树脂膜、叠层体及其制造方法以及燃料电池的制造方法与流程

文档序号:11141330阅读:548来源:国知局

本发明涉及在固体高分子型燃料电池的制造等中使用的树脂膜、包含该树脂膜的叠层体(叠层膜)及其制造方法,以及使用上述叠层体来制造膜电极接合体的方法。



背景技术:

固体高分子型燃料电池具有被称作膜电极接合体(Membrane Electrode Assembly:MEA)的基本构成。就MEA而言,是在作为离子交换膜的固体高分子电解质膜的两面,叠层以担载有铂族金属催化剂的碳粉末为主成分的电极膜(催化剂层或电极催化剂膜),将得到的叠层体进一步利用作为导电性的多孔膜的燃料气体供给层和空气供给层进行夹持而得到的。在该MEA中,在电解质膜和电极膜的任一者中都含有离子交换树脂,但通常,电解质膜和电极膜可以以流延法和/或涂布法等形成。作为电解质膜和电极膜的叠层方法,通常采用使分别形成在支持体上的两层接触,利用以温度130~150℃左右(根据使用材料的不同,150~200℃左右)、压力1~10MPa左右进行加热压合而密合,然后剥离支持体的方法。因此,作为支持体使用脱模膜,对于脱模膜,要求具有针对电解质膜和电极膜的适度的脱模性(剥离性)和密合性。电解质膜和电极膜中所含的离子交换树脂,是具有脱模性高的氟树脂的主链、和含脱模性低的磺酸基的侧链的特异结构的树脂,难以预测与剥离性相关的行为,难以获得剥离性和密合性之间的平衡。另外,就脱模膜而言,很多情况为了提高操作性、生产性而与机械特性高的基材膜进行叠层来使用,难以提高针对不具有反应性基团等的通常使用的基材膜的密合性。进一步地,针对燃料电池制造用脱模膜,不仅在制造工序上要求耐热性,而且从生产性的观点出发,由于以卷对卷(roll to roll)的方式进行制造,还要求柔软性。作为脱模膜,一般地通常使用氟类膜,但是,尽管耐热性、脱模性、非污染性方面优异,但价格高,而且在使用后的废弃燃烧处理中难以燃烧,容易产生有毒气体。进一步地,由于弹性模量低,以卷对卷的方式的制造是困难的。因此,作为代替氟类膜的脱模膜,也提出了由环状烯烃类树脂形成的脱模膜。

在日本特开2010-234570号公报(专利文献1)中,公开了由环烯烃类共聚物形成的脱模膜,也记载了在聚对苯二甲酸乙二醇酯膜等基材膜上涂布环烯烃类共聚物溶液而形成的脱模膜。另外,在实施例中,在聚对苯二甲酸乙二醇酯膜上,使用流延装置,流延了包含乙烯和降冰片烯的共聚物的溶液,形成了厚度0.5μm的脱模膜。

然而,该脱模膜虽然针对包含离子交换树脂的电解质膜、电极膜的脱模性优异,但由于与聚对苯二甲酸乙二醇酯膜的密合性低,基材膜容易剥离,因此,操作性、MEA的生产性降低。另外,该脱模膜在高温下的MEA的制造工序中针对电解质膜、电极膜的脱模性不充分。

在日本特开2009-102558号公报(专利文献2)中,公开了由以下两层所构成的叠层膜:叠层于塑料基材、包含含氯树脂的第一层;以及叠层于该第一层、包含环状聚烯烃类树脂的第二层,其中,上述第一层及上述第二层分别为利用涂布形成的叠层膜。该文献中,记载了叠层膜可以被利用于工业用脱模膜等工业材料、食品、医药品或化学品等的包装膜、液晶用偏振片等光学构件中。另外,作为优选的环状聚烯烃类树脂,记载了环状烯烃与链状烯烃的共聚物。

然而,在该文献中没有关于燃料电池的记载。另外,即使将该膜用于燃料电池制造用脱模膜,因为层结构复杂,因此生产性、操作性也较低。需要说明的是,在该文献中,没有关于在环状聚烯烃类树脂之中,优选环状烯烃和链状烯烃的共聚物的原因的记载。

另外,在日本特开2000-95957号公报(专利文献3)中,公开了具有以下两种成分的热学上可逆的成型材料:包含透明塑料材料的第1成分;以及包含与第1成分没有热力学上的混合性、折射率的温度依赖性也不同的非液晶塑料材料的第2成分。在该文献中,作为第1成分的一例,例示了环烯烃,作为构成第2成分的单体的一例,例示了偏氯乙烯。在实施例中,制备了将共聚酰胺与包含苯乙烯类单体等的三元共聚物组合而成的成型材料。进一步,作为成型材料的用途,记载了调节光和温度的量的屏蔽系统等热学上可逆的塑料成型材料,例如建筑物、温室、汽车及太阳能集热系统等的盖板玻璃(glazing)。

然而,在该文献中也没有关于燃料电池的记载。另外,在该文献中,也没有记载将环状烯烃类树脂与含氯树脂组合的意义。

现有技术文献

专利文献

专利文献1:日本特开2010-234570号公报(权利要求书、实施例2)

专利文献2:日本特开2009-102558号公报(权利要求1、第[0052]、[0079]段)

专利文献3:日本特开2000-95957号公报(权利要求书、第[0001]段、实施例)



技术实现要素:

发明要解决的问题

因此,本发明的目的在于,提供具有针对固体高分子型燃料电池的电解质膜和电极膜的适度脱模性和密合性、并且可以不经由易粘接层等粘接层与通常使用的基材膜密合的树脂膜,包含该树脂膜的叠层膜及其制造方法,以及用上述叠层膜来制造膜电极接合体的方法。

本发明的其它目的在于,提供耐热性、操作性优异,可以提高固体高分子型燃料电池的膜电极接合体(电解质膜和/或电极膜)的生产性的树脂膜,包含该树脂膜的叠层膜及其制造方法,以及用上述叠层膜来制造上述膜电极接合体的方法。

本发明的进一步其他的目的在于,提供可以利用涂布而容易地变薄的树脂膜,包含该树脂膜的叠层膜及其制造方法,以及用上述叠层膜制造上述膜电极接合体的方法。

解决问题的方法

本发明人等为了实现上述目的而进行了深入研究,结果发现,通过将环状烯烃类树脂与含氯树脂组合而形成树脂膜,则该膜具有针对固体高分子型燃料电池的电解质膜及电极膜的适度脱模性和密合性,并且可以不经由易粘接层等粘接层与通常使用的基材膜密合,从而完成了本发明。

即,本发明的树脂膜由包含环状烯烃类树脂(A)和含氯树脂(B)的树脂组合物形成。上述含氯树脂(B)可以是偏氯乙烯类聚合物。上述环状烯烃类树脂(A)可以是环状烯烃类共聚物(特别是降冰片烯类和α-链状C2-4烯烃的共聚物)。上述环状烯烃类树脂(A)可以包含环状烯烃单元(A1)及链状烯烃单元(A2)作为重复单元,上述环状烯烃单元(A1)与链状烯烃单元(A2)的比例(摩尔比)可以是前者/后者=50/50~90/10左右。就上述环状烯烃类树脂(A)而言,可以是不含有在侧链具有碳原子数3~10的烷基的烯烃单元的环状烯烃类树脂。相对于环状烯烃类树脂(A)100重量份,上述含氯树脂(B)的比例可以是0.5~60重量份左右。本发明的膜可以是用于制造固体高分子型燃料电池的膜电极接合体的脱模膜。

本发明中还包括叠层膜,其中,将上述膜作为脱模层,叠层于基材层的至少一个面。上述基材层可以由选自:聚烯烃、聚乙烯醇类聚合物、聚酯、聚酰胺、聚酰亚胺及纤维素衍生物中的至少一种形成。上述基材层也可以由聚酯形成,且不具有粘接层或易粘接层。上述脱模层也可以是利用涂布形成的平均厚度0.01~20μm左右的层。对本发明的叠层膜而言,也可以在上述脱模层上,叠层包含离子交换树脂的离子交换层。上述离子交换树脂为在侧链具有磺酸基的氟树脂,且上述离子交换层可以是电解质膜和/或电极膜。

本发明中还包括上述叠层膜的制造方法,其包括向基材层上涂布包含树脂组合物的溶液而形成脱模层的叠层工序。

本发明中还包括固体高分子型燃料电池的膜电极接合体的制造方法,其包括从上述叠层膜剥离包含离子交换树脂的离子交换层的剥离工序。

需要说明的是,本说明书中,“离子交换层”是指包含离子交换树脂的层,并不限定于作为离子交换膜的电解质膜,包含离子交换树脂及催化剂的电极膜也包括在离子交换层中。

发明的效果

在本发明中,由于将包含环状烯烃单元及链状烯烃单元的环状烯烃类树脂与含氯树脂组合而形成树脂膜,因此,该膜具有针对固体高分子型燃料电池的电解质膜及电极膜的适度脱模性(剥离性)和密合性,并且可以不经由易粘接层等粘接层与通常使用的基材膜密合。另外,由于包含特定的环状烯烃类树脂,因此,该膜耐热性、操作性优异,可以提高固体高分子型燃料电池的膜电极接合体(电解质膜和/或电极膜)的生产性。进一步,可以利用涂布而容易地实现薄层化。因此,能够用辊进行卷取,可以以卷对卷(roll to roll)的方式连续制造,也可以提高叠层膜的生产性。

具体实施方式

[树脂膜]

本发明的树脂膜由包含环状烯烃类树脂(A)和含氯树脂(B)的树脂组合物形成。

(A)环状烯烃类树脂

对环状烯烃类树脂(A)而言只要至少包含环状烯烃单元(A1)作为重复单元即可。对环状烯烃类树脂(A)而言,可以是在侧链不具有长链烷基的烯烃类树脂,特别是不含有在侧链具有碳原子数3~10的烷基的烯烃单元(即,具有C3-10烷基的链状烯烃单元和/或具有C3-10烷基的环状烯烃单元)的环状烯烃类树脂。

用于形成环状烯烃单元(A1)的聚合成分(单体)是在环内具有烯属双键的聚合性的环状烯烃,可以分类为单环式烯烃、二环式烯烃、三环以上的多环式烯烃等。

作为单环式烯烃,可以列举例如:环丁烯、环戊烯、环庚烯、环辛烯等环状C4-12环烯烃类等。

作为二环式烯烃,可以列举例如:2-降冰片烯;5-甲基-2-降冰片烯、5,5-二甲基-2-降冰片烯、5-乙基-2-降冰片烯等具有C1-2烷基的降冰片烯类;5-乙叉-2-降冰片烯等具有烯基的降冰片烯类;5-甲氧基羰基-2-降冰片烯、5-甲基-5-甲氧基羰基-2-降冰片烯等具有烷氧基羰基的降冰片烯类;5-氰基-2-降冰片烯等具有氰基的降冰片烯类;5-苯基-2-降冰片烯、5-苯基-5-甲基-2-降冰片烯等具有芳基的降冰片烯类;八氢化萘;6-乙基-八氢萘等具有C1-2烷基的八氢化萘等。

作为多环式烯烃,可以列举例如:二环戊二烯;2,3-二氢二环戊二烯、桥亚甲基八氢芴(メタノオクタヒドロフルオレン)、二桥亚甲基八氢萘(ジメタノオクタヒドロフルオレン)、二桥亚甲基环戊二烯萘、桥亚甲基八氢环戊二烯萘等衍生物;环戊二烯与四氢茚等的加成物、环戊二烯的3~4聚体等。

这些环状烯烃可以单独使用或组合二种以上使用。这些环状烯烃之中,从树脂膜的脱模性与柔软性之间的平衡优异的观点出发,优选二环式烯烃。相对于环状烯烃(用于形成环状烯烃单元(A1)的环状烯烃)全体,二环式烯烃(特别是降冰片烯类)的比例可以为10摩尔%以上,例如30摩尔%以上,优选为50摩尔%以上,进一步优选为80摩尔%以上(特别是90摩尔%以上),也可以是单独的二环式烯烃(100摩尔%)。特别地,三环以上的多环式烯烃的比例如果过大,则难以用于以卷对卷的方式的制造。

作为代表性的二环式烯烃,可以例示例如:任选具有取代基的降冰片烯(2-降冰片烯),任选具有取代基的八氢化萘(八氢萘)等。作为上述取代基,可以例示:甲基、乙基、烯基、芳基、羟基、烷氧基、羧基、烷氧基羰基、酰基、氰基、酰胺基、卤原子等。这些取代基可以单独或组合二种以上。这些取代基之中,从不损伤树脂膜的脱模性的观点出发,优选甲基、乙基等非极性基。在这些二环式烯烃中,特别优选降冰片烯、具有C1-2烷基的降冰片烯等降冰片烯类(特别是降冰片烯)。

对环状烯烃类树脂(A)而言,虽然只要至少包含环状烯烃单元(A1)作为重复单元即可,但从树脂膜与基材膜的密合性、机械特性的观点出发,优选环状烯烃类共聚物(环烯烃共聚物)。对环状烯烃类共聚物而言,可以为包含不同种类的环状烯烃单元的环状烯烃单元(A1)的共聚物,也可以为环状烯烃单元(A1)与其它共聚性单元的共聚物。这些共聚物之中,从上述密合性及机械特性之间的平衡优异的观点出发,优选为环状烯烃单元(A1)与其它共聚性单元的共聚物,特别优选为包含环状烯烃单元(A1)及链状烯烃单元(A2)作为重复单元的共聚物。共聚物中包括:无规共聚物、嵌段共聚物或接枝共聚物。

链状烯烃单元(A2)可以是通过环状烯烃的开环而生成的链状烯烃单元,从容易控制环状烯烃单元与链状烯烃单元的比例的观点出发,优选以链状烯烃作为聚合成分的单元。

作为链状烯烃,可以列举例如:乙烯、丙烯、1-丁烯、异丁烯等链状C2-4烯烃类等。这些链状烯烃可以单独使用或二种以上组合使用。这些链状烯烃之中,优选为α-链状C2-3烯烃类,进一步优选为乙烯。

对环状烯烃单元(A1)与链状烯烃单元(A2)的比例(摩尔比)而言,可以从例如:前者/后者=1/99~99/1左右的范围选择,例如:前者/后者=30/70~95/5,优选为50/50~90/10(例如:55/45~80/20),进一步优选为60/40~75/25(特别是65/35~70/30)左右。如果环状烯烃单元(A1)的比例过少,则树脂膜的耐热性降低,如果过多,则树脂膜的机械特性也容易降低。

环状烯烃类树脂(A)除了环状烯烃单元(A1)和链状烯烃单元(A2)之外还可以包含其它共聚性单元。作为用于形成其它共聚性单元的聚合成分(共聚性单体),可以列举例如:乙酸乙烯酯、丙酸乙烯酯等乙烯基酯类单体;丁二烯、异戊二烯等二烯类单体;(甲基)丙烯酸、马来酸、富马酸、衣康酸、柠康酸、巴豆酸、异巴豆酸、中康酸、当归酸等乙烯类不饱和羧酸;(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丁酯等(甲基)丙烯酸烷基酯、(甲基)丙烯酸羟基烷基酯、(甲基)丙烯酸缩水甘油酯等(甲基)丙烯酸酯;(甲基)丙烯腈等丙烯腈类单体等。这些共聚性单体可以单独使用或二种以上组合使用。

对其它共聚性单元的比例而言,优选为不损伤针对树脂膜的离子交换层的脱模性(剥离性)的范围,相对于烯烃单元的合计(例如,环状烯烃单元(A1)和链状烯烃单元(A2)的合计),例如为10摩尔%以下,优选为5摩尔%以下,进一步优选为1摩尔%以下。

就环状烯烃类树脂(A)的数均分子量而言,在凝胶渗透色谱法(GPC)中(溶剂:甲苯),以聚苯乙烯换算,例如是10,000~100,000,优选为20,000~80,000左右。如果分子量过小,则成膜性容易降低,如果过大,则由于粘度变高,操作性容易降低。

就环状烯烃类树脂(A)的玻璃化转变温度(Tg)而言,利用根据JIS K7121-1087的方法,例如为50~350℃(例如:100~340℃),优选为120~320℃(例如:160~300℃),进一步优选为160~250℃(特别是170~200℃)左右。如果玻璃化转变温度过低,则由于耐热性低,容易发生树脂膜与离子交换层之间的脱模不良(剥离不良),如果过高,则树脂膜的生产变得困难。需要说明的是,在本说明书中,玻璃化转变温度可以用差示扫描量热仪(DSC)进行测定。也可以例如,使用差示扫描量热仪(SII Nano Technology(株)制“DSC6200”),根据JIS K7121,在氮气流下利用升温速度10℃/分钟进行测定。

环状烯烃类树脂(A)可以是通过加成聚合得到的树脂,也可以是开环聚合(开环易位聚合等)得到的树脂。另外,通过开环易位聚合得到的聚合物可以是加氢而成的树脂(氢化树脂)。环状烯烃类树脂的聚合方法可以利用惯用的方法,例如,使用了易位聚合催化剂的开环易位聚合、使用了齐格勒型催化剂的加成聚合、使用了茂金属系催化剂的加成聚合(通常,使用了易位聚合催化剂的开环易位聚合)等。作为具体的聚合方法,可以利用例如:日本特开2004-107442号公报、日本特开2007-119660号公报、日本特开2008-255341号公报、Macromolecules,43,4527(2010)、Polyhedron,24,1269(2005),J.Appl.Polym.Sci,128(1),216(2013),Polymer Journal,43,331(2011)中记载的方法等。另外,用于聚合的催化剂也可以利用惯用的催化剂,例如这些文献、Macromolecules,31,3184(1988)、Journal of Organometallic Chemistry,2006年,691卷,193页中记载的方法合成的催化剂等。

(B)含氯树脂

含氯树脂(B)可以是氯化聚乙烯、氯化聚丙烯等氯化而成的树脂,通常是以含氯单体作为聚合成分的聚合物。在本发明中,如果向环状烯烃类树脂(A)中配合含氯树脂(B),则树脂膜保持针对离子交换层的适度密合性(脱模性),并且可以不经由易粘接层等粘接层与聚对苯二甲酸乙二醇酯(PET)膜等通常使用的基材膜密合。

作为含氯单体,可以列举例如:氯乙烯单体、偏氯乙烯单体等。这些含氯单体可以单独使用或二种以上组合使用。其中,从针对树脂膜的基材膜的密合性的观点出发,优选偏氯乙烯单体。

含氯树脂除了含氯单体单元之外还可以包含其它共聚性单元。作为用于形成其它共聚性单元的聚合成分,可以列举例如:在上述环状烯烃类树脂(A)项中例示的共聚性单体等。上述共聚性单体可以单独使用或二种以上组合使用。在上述共聚性单体之中,通常使用乙酸乙烯酯、(甲基)丙烯酸、(甲基)丙烯酸烷基酯、(甲基)丙烯酸羟基烷基酯、(甲基)丙烯酸缩水甘油酯、(甲基)丙烯腈等。

就其它共聚性单元(共聚性单体)的比例而言,只要为不损坏含氯树脂的特性的程度即可,相对于含氯树脂全体,通常可以是0.1~50重量%(例如:0.3~25重量%),优选为0.5~20重量%,进一步优选为1~15重量%(例如:3~10重量%)左右。

作为含氯树脂(B),可以列举例如:氯乙烯类聚合物[氯乙烯单体的均聚物(聚氯乙烯)、氯乙烯类共聚物(氯乙烯-乙酸乙烯酯共聚物、氯乙烯-(甲基)丙烯酸酯共聚物等)等]、偏氯乙烯类聚合物[偏氯乙烯的均聚物(聚偏氯乙烯)、偏氯乙烯类共聚物(偏氯乙烯-氯乙烯共聚物、偏氯乙烯-乙酸乙烯酯共聚物、偏氯乙烯-(甲基)丙烯酸共聚物、偏氯乙烯-(甲基)丙烯酸酯共聚物、偏氯乙烯-(甲基)丙烯腈共聚物等)等]等。这些含氯树脂可以单独使用或二种以上组合使用。

在这些含氯树脂中,从可以提高与基材膜的密合性的观点出发,优选偏氯乙烯类聚合物(特别是偏氯乙烯-氯乙烯共聚物等偏氯乙烯类共聚物)。在偏氯乙烯-氯乙烯共聚物中,偏氯乙烯单元和氯乙烯单元的比例(摩尔比)为例如前者/后者=99/1~5/95,优选为97/3~10/90,进一步优选为95/5~50/50左右。偏氯乙烯类聚合物也可以不包含在水性乳液中含有的乳化剂、表面活性剂等。

就含氯树脂(B)的数均分子量而言,可以是在凝胶渗透色谱(GPC)中,以聚苯乙烯换算例如为10,000~500,000,优选为20,000~250,000,进一步优选为25,000~100,000左右。

相对于环状烯烃类树脂(A)100重量份,含氯树脂(B)的比例可以为高于0.2重量份且低于100重量份,例如为0.5~90重量份(例如0.5~60重量份),优选为0.8~70重量份(例如1~60重量份),进一步优选为1.2~50重量份(特别是1.5~30重量份)左右。由于即使含氯树脂(B)的比例较少,也可以提高针对基材膜的密合性,因此相对于环状烯烃类树脂(A)100重量份,含氯树脂(B)的比例可以为例如0.5~30重量份,优选为0.8~10重量份(例如1~5重量份),进一步优选为1.2~3重量份(特别是1.5~2.5重量份)左右。如果含氯树脂的比例过少,则难以提高针对基材膜的密合力,如果过多,则针对离子交换层的脱模性降低。

在树脂膜中可以进一步包含其它树脂、惯用的添加剂。作为其它树脂,可以列举例如:链状烯烃类树脂(聚乙烯、聚丙烯等)等。作为惯用的添加剂,可以包含例如:填充剂、润滑剂(蜡、脂肪酸酯、脂肪酸酰胺等)、抗静电剂、稳定剂(抗氧化剂、热稳定剂、光稳定剂等)、阻燃剂、粘度调节剂、增稠剂、消泡剂等。另外,可以在不损坏表面平滑性的范围包含有机或无机粒子(特别是沸石等抗粘连剂)。

特别地,在本发明中,即使不含有容易污染电解质膜、电极膜的有机硅化合物等低分子量的脱模剂,也可以提高脱模性(剥离性),优选实质上不包含有机硅化合物。

虽然树脂膜(脱模层)的平均厚度可以从例如0.01~100μm左右的范围选择,但利用涂布也可以形成表面平滑而薄的膜,例如为0.01~20μm,优选为0.03~15μm,进一步优选为0.05~10μm(特别是0.1~5μm)左右。膜如果薄,则操作性优异,适用于卷对卷方式等,并且经济性也得以提高。需要说明的是,在为涂布膜的情况下,平均厚度可以基于树脂膜的涂布量(每单位面积的固体成分(有效成分)重量)及密度算出。

本发明的树脂膜由于脱模性及耐热性优异,因此可以用作工业用的脱模膜等,由于具有针对离子交换层的适度密合性和脱模性(剥离性),因此,可以优选用作用于制造固体高分子型燃料电池的膜电极接合体(MEA)的脱模膜,特别是用作在其上叠层包含离子交换树脂的电解质膜和/或电极膜,并在MEA制造之后从MEA剥离的膜。

[叠层膜]

本发明的树脂膜由于脱模性及耐热性优异,因此可以单独(单层)作为脱模膜使用,但从可以提高燃料电池的生产性、容易以薄的方式形成厚度均一的膜的观点出发,优选将上述树脂膜作为脱模层叠层于基材层(基材膜)的至少一个面。

(基材层)

就基材层而言,在燃料电池的制造工序中,从可以提高脱模膜的尺寸稳定性,特别是即使在卷对卷的方式中负载了张力也可以抑制拉伸,即使利用干燥工序、加热压合处理等在高温暴露,也维持高度的尺寸稳定性,可以抑制与电解质膜、电极膜的剥离的观点出发,优选以耐热性和尺寸稳定性高的材质形成,具体而言,可以由在150℃的弹性模量为100~1000MPa的合成树脂形成。上述弹性模量可以为例如120~1000MPa,优选为150~1000MPa,进一步优选为200~1000MPa左右。弹性模量如果过小,则存在叠层膜的尺寸稳定性下降,在以卷对卷的方式的制造中,发生脱模层与电解质膜、电极膜的剥离,燃料电池的生产性下降的隐患。

作为这样的合成树脂,可以使用例如各种热塑性树脂、热固性树脂,但从具有可以以卷对卷的方式制造的柔软性的观点出发,优选热塑性树脂。作为热塑性树脂,可以列举例如:聚烯烃(聚丙烯类树脂、环状聚烯烃等)、聚乙烯醇类聚合物、聚酯、聚酰胺、聚酰亚胺、聚碳酸酯、聚苯醚、聚苯硫醚、纤维素衍生物(乙酸纤维素等纤维素酯等)等。这些热塑性树脂可以单独使用或二种以上组合使用。在本发明中,由于脱模层(树脂膜)针对基材层的密合性优异,因此对这些热塑性树脂而言,优选实质上不具有用于提高密合性的反应性基团、极性基团(由反应性基团形成的侧链等)。这些热塑性树脂中,优选选自聚烯烃、聚乙烯醇类聚合物、聚酯、聚酰胺、聚酰亚胺及纤维素衍生物中的至少一种(特别是选自聚烯烃、聚酯、聚酰亚胺及纤维素酯中的至少一种),从耐热性和柔软性的平衡优异的观点出发,特别优选聚酯、聚酰亚胺。进一步地,作为聚酯,可以优选使用聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)等聚C2-4亚烷基芳酸酯类树脂。作为聚酰亚胺,可以列举:热塑性聚酰亚胺、聚醚酰亚胺、聚酰胺酰亚胺等。

就基材层而言,从提高叠层膜的膜强度的观点出发,可以由拉伸膜形成。拉伸可以是单轴拉伸,但从可以提高膜强度的观点出发,优选双轴拉伸。就拉伸倍率而言,在纵以及横方向,可以分别是例如1.5倍以上(例如:1.5~6倍),优选为2~5倍,进一步优选为3~4倍左右。拉伸倍率如果过低,则膜强度容易变得不充分。

就基材层而言,也可以包含上述树脂膜项中例示的惯用的添加剂。基材层中合成树脂的比例可以是例如相对于基材层全体为80重量%以上,优选为90重量%以上,进一步优选为95重量%以上(例如95~100重量%)。

对基材层的表面平滑性而言,只要可以利用涂布而形成脱模层即可,没有特别限定,可以是根据JIS B0601的算术平均粗糙度Ra为1μm以下,优选为100nm以下(例如:10~100nm)左右。

为了提高基材层的表面与脱模层的密合性,也可以对基材层的表面进行表面处理。作为表面处理,可以列举惯用的表面处理,例如:电晕放电处理、火焰处理、等离子体处理、臭氧、紫外线照射处理等。其中,优选电晕放电处理。

对基材层而言,可以具有由惯用的粘接性树脂形成的易粘接层(例如,基材层为聚酯树脂的情况下,由低分子量的聚酯树脂、脂肪族聚酯树脂、非晶性聚酯树脂等粘接性树脂形成的易粘接层等),也可以实质上不具有易粘接层。其中,从脱模层(树脂膜)针对基材层的密合性优异,基材层即使不具有易粘接层,也具有在燃料电池的制造中所必须的密合性的观点出发,特别优选不具有易粘接层的基材层。因此,在本发明中,通过使用不具有易粘接层的基材层,可以简化叠层体的层结构,也可以薄层化。

基材层的平均厚度为例如1~300μm,优选为5~200μm,进一步优选为10~100μm(特别是20~80μm)左右。基材层的厚度如果过大,以卷对卷的方式的生产变得困难,如果过薄,则尺寸稳定性、通过卷对卷方式的搬运性下降,存在混入褶皱等隐患。

(离子交换层)

本发明的叠层膜(叠层体)可以是用于制造固体高分子型燃料电池的脱模膜,在作为该脱模膜进行利用的情况下,在上述叠层膜(脱模膜)的脱模层上,密合包含离子交换树脂的离子交换层(电解质膜、电极膜、膜电极接合体)。因此,本发明的叠层膜也可以是在脱模膜的脱模层(由树脂膜单独形成的脱模层或叠层膜的脱模层)上,叠层有包含离子交换树脂的离子交换层的叠层体(脱模膜与离子交换层的叠层体)。

作为上述离子交换树脂,可以利用在燃料电池中利用的惯用的离子交换树脂,其中,优选强酸性阳离子交换树脂、弱酸性阳离子交换树脂等阳离子交换树脂,可以列举例如:具有磺酸基、羧基、磷酸基、膦酸基等的离子交换树脂(详细地,作为具有电解质功能的电解质基导入有磺酸基、羧基、磷酸基、膦酸基等的离子交换树脂)等,特别优选具有磺酸基的离子交换树脂(作为电解质基导入有磺酸基的离子交换树脂)。

作为上述具有磺酸基的离子交换树脂,可以使用具有磺酸基的各种树脂。作为各种树脂,可以列举例如:聚乙烯、聚丙烯等聚烯烃、(甲基)丙烯酸类树脂、苯乙烯类树脂、聚缩醛、聚酯、聚碳酸酯、聚酰胺、聚酰胺酰亚胺、聚酰亚胺、聚醚、聚醚酰亚胺、聚醚酮、聚醚醚酮、聚砜、聚醚砜、聚苯硫醚、氟树脂等。

在上述具有磺酸基的离子交换树脂中,优选具有磺酸基的氟树脂、交联聚苯乙烯的砜化物等,也可以是具有磺酸基的聚苯乙烯-接枝-聚乙烯四氟乙烯共聚物,聚苯乙烯-接枝-聚四氟乙烯共聚物等。其中,从脱模性等观点出发,特别优选具有磺酸基的氟树脂(至少一部分的氢原子被置换成氟原子的氟烃树脂等)。特别地,在固体高分子型燃料电池中,在侧链具有磺酸基(或-CF2CF2SO3H基)的氟树脂,例如[2-(2-磺四氟乙氧基)六氟丙氧基]三氟乙烯与四氟乙烯的共聚物(嵌段共聚物等)等是优选利用的。

离子交换树脂的离子交换容量可以是0.1meq/g以上,例如可以是0.1~2.0meq/g,优选为0.2~1.8meq/g,进一步优选为0.3~1.5meq/g(特别是0.5~1.5meq/g)左右。

作为这样的离子交换树脂,可以利用杜邦公司制“注册商标:Nafion”等市售品。需要说明的是,作为离子交换树脂,也可以使用在日本特开2010-234570号公报中记载的离子交换树脂等。

离子交换层可以是由上述离子交换树脂形成的电解质膜、含有上述离子交换树脂和催化剂粒子的电极膜。

在电极膜(催化剂层或电极催化剂膜)中,催化剂粒子包含具有催化剂作用的金属成分(特别是铂(Pt)等贵金属单质或包含贵金属的合金),通常,在阴极电极用电极膜中包含铂,阳极电极用电极膜中包含铂-钌合金。进一步,催化剂粒子通常是作为将上述金属成分担载于导电材料(炭黑等碳材料等)而成的复合粒子而使用的。在电极膜中,离子交换树脂的比例例如是,相对于催化剂粒子100重量份,为例如5~300重量份,优选为10~250重量份,进一步优选为20~200重量份左右。

离子交换层也可以包含在树脂膜项中例示的惯用的添加剂,也可以包含例如:无机粒子、无机纤维等无机材料(碳质材料、玻璃、陶瓷等)。

离子交换层可以形成在脱模层的至少一个面上,也可以形成在脱模层两侧的面上,也可以仅形成在脱模层一侧的面上。

离子交换层的平均厚度是例如1~500μm,优选为1.5~300μm,进一步优选为2~200μm左右。

电解质膜的平均厚度是例如1~500μm,优选为5~300μm,进一步优选为10~200μm左右。

电极膜的平均厚度是例如1~100μm,优选为2~80μm,进一步优选为2~50μm左右。

[树脂膜、叠层膜及膜电极接合体的制造方法]

对本发明的树脂膜而言,从容易形成薄的、表面平滑的膜的观点出发,可以通过在基材上涂布包含树脂组合物及溶剂的涂布剂(例如,溶液状涂布剂)的方法来制造,具体而言,在叠层膜的情况下,可以通过在基材层上涂布(或流延)包含环状烯烃类树脂、含氯树脂及溶剂的涂布剂,然后进行干燥的方法来制造。需要说明的是,在以单层方式制造树脂膜的情况下,也可以在能够剥离的基材上进行涂布。

作为涂布方法,可列举惯用的方法,例如:辊涂、气刀涂布、刮涂、棒涂、反向涂布、线棒涂布、缺角轮涂布、模涂、凹版涂布、丝网涂布法、喷雾法、旋涂法等。这些方法中,常用的是刮涂法、线棒涂布法、凹版涂布法等。

作为溶剂,可以利用非极性溶剂,例如,己烷等脂肪族烃类、环己烷等脂环族烃类、甲苯或二甲苯等芳香族烃类、溶剂石脑油等芳香族类油、四氢呋喃或二噁烷等醚类等。这些溶剂可以单独使用,也可以两种以上组合使用。这些之中,优选甲苯等芳香族烃类、溶剂石脑油等芳香族类油、四氢呋喃等环状醚,特别优选芳香族烃类与环状醚的混合溶剂。

涂布剂中的固体成分浓度(树脂组合物浓度或有效成分浓度)为例如0.1~50重量%,优选为0.3~30重量%,进一步优选为0.5~20重量%(特别是0.8~15重量%)左右。

干燥可以是自然干燥,也可以是利用加热干燥而使溶剂蒸发。干燥温度可以是50℃以上,例如为50~200℃,优选为60~150℃,进一步优选为80~120℃左右。

对形成有离子交换层的叠层膜(脱模膜与离子交换层的叠层体)而言,也可以在脱模层(由树脂膜单独形成的脱模层或叠层膜的脱模层)上,叠层离子交换层。

就该叠层膜而言,只要在脱模层上利用涂布而形成离子交换层(包含离子交换树脂的电解质膜和/或包含离子交换树脂的电极膜)即可,例如也可以在第1膜(脱模膜)的脱模层上利用涂布而叠层电解质膜,制造在第1脱模膜上叠层有电解质膜的叠层体,且在第2膜的脱模层上利用涂布而叠层电极膜,制造在第2脱模膜上叠层有电极膜的叠层体。

由于是利用涂布(或者流延)来形成电解质膜和电极膜,因此电解质膜和电极膜可以以将离子交换树脂(及催化剂粒子)溶解或分散在溶剂中而成的溶液或分散液的状态实施涂布。

作为溶剂,可以列举例如:水、醇类(甲醇、乙醇、异丙醇、1-丁醇等C1-4烷醇等)、酮类(丙酮、甲基乙基酮等)、醚类(二噁烷、四氢呋喃等)、亚砜类(二甲亚砜等)等。这些溶剂可以单独使用或二种以上组合使用。这些溶剂中,从操作性等的观点出发,通常使用水或者水与C1-4烷醇的混合溶剂。溶液或分散液中的溶质或固体成分(离子交换树脂、催化剂粒子)的浓度为例如1~80重量%,优选为2~60重量%,进一步优选为3~50重量%左右。

作为涂布方法,可列举在上述脱模膜的制造方法中示例的惯用方法。这些方法中,常用的是刮涂法、线棒涂布法等。

将含有离子交换树脂(以及催化剂粒子)的溶液涂布后,也可以通过加热干燥而使溶剂蒸发。干燥温度可以是50℃以上,电解质膜的情况下,例如80~200℃(特别是100~150℃)左右,电极膜的情况下,例如50~150℃(特别是60~120℃)左右。

通常将上述叠层工序中得到的叠层体供给于密合工序,在连续制造的情况下,在密合工序之前,在叠层工序中,搬运至进行密合工序的场所。

在本发明中,由于上述树脂膜或上述叠层膜的柔软性优异,因此,这样的伴随有搬运的叠层工序可以以卷对卷的方式进行,能够提高生产性。进一步地,通过脱模层和基材层的组合,叠层膜的尺寸稳定性也优异,因此,以卷对卷的方式也可以抑制叠层膜由于张力的拉伸。因此,离子交换层不会剥离,可以卷取成卷状,能够提高生产性。

得到的叠层体也可以供给于密合工序。在密合工序中,使在第1及第2脱模膜的脱模层上分别叠层的电解质膜和电极膜密合,制备膜电极接合体。

电解质膜和电极膜的密合,通常是利用加热压合而进行的密合。加热温度是例如80~250℃,优选为90~230℃,进一步优选为100~200℃左右。压力是例如0.1~20MPa,优选为0.2~15MPa,进一步优选为0.3~10MPa左右。

在密合工序中密合而成的复合体(电解质层与电极膜密合而成的叠层体),供给于从离子交换层(电解质膜和/或电极膜)剥离脱模膜的剥离工序,得到固体高分子型燃料电池的膜电极接合体。在本发明中,即使是经过了上述干燥工序、加热压合处理而得到的叠层体,由于具有适度的剥离强度,在叠层工序、密合工序中脱模膜与离子交换层不会剥离,可以在剥离工序中容易地剥离脱模膜,可以提高作业性。

就脱模膜(树脂膜或叠层膜)的脱模层而言,需要相对于离子交换层具有给定的脱模性,脱模层与离子交换层之间的剥离强度(特别是剥离工序中的叠层体的剥离强度)是例如0.1~100mN/mm,优选为0.5~80mN/mm左右。剥离强度过大,剥离作业变得困难,剥离强度过小,在叠层工序及密合工序中的作业性变得低下。

本说明书中,可以利用在20℃,50%RH静置1小时以上,然后以300mm/分钟的条件进行180°剥离的方法来进行测定。

进一步地,可以通过下述来得到膜电极接合体(MEA):相对于剥离了第1脱模膜的电解质膜,与上述密合工序和剥离工序同样地,进一步在第3脱模膜的脱模层上使叠层有电极膜(第2脱模膜是阳极电极用电极膜的情况下,阴极电极用电极膜)的叠层体的电极膜密合,剥离脱模膜,以惯用的方法,在各电极膜上分别叠层燃料气体供给层及空气供给层。

实施例

以下基于实施例对本发明进行更详细的说明,但本发明并不限定于这些实施例。实施例和比较例中得到的脱模膜的特性利用以下的方法进行评价。

[使用的原料]

离子交换树脂溶液:侧链具有磺酸基的全氟聚合物的溶液,杜邦公司制“Nafion(注册商标)DE2021CS”,固体成分20重量%

PET膜:Unitika(株)制“Polyester film Emblet(注册商标)S50”,厚度50μm,无易粘接层

OPP膜:丰科film(株)制“P3018”,厚度30μm,无易粘接层

TAC膜:富士film(株)制“Z-TAC”,厚度60μm,无易粘接层

Nb/Et:2-降冰片烯-乙烯共聚物,TOPAS Advanced Polymers GmbH公司制“TOPAS(注册商标)6017S-04”,玻璃化转变温度178℃

PVDC:偏氯乙烯类共聚物,旭化成chemicals(株)制“PVDC Resin R204”。

[密合性(脱模层与基材层之间的密合性)]

将实施例及比较例中得到的脱模膜于20℃,50RH%静置1小时以上,然后在脱模层上强力压合透明胶带(Nichiban(株)制“CT405AP-15”),以45°的角度一次性撕下胶带的边缘,相对于剥离了胶带的面积而求出残存有涂膜(脱模层)的面积(面积比)并进行了评价。

[脱模性(脱模层与离子交换树脂层之间的脱模性)]

准备实施例及比较例中得到的脱模膜、离子交换树脂溶液(杜邦公司制“Nafion(注册商标)DE2021CS”,离子交换树脂的水-醇分散液,固体成分浓度20重量%),用刮板在上述脱模膜的脱模层上流延上述离子交换树脂溶液,将该涂膜在100℃的烘箱内进行干燥,形成了包括作为电解质膜的离子交换层(厚度20μm)的叠层体。

在得到的叠层体的离子交换层上强力压合透明胶带(Nichiban(株)制“CT405AP-15”),剥下胶带,利用以下基准进行评价。

○…离子交换层全部剥落。

×…离子交换层没有剥落。

比较例1

向甲苯添加Nb/Et使得固体成分浓度(树脂成分的浓度)为5重量%,加温进行溶解,制备了涂布液。通过迈耶棒涂布法(Meyer bar coating)将得到的涂布液涂布于PET膜的一面,于100℃的温度干燥1分钟,形成脱模层(干燥厚度0.3μm),得到了脱模膜。

比较例2

代替PET膜,使用了OPP膜,除此以外,与比较例1同样地进行,得到了脱模膜。

比较例3

代替PET膜,使用了TAC膜,除此以外,与比较例1同样地进行,得到了脱模膜。

实施例1

向甲苯及四氢呋喃的混合溶剂(甲苯/四氢呋喃=70/30(重量比))添加Nb/Et 100重量份及PVDC 1重量份,使得固体成分浓度(树脂成分的浓度)为5重量%,加温进行溶解,制备了涂布液。用得到的涂布液,与比较例1同样地进行,得到了脱模膜。

实施例2

将PVDC的比例改变为1.2重量份,除此以外,与实施例1同样地进行,得到了脱模膜。

实施例3

将PVDC的比例改变为2重量份,除此以外,与实施例1同样地进行,得到了脱模膜。

实施例4

将固体成分浓度(树脂成分的浓度)改变为0.5重量%,使干燥之后的脱模层的厚度为0.01μm,除此以外,与实施例3同样地进行,得到了脱模膜。

实施例5

将PVDC的比例改变为60重量份,除此以外,与实施例1同样地进行,得到了脱模膜。

将评价实施例及比较例中得到的脱模膜的结果示于表1。

[表1]

从表1的结果可知,在比较例1~3中,脱模层和基材层的密合性较低。与此相对,在实施例中,密合性、脱模性的平衡优异。

工业实用性

本发明的树脂膜由于脱模性及耐热性优异,因此可以作为各种工业用脱模膜等使用,特别是,由于具有针对离子交换层的适度脱模性(剥离性)和密合性,因此,适合于用于制造固体高分子型燃料电池的膜电极接合体的脱模膜。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1