结果来判定内燃发动机2是否已发生失火,并且在已发生这种失火的情况下将控制流程转移至步骤S3。但是,如果尚未发生失火,则控制流程转移至步骤S4。
在步骤S3中,ECU 50设定禁止离合器12切换至锁定模式的锁定模式禁止要求。当该锁定模式禁止要求被设定时,如果离合器12的当前动作模式是自由模式,则即使满足为了切换至锁定模式而已提供的上述预定条件,也禁止从自由模式切换至锁定模式,直至锁定模式禁止要求解除。此外,如果在锁定模式禁止要求被设定的时点离合器12的动作模式的状态为锁定模式,则执行从锁定模式向自由模式的切换。因此,不论是否满足上述预定条件,从锁定模式禁止要求被设定时起直到锁定模式禁止要求解除为止,离合器都被保持在自由模式下。
在步骤S4中,ECU 50解除锁定模式禁止要求。这样,当图8的控制 例程已在步骤S3中设定了锁定模式禁止要求时,在停止检测失火发生的时点,在步骤S4中立即解除该锁定模式禁止要求。然而,由于即使失火不是持续地发生而是仅发生了一次也认为是正在发生失火,因此在从已设定锁定模式禁止要求时起的预定时间段也可能不解除锁定模式禁止要求的设定,而是仅在该预定时间段已经过之后仍未再次检测到失火发生的时点才解除该设定。此外,为了避免锁定模式禁止要求以短的间隔反复被设定和解除并因而导致离合器12的过于频繁的动作,也可以在这种设定和解除已重复了预定次数的情况下推迟锁定模式禁止要求的解除,直至车辆1A的当前行程已结束。
根据该第一实施方式,由于当内燃发动机2已发生失火时维持自由模式,因此可以避免由于离合器12的再接合而引起的构件劣化(如果不是这样则在于锁定模式期间发生失火的情况下可能发生这种情况),并且还可以避免可能由于棘轮效应的发生而导致的磨损和/或异常噪音。
图8的控制例程经由上述失火检查来检测内燃发动机2的失火,并且在已检测到失火的情况下设定锁定模式禁止要求。然而,也可以不检测失火本身,而是检测伴随着失火的装置异常,并且在已检测到这种装置异常时以与由图8的控制例程执行的动作相似的方式设定锁定模式禁止要求。作为这种类型的装置异常,可以检测例如与内燃发动机2的燃烧关联的发动机构件如燃料喷射阀或火花塞(二者在图中均未被示出)等的异常,或用于控制内燃发动机2的类型的传感器如A/F传感器或空气流量计(二者在图中均未被示出)等的异常,并且如果已检测到发动机构件或传感器的异常,则可以以与由图8的控制例程执行的动作相似的方式设定锁定模式禁止要求。可以采用本身已知的检测方法来检测发动机构件或传感器的这种异常。
实施方式#2
接下来将参照图9和10说明本发明的第二实施方式。已应用了根据该第二实施方式的混合动力驱动装置的混合动力车辆1B的结构在图9中被示意性地示出。该车辆1B与第一实施方式的车辆1A的不同之处在于它具有不同的用于动力分割机构60的结构、不同的从动力分割机构60到驱动 轮Dw的结构和不同的用于离合器12的装设位置。由于该车辆1B的其它结构元件与车辆1A的相应结构元件相同,因此该车辆1B和车辆1A共有的结构在图9中将用相同的附图标记表示,并且将省略其详细说明。
动力分割机构60被构成为单小齿轮型的行星齿轮机构,并且包括作为外齿齿轮的太阳齿轮S、作为内齿齿轮的齿圈R以及自转并且还可旋转地承载与这些齿轮S和R啮合的小齿轮P的行星架C。太阳齿轮S、齿圈R和行星架C用作相对于彼此差动地旋转的三个旋转元件。第一电动发电机7和后述的离合器12的旋转板21与太阳齿轮S连结,内燃发动机2与行星架C连结,并且用于向驱动轮Dw输出转矩的包括图中未示出的齿轮系等的输出部61与齿圈R连结。在该第二实施方式中,太阳齿轮S对应于权利要求的“第一旋转元件”,行星架C对应于权利要求的“第二旋转元件”,而齿圈R对应于权利要求的“第三旋转元件”。如从图10的速度线图将显而易见的,当这三个旋转元件配置在该速度线图上时,它们按以下次序出现:对应于第一旋转元件的太阳齿轮S;对应于第二旋转元件的行星架C;和对应于第三旋转元件的齿圈R。
在该第二实施方式的情形中,设置在车辆1B上的离合器12用作介设在太阳齿轮S和外壳10之间的制动器,其中离合器12的旋转板21设置在太阳齿轮S上。以与第一实施方式中的情形相似的方式,该离合器12的动作模式可以在以下模式之间选择:锁定模式,在该锁定模式中,当太阳齿轮S的旋转方向为正旋转方向Ra时,离合器12容许从太阳齿轮S到外壳10的转矩传递以使得太阳齿轮S处于固定状态,而当旋转方向为负旋转方向Rb时,该转矩传递被切断并且太阳齿轮S切换至释放状态;和自由模式,在该自由模式中,无论太阳齿轮S的旋转方向是正旋转方向Ra还是负旋转方向Rb,从太阳齿轮S到外壳10的转矩传递都被切断并且太阳齿轮被保持在释放状态下。
在该车辆1B中,运行模式通过离合器12的动作模式在锁定模式和自由模式之间切换而在电机锁定模式和电机自由模式之间切换。这两种运行模式之间的切换由ECU 50以与第一实施方式中执行该切换的方式相似的 方式实施。在电机锁定模式期间,离合器12被控制为处于锁定模式,而且第一电动发电机7作为电动机和作为发电机的功能停止并且第一电动发电机7被控制为处于它能空转的关停状态。由此,在可以避免第一电动发电机7的过热等的同时,还可以避免会使系统效率恶化的动力再循环。另一方面,在电机自由模式期间,离合器12被控制为处于自由模式,而且第一电动发电机7的电机转矩和电机转速被控制成使得内燃发动机2在高效率的动作点运转。
如图10中用实线所示,由于接收内燃发动机2的反作用转矩的旋转板21沿正旋转方向Ra的旋转在离合器12处于锁定模式时被阻止,因此,除非正从内燃发动机2沿正方向输出发动机转矩,否则转矩沿正旋转方向Ra作用在旋转板21上的状态下的转速变成零。由此,输出部61相对于发动机转速的变速比变成由动力分割机构60的传动比唯一地决定,并且该变速比变成处于固定状态。另一方面,如图10中用虚线所示,当离合器12处于自由模式时,由于旋转板21无论其旋转方向是正旋转方向Ra还是负旋转方向Rb都被释放,因此可以通过控制第一电动发电机7的电机转矩和电机转速来以无级方式改变输出部61相对于发动机转速的变速比。
在该第二实施方式中,同样,由于在于电机锁定模式期间发生内燃发动机2的燃烧异常如失火的情况下会出现与在第一实施方式的情形中遇到的问题相似的问题,因此ECU 50不论是否满足将离合器12从其释放模式切换至锁定模式的预定条件都维持离合器12的自由模式。在该第二实施方式中,由ECU 50实施的控制例程与用于第一实施方式的图8的控制例程相同。此外,以与第一实施方式的情形相似的方式,也可以不检测失火本身,而是检测与失火相关的某种装置异常,并且在已检测到这种装置异常时设定锁定模式禁止要求。而且,锁定模式禁止要求的解除可以如结合第一实施方式所述的那样变更。
由于根据该第二实施方式,离合器12以与第一实施方式的情形相似的方式在内燃发动机已发生失火的情况下被保持在自由模式,因此可以避免由于离合器12的再接合而引起的构件劣化(如果不是这样则在于锁定模式 期间发生失火的情况下可能发生这种情况),并且还可以避免由于棘轮效应的发生而引起的磨损和/或异常噪音。
本发明并不限于上述实施方式;本发明可以在其范围内采用各种不同方式来实施。虽然在上述实施方式中将失火例示为会伴随发动机转矩下降的燃烧异常,但也可接受将本发明的主题设置为会伴随发动机转矩下降的任何类型的燃烧异常。例如,也可以在已发生诸如提前点火或爆震等燃烧异常的情况下或在已发生伴随着这种燃烧异常的装置异常的情况下设定锁定模式禁止要求并将离合器12保持在自由模式。作为伴随着提前点火的装置异常,可以例举某种发动机构件如火花塞等的异常,与伴随着失火的装置异常的情形一样。此外,作为伴随着爆震的装置异常,可以例举由某种传感器如爆震传感器(图中未示出)等用信号告知的异常。本发明的适用对象也可以不仅是在这些各种类型的异常中的一种异常本身已发生时,而且是在这些各种类型的异常中的多种异常相结合地发生时。
再者,虽然上述各种实施方式设置的内燃发动机2是火花点火式发动机,但也可以采用设置有不具有火花塞的柴油发动机的形式来实施根据本发明的混合动力驱动装置。点火正时被提前过多的提前点火和柴油机爆震本身就被已知为柴油发动机特有的燃烧异常。因此,在设置有柴油发动机的实施方式的情形中,可以在已发生提前点火或柴油机爆震的情况下或在已发生伴随着这种燃烧异常的装置异常的情况下设定锁定模式禁止要求并维持单向离合器的自由模式。此外,由于柴油发动机有时也会发生失火,所以也可以采用发生该类型的失火或发生与这种失火相关的异常的情形作为本发明的适用对象。