本发明涉及用于在换挡期间控制混合动力电动车辆转矩干预的系统和方法。更具体地,涉及用于控制混合动力电动车辆转矩干预的系统和方法,其中变速器输入转矩可被减小,以消除由换挡和换挡冲击引起的差异感。
背景技术:
在环保车辆中,混合动力电动车辆和插电式混合动力电动车辆采用电动机以及发动机作为动力源,以减小废气并提高燃料效率,并且具有动力传动系统,其独立地将发动机或电动机的动力传送至驱动轮,或者将发动机和电动机二者的动力传送至驱动轮。
如图1示例性所示,用于混合动力电动车辆的示例性动力传动系统包括串联设置的发动机10和电动机12、发动机离合器13、变速器14、混合动力起动发电机(hybrid starter generator,HSG)16、逆变器18以及可再充电的高电压电池20,所述发动机离合器13设置在发动机10和电动机12之间以传送或断开发动机10的动力,所述变速器14用于换挡(shift)并传送电动机12的动力或者电动机12的动力与发动机10的动力二者至驱动轮,然后输出动力,所述混合动力起动发电机16是一种连接到发动机10的曲轴皮带轮的电动机,用以传送动力和发电,从而起动发动机10以及对电池再充电,所述逆变器18用于控制电动机12并控制发电,所述可再充电的高电压电池20连接到逆变器18以便将电力提供至电动机12。
这种用于混合动力电动车辆的动力传动系统中,电动机12靠近自动变速器14安装,其被称作安装电动装置的变速器(transmission mounted electric device,TMED)的类型,并且提供诸如电动车辆(EV)模式、混合动力电动车辆(HEV)模式以及再生制动(RB)模式的驱动模式,所述电动车辆(EV)模式仅用于只使用电动机12的动力的电 动车辆,在所述混合动力电动车辆(HEV)模式中,发动机10被用作主要的动力源,且电动机12被用作辅助的动力源,在所述再生制动(RB)模式中,当车辆制动或利用惯性驱动时,车辆的制动和惯性能量通过电动机12的发电被回收,并因此对电池20再充电。
参考图2,如果从发动机10和/或电动机12输入的变速器输入转矩是恒定的,则在换挡期间由于离合器连接或分离,变速器输出转矩被改变,因此,驾驶者感受到由换挡或换挡冲击引起的差异感。
因此,如图2示例性所示,在混合动力电动车辆换挡过程中,通过使用流体(变速器油)对变速器内的离合器和制动器进行最佳滑差控制(slip control),使换挡中产生的差异感最小化,并且在换挡过程中,为了减小当离合器连接到变速器内部或从变速器内部分离时产生的冲击,应用转矩干预控制以瞬时减小变速器输入转矩。
在这种转矩干预控制中,用于减小变速器输入转矩的转矩减小的对象是发动机、电动机或发动机与电动机二者。
但是,如果转矩减小的对象是发动机与电动机二者,则相对于转矩减小的对象是电动机的情况而言,转矩干预控制在电池充电被部分限制的情况下,或者在电动机转矩控制不充分且转矩控制响应性被降低的情况下进行,这就存在将转矩适当地分配到发动机和电动机的困难。
此外,当用于转矩干预控制的发动机转矩减小时,对应于快速转矩变化的发动机点火角度的变化引起发动机效率降低且降低燃料效率。
技术实现要素:
本发明致力于解决与现有技术有关的上述问题,本发明的一个目的在于提供用于在换挡时控制混合动力电动车辆转矩干预的系统和方法,其中在转矩干预控制期间,发动机转矩被最大地保持,并且考虑HSG和电动机的效率、通过最佳转矩分配进行HSG和电动机转矩的转矩干预控制,以促进燃料效率改善。
一方面,本发明提供用于在换挡时控制混合动力电动车辆的转矩干预的方法,该方法包括:判断转矩干预控制是否必要,当判断转矩 干预控制为必要时,根据电动机和HSG的状态确定转矩干预需求,以及在根据所确定的转矩干预需求最大保持发动机转矩的条件下,执行基于HSG和电动机转矩减少量的转矩干预控制。
在优选实施例中,如果电动机和HSG转矩控制不能被执行,则发动机转矩减少量可被确定为转矩干预需求。
在另一个优选实施例中,如果电动机和HSG转矩控制可以被执行,且混合动力电动车辆的当前驱动模式为EV模式,则电动机转矩减少量可被确定为转矩干预需求。
在另一个优选实施例中,如果电动机和HSG转矩控制可以被执行,混合动力电动车辆的当前驱动模式是HEV模式,且转矩干预需求大于电动机充电限制转矩与HSG充电限制转矩之和,则发动机转矩减少量、电动机充电限制转矩以及HSG充电限制转矩之和可被确定为转矩干预需求。
在另一个优选实施例中,如果电动机和HSG转矩控制可以被执行,混合动力电动车辆的当前驱动模式是HEV模式,且转矩干预需求小于电动机充电限制转矩与HSG充电限制转矩之和,则保持的发动机转矩、电动机转矩减少量以及HSG转矩减少量之和可被确定为转矩干预需求。
在另一个优选实施例中,电动机转矩减少量和HSG转矩减少量可通过最佳转矩分配考虑HSG和电动机的效率来确定。
一方面,本发明提供用于在换挡时控制混合动力电动车辆的转矩干预的系统,该系统包括:转矩干预控制判断单元、转矩干预需求确定单元以及转矩干预控制器,所述转矩干预控制判断单元被配置成判断转矩干预控制是否必要,所述转矩干预需求确定单元被配置成,当判断转矩干预控制必要时,根据电动机和HSG的状态确定转矩干预需求,所述转矩干预控制器被配置成,在根据所确定的转矩干预需求最大保持发动机转矩的条件下,执行基于HSG和电动机转矩减少量的转矩干预控制。
本发明的其它方面和优选实施例在下文讨论。
本发明的上述和其它特征在下文讨论。
附图说明
本发明的以上和其它特征,将参考以下仅以说明性方式给出、因而并不限制本发明的附图中的某些示例性实施例进行详细描述,其中:
图1是示出用于混合动力电动车辆的示例性动力传动系统的配置的示图;
图2是示出转矩干预控制的概念的图表;
图3是示出根据本发明的用于在换挡期间控制混合动力电动车辆的转矩干预的方法的流程图;
图4是根据本发明在换挡期间应用混合动力电动车辆的转矩干预控制的动力传动系统的方框图,其示出确定电动机转矩和HSG转矩减少量的实例;以及
图5是示出根据本发明的用于在换挡期间控制混合动力电动车辆的转矩干预的方法的图表。
应当理解,附图不一定是按照比例绘制的,其呈现说明本发明的基本原理的各种优选特征的稍加简化的表示。本文公开的本发明的具体设计特征,包括例如具体尺寸、方向、位置以及形状,将部分地通过特定的预期应用和使用环境加以确定。
在图中,贯穿附图的几个图中的附图标记指代本发明的相同或等同部件。
具体实施方式
下文将详细参考本发明的各种实施例,其实例在附图中说明并在下面描述。虽然将结合示例性实施例描述本发明,但应当理解,本描述并不意在将本发明局限于这些示例性实施例。相反地,本发明希望不仅涵盖示例性实施例,而且还涵盖包括在权利要求所限定的本发明的精神和范围内的各种替换、修改、等同物以及其他实施方式。
控制混合动力电动车辆转矩的硬件可包括:混合动力电动车辆的混合动力控制单元(HCU),根据来自HCU的转矩指令控制发动机转矩的发动机控制单元(ECU),根据来自HCU的转矩指令控制HSG和电动机转矩的电动机控制单元,以及执行换挡相关控制的换挡控制 单元。
根据本发明,HCU可包括转矩干预控制判断单元、转矩干预需求确定单元以及转矩干预控制器,所述转矩干预控制判断单元判断转矩干预控制是否必要,当判断转矩干预控制为必要时,所述转矩干预需求确定单元根据电动机和HSG的状态确定转矩干预需求,所述转矩干预控制器在基于所确定的转矩干预需求最大程度地保持发动机转矩的条件下,执行根据HSG和电动机转矩减少量的转矩干预控制。
图3是示出根据本发明的用于在换挡期间控制混合动力电动车辆的转矩干预的方法的流程图。
首先,转矩干预控制判断单元判断转矩干预控制是否必要(操作S101)。
即是说,当混合动力电动车辆的换挡控制单元向HCU传送表明换挡正在进行的信号时,HCU判断转矩干预控制是必要的。
然后,判断电动机和HSG转矩控制是否可正常执行(操作S102)。
作为判断的结果,当判断由于电动机控制单元的错误或故障而使电动机和HSG转矩控制不能正常执行时,则执行转矩干预控制的转矩减小的对象变为发动机。
即是说,在电动机转矩控制不可能或由HSG对电池充电被限制的情况下,执行转矩干预控制的转矩减小的对象变为发动机。
因此,在转矩干预控制是必要的条件下,如果电动机和HSG转矩控制不可正常执行,则转矩干预需求确定单元根据发动机转矩减少量来确定转矩干预需求(操作S103),并且当HCU向发动机控制单元传送表明所确定的发动机转矩减少量的指令时,执行基于所确定的发动机转矩减少量的转矩干预控制。
这里,如果执行转矩干预控制的转矩减小的对象是发动机,则由于点火效率减小,可降低燃料效率以快速跟随转矩。
之后,如果电动机和HSG转矩控制可正常执行,则判断为混合动力电动车辆的当前驱动模式(操作S104)。
作为判断的结果,如果混合动力电动车辆的当前驱动模式是EV模式,则发动机转矩不输入变速器,因此,执行转矩干预控制的转矩 减小的对象变为电动机。
因此,在转矩干预控制是必要的且当前驱动模式是EV模式的条件下,如果电动机和HSG转矩控制不可正常执行,则转矩干预需求确定单元根据电动机转矩减少量确定转矩干预需求(操作S105),并且当HCU的转矩干预控制器向电动机控制单元传送表明所确定的电动机转矩减少量的指令时,执行基于所确定的电动机转矩减少量的转矩干预控制。
之后,如果电动机和HSG转矩控制可正常执行且混合动力电动车辆的当前驱动模式被判断为HEV模式,则将转矩干预需求与电动机充电限制转矩和HSG充电限制转矩之和进行比较(操作S106)。
作为该比较的结果,如果转矩干预需求大于电动机充电限制转矩和HSG充电限制转矩之和,则对应于超过电动机充电限制转矩和HSG充电限制转矩之和的超过量的转矩干预需求被发动机转矩减少量恢复。
这里,发动机转矩减少量被确定为:转矩干预需求-(电动机充电限制转矩+HSG充电限制转矩)(操作S107)。
因此,在转矩干预控制是必要的条件下,如果电动机和HSG转矩控制可正常执行,当前驱动模式是HEV模式,且转矩干预需求超过电动机充电限制转矩和HSG充电限制转矩之和,则转矩干预需求确定单元将[发动机转矩减少量+电动机充电限制转矩+HSG充电限制转矩]确定为转矩干预需求(操作S108),并且当HCU的转矩干预需求确定单元向发动机控制单元和电动机控制单元传送表明所确定的转矩干预需求的指令时,执行基于所确定的转矩干预需求的转矩干预控制。
另一方面,如果转矩干预需求小于电动机充电限制转矩与HSG充电限制转矩之和,则电动机或HSG驱动转矩处于超过电池的充电量的状态(即,可将负(-)转矩值应用于电动机或HSG驱动转矩的状态),因此,可在发动机转矩不减小的情况下确定转矩干预需求。
因此,在转矩干预控制是必要的条件下,如果电动机和HSG转矩控制可正常执行,当前驱动模式是HEV模式,且转矩干预需求小于电动机充电限制转矩和HSG充电限制转矩之和,则转矩干预需求确定单元将发动机转矩(保持不变)、电动机转矩减少量以及HSG转矩减少 量之和确定为转矩干预需求(操作S109)。
如图4示例性所示,当HCU向发动机控制单元和电动机控制单元传送表明操作S109中所确定的转矩干预需求的指令时,执行基于所确定的转矩干预需求的转矩干预控制,并且在保持发动机扭距的同时执行基于HSG和电动机转矩减少量分配的转矩干预控制。
如上所述,变速器输入转矩可以是发动机转矩、HSG转矩以及电动机转矩之和,并且由于换挡期间的转矩干预控制是将变速器输入转矩减小至目标值的请求,因此当HSG转矩改变时,变速器输入转矩根据需要追随输入至变速器的转矩总和,以便追随干预目标转矩。
参考图5,可以考虑HSG和电动机效率通过最佳转矩分配确定电动机转矩减少量γ和HSG转矩减少量β,为了这个目的,从电动机效率图和HSG效率图提取的值可被用作电动机转矩减少量γ和HSG转矩减少量β。因此,可以防止在转矩干预控制期间HSG和电动机效率的降低。
如上所述,可以考虑电动机和HSG的状态、驱动模式、电动机和HSG充电限制转矩等确定转矩干预需求,并且在根据所确定的转矩干预需求最大保持发动机转矩的条件下,执行基于HSG和电动机转矩减少量的转矩干预控制,从而防止发动机效率的降低和提高燃料效率。
如由上述所显而易见的,本发明提供以下效果。
首先,当混合动力电动车辆换挡期间执行转矩干预控制时,在最大地保持发动机转矩的条件下,执行基于HSG和电动机减少量的转矩干预控制,从而防止发动机效率的降低和提高燃料效率。
其次,考虑HSG和电动机的效率通过最佳转矩分配确定用于转矩干预控制的HSG和电动机转矩减少量,从而防止HSG效率和电动机效率的降低。
本发明已参考优选实施例被详细描述。但是,应当理解,本领域技术人员可在不偏离权利要求及其等同物所定义的本发明的精神和范围的情况下,对这些实施例做出改变。