本发明涉及用于控制电动车辆的冲击减少的系统和方法,更特别地,涉及用于控制电动车辆的冲击减少的系统和方法,该系统和方法减少在倾斜的道路上释放变速杆的P档时产生的冲击。
背景技术:
一般来说,诸如电动车辆、燃料电池车辆和混合动力电动车辆的环保型车辆由通过电能产生转矩的驱动电动机进行操作。
电动车辆仅使用由电池的功率操作的驱动电动机的功率。相反,混合动力电动车辆将内燃机的功率与驱动电动机的功率结合起来使用。
如果在倾斜的道路上电动车辆停车,则通过车辆的重量将转矩施加在车轮上,使得停车齿轮、驱动轴和车轮驱动轴顺序地变形,并且能量被累积。因此,根据释放累积的能量,电动车辆产生瞬时冲击。由于驱动系统的变形累积的能量可以与车辆重量和道路倾斜度成比例的增加,并且可以造成严重的影响。
根据现有技术,为了减少冲击,硬件系统已经被改进,诸如停车齿轮或停车止轮垫的结构改变。然而,通过改进硬件系统而不减少因驱动系统的变形导致的累积的能量对减少冲击是有局限性的,这是问题的根本原因。此外,提供有线控换挡(SBW:shift by wire)系统的车辆使用高转矩的制动器,所以可增加车辆重量和制造成本。
在该背景技术部分公开的上述信息仅用于增强本发明的背景的理解,并且因此,它可以包含不构成在该国家中对于本领域普通技术人员来说已知的现有技术的信息。
技术实现要素:
本发明提供了用于控制电动车辆的冲击减少的系统和方法,该系 统和方法具有通过施加用于冲击减少的转矩以及通过区分反颠簸(anti-jerk)控制,减少在倾斜的道路上释放变速杆的P档时产生的冲击的优势。
本发明的示例性实施例提供了用于控制包括电动机作为动力源的电动车辆的冲击减少的方法,所述方法可以包括当在倾斜的道路上需要变速杆的P档的释放时,确定是否满足转矩施加条件;当满足所述转矩施加条件时,计算用于冲击减少的转矩;施加用于冲击减少的所述转矩,并且控制反颠簸以改变;当车辆速度大于或等于预设的速度时,停止施加用于冲击减少的所述转矩;以及当完成所述变速杆的所述P档的所述释放时,控制反颠簸以恢复。
基于车辆重量、车轮半径、变速比和制动需求的量,可以计算用于冲击减少的转矩。
当加速度传感器不是处于故障状态,所述车辆速度小于所述预设的速度,以及所述制动需求的量大于或等于预设的值时,可以满足所述转矩施加条件。
根据道路倾斜度,所述反颠簸的改变控制可以调整反颠簸增益和振动分量提取滤波器的系数。
所述方法可以还包括当不满足所述矩阵施加条件时,控制反颠簸以改变;以及当完成所述变速杆的所述P档的所述释放时,控制反颠簸以恢复。
本发明的另一个示例性实施例提供了用于控制包括电动机作为动力源的电动车辆的冲击减少的系统,所述系统可以包括驾驶信息检测器,配置成检测所述电动车辆的车辆速度、道路倾斜度、制动踏板的位置值和变速杆;以及控制器,配置成基于来自所述驾驶信息检测器的信号控制电动机转矩,其中当在倾斜的道路上需要变速杆的P档的释放时,所述控制器确定是否满足转矩施加条件;当满足所述转矩施加条件时,计算用于冲击减少的转矩;施加用于冲击减少的所述转矩,控制反颠簸以改变;当车辆速度大于或等于预设的速度时,停止施加用于冲击减少的所述转矩;以及当完成所述变速杆的所述P档的所述释放时,控制反颠簸以恢复。
基于车辆重量、车轮半径、变速比和制动需求的量,所述控制器 可以计算用于冲击减少的所述转矩。
当加速度传感器不是处于故障状态,所述车辆速度小于所述预设的速度,以及所述制动需求的量大于或等于预设的值时,所述控制器可以确定满足所述转矩施加条件。
根据道路倾斜度,通过调整反颠簸增益和振动分量提取滤波器的系数,所述控制器可以控制所述反颠簸以改变。
当不满足所述矩阵施加条件时,所述控制器可以控制反颠簸以改变,并且当完成所述变速杆的所述P档的所述释放时,控制反颠簸以恢复。
一种包含由处理器执行的程序指令的非短暂的计算机可读介质可以包括:当在倾斜的道路上需要变速杆的P档的释放时,确定是否满足转矩施加条件的程序指令;当满足所述转矩施加条件时,计算用于冲击减少的转矩的程序指令;施加用于冲击减少的所述转矩,并且控制反颠簸以改变的程序指令;当车辆速度大于或等于预设的速度时,停止施加用于冲击减少的所述转矩的程序指令;以及当完成所述变速杆的所述P档的所述释放时,控制反颠簸以恢复的程序指令。
如上所述,根据本发明的示例性实施例,可以通过施加用于冲击减少的转矩以使驱动系统的变形最小化,减少在倾斜的道路上释放P档时产生的电动车辆的冲击。
另外,可以根据道路倾斜度通过区分反颠簸控制,减少电动车辆的冲击,在电动车辆提供有SBW系统的情况下,可以减少制造成本。
附图说明
图1是根据本发明的示例性实施例用于控制电动车辆的冲击减少的系统的示意性方框图。
图2是根据本发明的示例性实施例示出用于控制电动车辆的冲击减少的方法的流程图。
图3是根据本发明的示例性实施例为了计算用于冲击减少的转矩施加于在倾斜的道路上的电动车辆的力的示意性描述。
图4(a)是根据现有技术示出在释放变速杆的P档时电动车辆的 状态的图,并且图4(b)是根据本发明的示例性实施例示出在释放变速杆的P档时用于冲击减少的转矩被施加的电动车辆的状态的图。
图5(a)是示出反颠簸未被施加的电动车辆的状态的图,图5(b)是根据现有技术示出反颠簸被施加的电动车辆的状态的图,并且图5(c)是根据本发明的示例性实施例示出反颠簸被施加的电动车辆的状态的图。
具体实施方式
可以理解的,本文使用的术语“车辆”或者“车的”或者其他类似的术语包括一般机动车辆,如包括运动型多功能车(SUV)的客运汽车、公共汽车、卡车、各种商用车辆,包括各种船艇和舰船的船只,飞机等,并且包括混合动力车辆、电动车辆、插电式混合动力电动车辆、氢动力车辆和其他替代燃料车辆(例如,燃料来自石油以外的资源)。本文提到的混合动力车辆是具有两个或者多个动力源的车辆,例如,汽油电动车辆。
本文使用的术语只是用于描述特定的实施例,并不用于限制本发明。如本文使用的单数形式“一种/个(a/an)”以及“所述”旨在也包括复数形式,除非上下文清楚地指出。应当进一步理解,当在本说明书中使用时,术语“包括(comprise)”和/或“包含”限定了所述特征、整数、步骤、操作、元件、和/或部件的存在,但不排除一个或多个其他特征、整数、步骤、操作、元件、部件和/或其集合的存在或添加。本文使用的术语“和/或者”包括列出的一个或者多个相关项目中的任一个和全部的组合。在整个说明书中,除非明确地相反的描述,否则词“包括”和变形诸如“包括(comprises)”或“包含”将被理解为暗示包括所述元件,但并不排除任何其他的元件。另外,在说明书中所描述的术语“单元”、“-器”、“-机”和“模块”意指用于处理至少一个功能和操作的单元,并且可以由硬件部件或软件部件及其组合来实施。
在以下详细的描述中,仅简单地以例示的方式示出和描述了本发明的某些示例性实施例。本领域技术人员将理解,所描述的实施例可以以各种不同的方式进行修改,所有的修改将不偏离本发明的精神或 保护范围。
在整个说明书中,相同的参考标记指示相同的构成元件。
在本说明书和权利要求书中,应当理解,电动车辆是指使用电作为动力源的任何车辆,诸如使用电作为动力源的一部分的插入式混合动力电动车辆(PHEV)或混合动力电动车辆(HEV),以及使用电作为全部的动力源的电动车辆(EV)。
另外,应当理解,方法中的一些可以由至少一个控制器来执行。术语控制器是指包括存储器和处理器的硬件设备,所述硬件设备配置成执行应被解释为其算法结构的一个或多个步骤。存储器配置成存储算法步骤,并且处理器具体配置成执行所述算法步骤以实行下面进一步描述的一个或多个过程。
此外,本发明的控制逻辑可以嵌入到计算机可读介质上作为非短暂的计算机可读媒体,所述计算机可读介质包含可执行的程序指令,该程序指令由处理器、控制器等执行。计算机可读介质的示例包括但并不局限于ROM、RAM、光盘(CD)、磁带、软盘、闪存盘、智能卡和光学数据存储设备。计算机可读记录介质也可以分布在与计算机系统连接的网络上,使得所述计算机可读媒体如通过远程信息处理服务器或者控制器局域网(CAN)以分布式方式进行存储和执行。
在下文中将参考附图详细描述本发明的示例性实施例。
图1是根据本发明的示例性实施例用于控制电动车辆的冲击减少的系统的示意性方框图。
如图1所示,根据本发明的示例性实施例用于控制电动车辆的冲击减少的系统包括驾驶信息检测器10、控制器20、逆变器30、电池40、发动机50、电动机60和变速器70。
驾驶信息检测器10包括车辆速度传感器11、加速度传感器12、制动踏板位置传感器13和变速杆传感器14。
车辆速度传感器11检测电动车辆的速度,并且传输对应的信号到控制器20。车辆速度传感器11可以被安装在电动车辆的车轮处。
加速度传感器12检测电动车辆的加速度,并且传输对应的信号到控制器20。控制器20可以通过使用加速度传感器20检测道路倾斜度。
制动踏板位置传感器(BPS:brake pedal position sensor)13持续检测制动踏板的位置值,并且传输监测信号到控制器20。当制动踏板被充分按压时,制动踏板的位置值可以是100%,并且当根本就不按压制动踏板时,制动踏板的位置值可以是0%。
变速杆传感器14检测驾驶者选择的变速杆的位置,并且传输对应的信号到控制器20。变速杆传感器14可以包括禁止器(inhibitor)开关。
响应于来自控制器20的控制信号,逆变器30通过将从电池40供应的DC电压变换成三相交流电压来驱动电动机60。
逆变器30由多个功率开关元件组成,并且逆变器30的功率开关元件可以每个由IGBT(绝缘栅双极型晶体管)、MOSFET、晶体管和继电器中的任一个来实施。
电池40由多个单元电池构成,并且用于为电动机60提供驱动电压的高压被存储在电池40中。根据充电状态电池40由电池管理系统(未示出)进行控制,并且防止在临界电压下或超过临界电压时电池40过度充电。电池管理系统可以将电池40的充电状态传送到控制器20以使能够执行电动机60的驱动和再生控制。
通常包括在混合电动车辆中的发动机50基于来自控制器20的控制信号,在启动时,输出动力作为动力源。
电动机60由从逆变器30施加的三相交流电压进行操作以产生转矩,并且操作为电力发电机,并且在滑行期间将再生能量供应给电池40。
变速器70根据来自控制器20的控制信号使用液压通过操作接合元件和释放元件,调整变速比。
如果发动机50被包括在电动车辆中,发动机离合器(未示出)可以被设置在发动机50和驱动电动机60之间,使得其提供EV模式和HEV模式。
当在倾斜的道路上需要变速杆的P档(停车档)的释放时,控制器20确定是否满足转矩施加条件,当满足转矩施加条件时,计算且施加用于冲击减少的转矩,并且控制反颠簸以改变。
另外,在改变反颠簸之后,当车辆速度大于或等于预设的速度 时,控制器20停止施加用于冲击减少的转矩,并且当完成变速杆的P档的释放时,控制反颠簸以恢复。
当不满足转矩施加条件时,控制器20控制反颠簸以改变而不施加用于冲击减少的转矩,并且当完成变速杆的P档的释放时,控制反颠簸以恢复。
因此,可以施加用于冲击减少的转矩,以使在倾斜的道路上释放变速杆的P档时产生的驱动系统的变形最小化,并且通过由道路倾斜度进行区分,可以控制反颠簸。
为此,控制器20可以被实施为由预设的程序操作的至少一个处理器,并且为了实行根据本发明的示例性实施例用于控制电动车辆的冲击减少的方法的每个步骤,该预设的程序可以被编程。
例如,本文所描述的各种实施例可以在记录介质内实施,该记录介质可以通过使用软件、硬件或其组合由计算机或类似的设备读取。
根据硬件实施,本文所描述的实施例可以通过使用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑设备(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器和被设计用于实行任何其他功能的电气单元中的至少一个来实施。
根据软件实施,可以由单独的软件模块实施实施例诸如在本实施例中所描述的过程和功能。每个软件模块可以实行在本发明中所描述的一个或多个功能和操作。软件代码可以由以适当的程序语言编写的软件应用程序来实施。
在下文中,将参考图2到图5详细描述根据本发明的示例性实施例用于控制电动车辆的冲击减少的方法。
图2是根据本发明的示例性实施例示出用于控制电动车辆的冲击减少的方法的流程图。
如图2所示,根据本发明的示例性实施例,用于控制电动车辆的冲击减少的方法从在步骤S100处检测用于减少电动车辆的冲击的驾驶信息开始。
在步骤S110,基于在步骤S100检测的驾驶信息,控制器20确定在倾斜的道路上是否需要变速杆的P档(停车档)的释放。
当在步骤S110,在倾斜的道路上需要变速杆的P档的释放时,在步骤S120,控制器20确定是否满足转矩施加条件。
当加速度传感器12不是处于故障状态,车辆速度小于预设的速度,并且制动需求的量大于或等于预设的值时,满足转矩施加条件。
如果加速度传感器12坏了(发生故障),则检测不到电动车辆的道路倾斜度,所以当加速度传感器12没有发生故障时,确定满足转矩施加条件。
在车辆速度小于预设的速度的情况下,它可能意味着电动车辆已经停止。即,预设的速度可以是0(零)。
如果制动需求的量大于或等于预设的值,则因为制动踏板的位置值大于或等于预设的值,所以可以防止当依据检测道路倾斜度的误差施加错误的转矩时可以发生的突然加速。即,可以根据道路倾斜度和用于冲击减少的转矩的大小确定预设的值。
本文中,如果变速杆的类型是门型(gate type)或线控换挡(SBW)型,则当变速杆是P档,并且操作制动时,可以确定满足转矩施加条件。相反,如果变速杆的类型是线型(line type),则当变速杆是P档,操作制动,并且变速杆的操作按钮被打开时,可以确定满足转矩施加条件。
当在步骤S120满足转矩施加条件时,在步骤S130,控制器20计算用于冲击减少的转矩。
基于车辆重量、车轮半径、变速比和制动需求的量,可以计算用于冲击减少的转矩。
图3是根据本发明的示例性实施例描述为了计算用于冲击减少的转矩在倾斜的道路上施加到电动车辆的力的图。
如果重量是m的电动车辆停止在角度是θ的倾斜的道路上,则电动车辆的重力F1是m*g*sinθ[N](g表示重力加速度)。
此时,当变速杆的P档被释放时,电动车辆由力F1被向前或向后推。因此,因为停车齿轮和停车止轮垫啮合,所以力F1可以造成电动车辆的驱动系统如停车齿轮、驱动轴和车轮驱动轴的变形。
可以通过将力F1乘以电动车辆的车轮半径,计算驱动系统的变形的大小。另外,可以通过以下等式计算改变为转矩单位的变形的大 小。
F2=F1*车轮半径/变速比=m*g*sinθ*车轮半径/变速比[Nm]
本文中,m表示电动车辆的重量,g表示重力加速度,以及θ表示倾斜的道路的角度。另外,减速比可以代替变速比使用。
因此,如果在倾斜的道路上释放变速杆的P档时转矩F2被施加到电动车辆的电动机,可以减少由于驱动系统的变形引起的冲击。
当在步骤S130计算了用于冲击减少的转矩,在步骤S140,控制器20施加计算的用于冲击减少的转矩,并且控制反颠簸以改变。
如果控制器20可以正确地知道电动车辆的重量和道路倾斜度,则可以通过施加计算的用于冲击减少的转矩使在释放P档时产生的冲击最小化。然而,在加速度传感器的基础上检测的道路倾斜度可以有误差,并且电动车辆的重量可以由乘客的数量或行李的总量被改变。因此,通过只施加用于冲击减少的转矩对减少冲击是有局限性的。此外,如果在完成变速杆的P档的释放之前过分地施加用于冲击减少的转矩,止轮垫(sprag)的耐久性可恶化。
因此,根据道路倾斜度,控制器20可以通过调整反颠簸增益和振动分量提取滤波器(filter)的系数,使在释放P档时产生的冲击最小化。
基于反颠簸的最大转矩、反颠簸的最小转矩、模型速度滤波器和振动分量提取滤波器,反颠簸增益可以被映射为在0到1范围内的值。
之后,在步骤S160,控制器20将车辆速度和预设的速度相比较。
当在步骤S160车辆速度大于或等于预设的速度时,在步骤S170,控制器20停止施加用于冲击减少的转矩。
当在步骤S170用于冲击减少的转矩的施加被停止时,在步骤S180,控制器20确定是否完成变速杆的P档的释放,并且当完成变速杆的P档的释放时,在步骤S190,控制反颠簸以恢复。
相反,当在步骤S120不满足转矩施加条件时,在步骤S150,控制器20控制反颠簸以改变而不施加用于冲击减少的转矩。
之后,控制器20继续进行该过程到步骤S180,以确定是否完成变速杆的P档的释放,并且当完成变速杆的P档的释放时,在步骤 S190,控制反颠簸以恢复。
图4(a)是根据现有技术示出在释放变速杆的P档时电动车辆的状态的图,并且图4(b)是根据本发明的示例性实施例示出在释放变速杆的P档时用于冲击减少的转矩被施加的电动车辆的状态的图。
如图4(a)所示,根据现有技术,在释放P档时电动车辆的车辆加速度和电动机速度急剧改变,从而产生冲击。
另一方面,如图4(b)所示,由于根据本发明的示例性实施例施加用于冲击减少的转矩,所以不断保持电动车辆的车辆加速度和电动机速度。
图5(a)是示出未施加反颠簸的电动车辆的状态的图,图5(b)是根据现有技术示出施加了反颠簸的电动车辆的状态的图,并且图5(c)是根据本发明的示例性实施例示出施加了反颠簸的电动车辆的状态的图。
如图5(a)所示,当反颠簸未施加于电动车辆时,可以产生强烈的振动。此外,如图5(b)所示,虽然根据现有技术反颠簸被施加于电动车辆,但还可以产生弱振动。然而,如图5(c)所示,当根据本发明的示例性实施例反颠簸被施加于电动车辆时,可以使电动车辆的振动最小化。
如上所述,根据本发明的示例性实施例,通过施加用于冲击减少的转矩以使驱动系统的变形最小化,并且通过根据道路倾斜度区分反颠簸控制,可以减少在倾斜的道路上在释放P档时产生的冲击。
虽然已经描述了与目前被认为是实际的示例性实施例相关的本发明,可以理解的,本发明不局限于公开的实施例。相反,本发明旨在覆盖包括在随附权利要求的精神和保护范围内的各种修改和等效布置。
虽然已经描述了与目前被认为是实际的示例性实施例相关的本发明,可以理解的,本发明不局限于公开的实施例,但是,正相反,旨在覆盖包括在随附权利要求的精神和保护范围内的各种修改和等效布置。