本发明涉及新型纳米材料,具体涉及一种纳米球形ag3po4及其制备方法和应用。
背景技术:
能源危机和环境污染是二十一世纪人类面临的两大难题。我国既是当今世界经济增长最快的大国,也是当今世界环境污染最为严重的大国。随着社会和科技的发展,人民生活水平的提高,人们对所居住的环境提出了越来越高的要求,我国对工业废水废气的排放也制定了严格的排放标准。工厂产生的大量废水,多采用传统的物化或生化法处理,这不同程度地存在着回收率低,消耗高,处理后废水难以达到国家排放标准的缺点。自1976年j.h.carey等报道了纳米tio2光催化氧化法被成功用于废水中有机物的降解以来,半导体多相光催化在水处理领域引起了广泛的重视。半导体光催化材料可以降解空气中或者水中的污染物。对一些毒性大、生物难降解的有机污染物,用光催化剂催化生成的强氧化剂,在常温、常压下可以彻底地将有机物氧化为h2o、co2等小分子。与传统除污工艺相比,光催化氧化法具有无毒、安全、稳定性好、催化活性高、见效快、能耗低、可重复使用等优点。目前人们研究最多的光催化材料是金属氧化物半导体,但这些光催化剂只对紫外光有响应,对可见光没响应,而紫外光区在太阳能中只占了不足5%,波长为460-750nm的可见光占了43%。为了利用可见光,人们通过光催化剂改性技术,如贵金属沉积,过渡金属离子掺杂,非金属离子掺杂,半导体复合,有机染料光敏化等来合成可见光催化剂,以及开发出一些新型可见光催化剂,如钛酸铋,钼酸铋,钒酸铋,卤氧化铋等,但这些催化剂虽然对可见光响应,但催化效率并不高。因此设计和制备具有独特结构、高效稳定的新型可见光催化材料仍然是目前研究的一个难点
2010年5月叶金花课题组在naturematerials上报道一种新型的、高效的ag3po4光催化材料。磷酸银是立方晶型,禁带宽度为2.36ev,可以吸收波长小于525nm的可见光,在可见光的照射下表现出非常强的氧化能力和光催化分解有机染料的能力,在含有磷酸银牺牲试剂的水溶液中,420nm以上的波长照射其量子效率高达92%,其光催化效率远高于目前所知的可见光催化剂。叶金花课题组采用离子交换法合成的ag3po4是微米级,众所周知,催化剂的颗粒大小和形貌对其催化效率有影响。dinhct课题组研究了磷酸银纳米粒子的合成方法,他们用油胺作表面活性剂,在甲苯溶剂中通过控制银离子、油胺、磷酸的量合成了不同粒径的磷酸银纳米粒子(8-16nm),由于比表面积增大到14.5m2g-1,磷酸银的光催化活性得到很大提高。a.khan用溶胶法合成了磷酸银纳米颗粒(200nm),其光催化活性远高于由沉淀法得到的磷酸银的光催化活性。yi通过在反应体系中添加一定量的聚乙烯比咯烷酮(pvp)作为表面活性剂,抑制晶粒的过快生长,获得了粒径约100nm的纳米ag3po4。bi利用h2o2在室温下直接氧化ag纳米线合成了新型的二维树枝状ag3po4纳米结构。
上述制备方法要么使用有毒试剂(如甲苯),要么反应条件不好控制(如溶胶法),要么原料昂贵(如ag纳米线)。
技术实现要素:
为了解决现有技术的不足,本发明提供了一种纳米球形ag3po4及其制备方法和应用。
本发明的技术方案是:一种纳米球形ag3po4的制备方法,以agno3和na2hpo4为原料,在水热体系中加入离子液体来合成纳米磷酸银。
本发明的进一步改进包括:
所述的离子液体是[c14omim]cl。
在蒸馏水中加入离子液体,搅拌均匀后,加入agno3,搅拌至agno3完全溶解,逐滴加入na2hpo4溶液,超声搅拌30min,转移到聚四氟乙烯内衬反应釜中,在100-160℃反应8h,自然冷却到室温,产物用去离子水和无水乙醇洗涤数次,在80℃下干燥24h。
加入离子液体量为溶剂总重量的5%-10%。
在合成过程中加入离子液体[c14omim]cl。
本发明的另一目的在于提供一种纳米球形ag3po4的制备方法,具体是按照上述方法制得。
一种纳米球形ag3po4的制备方法,其产物形貌为球形,颗粒直径在100-200nm。
本发明进一步提供了一种纳米球形ag3po4在光催化降解有机物中的应用。
所述的应用,所述的有机物是甲基橙,具体降解方法是:将0.3gag3po4加入250ml浓度为20mg/l的甲基橙溶液中,超声30min后,转移至多功能光化学反应仪中,在350w氙灯照射下进行光催化反应。
本发明采取在水热体系中加入离子液体来合成纳米磷酸银。离子液体为新材料提供一个独特的生长环境,离子液体在反应过程中可以起到溶剂、模板剂的作用,在水热反应中加入少量离子液体制备出了纳米球形磷酸银。纳米球形颗粒比表面积比较大,在可见光下降解废水中的有机污染物,降解效率比较高,可以节省能源,对我国的环境治理具有十分重要的意义。
本发明的优点是合成出来的磷酸银是球形颗粒,比表面积比较大,在可见光下对有机污染物降解效率高。
本发明的特点是在水热体系中加入少量离子液体来合成纳米磷酸银,反应条件容易控制,制备方法简单易行,有利于大规模推广。
附图说明
图1实例1中纳米磷酸银的xrd图。
图2实例1中纳米磷酸银的sem照片。
图3实例1中纳米磷酸银的tem照片。
图4实例1中纳米磷酸银在可见光照射下对甲基橙的光降解率曲线。
图5是对比例中样品的透射电子显微照片。
图6是对比例样品在可见光照射下对甲基橙的降解率曲线。
具体实施方式
下面结合实施例对本发明做详细说明。
实例1
(1)离子液体[c14mim]cl的来源:购自上海成捷化学有限公司
(2)纳米ag3po4的制备:在蒸馏水中加入7%(质量百分数)[c14mim]cl,搅拌均匀后,加入agno3,配成浓度为0.05mol/l的溶液,磁力搅拌30min,滴加0.05mol/l磷酸氢二铵水溶液,超声搅拌30min,转移到聚四氟乙烯内衬反应釜中,在120℃反应一定时间,自然冷却到室温,产物用去离子水和无水乙醇洗涤数次,在80℃下干燥12h即得磷酸银。
(3)降解甲基橙:将0.3gag3po4加入250ml浓度为20mg/l的甲基橙溶液中,超声30min后,转移至多功能光化学反应仪中,在350w氙灯照射下进行光催化反应。每隔10min取一次样,离心分离,取上层清液在波长在300nm-500nm处用分光光度计测量甲基橙溶液的吸光度,计算其降解率:r%=(a。-a)/a。其中a。、a分别为光催化前后的吸光度。
(4)在simens公司d5005x-射线衍射仪上分析样品的物相,在jeoljem-6390lv扫描电镜(sem)和日本电子公司100cx透射电镜上观察产物的形貌和尺寸。
图1是样品的xrd图,显示出纯ag3po4的衍射峰。
图2是样品的扫描电子显微照片,图3是样品的透射电子显微照片,从这两张图中可以看出合成出来的ag3po4为球形,粒径在100nm左右。
图4是样品在可见光照射下对甲基橙的降解率曲线,可见光下照射60min对甲基橙的光降解率为94.3%。
实例2
制备步聚同实例1,所不同的是加入离子液体的量为5%,合成出来的磷酸银粒径在180nm左右,对甲基橙的光降解率为90.6%。
实例3
制备步聚同实例1,所不同的是加入离子液体的量为10%,合成出来的磷酸银粒径在130nm左右,对甲基橙的光降解率为92.1%。
对比例
制备步聚同实例1,所不同的是不加离子液体,合成出来的磷酸银为立方形,颗粒大小在1-3μm,图5是对比例中样品的透射电子显微照片。
图6是对比例样品在可见光照射下对甲基橙的降解率曲线,可见光下照射60min对甲基橙的光降解率为82.4%。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。