一种基于微波吸收发热材料的成型方法与流程

文档序号:11241805阅读:1042来源:国知局
一种基于微波吸收发热材料的成型方法与流程

本发明涉及烧结和铸造技术领域,具体地,涉及一种基于微波吸收发热材料的成型方法。



背景技术:

铸造是在型砂中生产铸件的铸造方法。钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。

砂型铸造所用的造型材料价廉易得,铸型制造简便,对铸件的单件生产、成批生产和大量生产均能适应,长期以来,一直是铸造生产中的基本工艺。砂型铸造的工艺过程包括:制作木模-翻砂造型-熔化-浇注-落砂-浇、冒口清理-检验入库。砂型铸造所用铸型一般由外砂型和型芯组合而成。制造砂型的基本原材料是铸造砂和型砂粘结剂。

金属液在充填铸型和凝固过程中,与铸型发生热的、物理的、化学的和机械的作用。由于这些作用,铸件可能产生粘砂等铸造缺陷。



技术实现要素:

本发明的目的是提供了一种基于微波吸收发热材料的成型方法,该成型方法利用微波进行加热,缩短了加热时间,提高了加热效果,消除了传统的成型方法的缺陷。

为了实现上述技术目的,本发明提供了一种基于微波吸收发热材料的成型方法,包括以下步骤:

s1,将微波吸收发热材料粉体化;

s2,将粉体化的微波吸收发热材料与主料混合;

s3,采用多种频率的微波对混合料加热,借助微波吸收发热材料实现对混合料的加热,并通过对环境因素的组合控制,实现混合料均匀或非均匀可控成型。

可选的,步骤s2中:将主料堆埋在微波吸收发热材料中,或者,将主料与微波吸收发热材料均匀共混,或者,将主料与微波吸收发热材料分层混合或造粒混合。

可选的,所述环境因素包括升降温曲线、时间、气氛、混合比例、压力。

可选的,主料和微波发热材料混合的比例为0.1-1%,利用主料的热效应对混合料进行加热。

可选的,主料和微波发热材料混合的比例为1-10%,利用混合料的热效应对混合料进行加热。

可选的,主料和微波发热材料混合的比例为10-99.9%,利用微波发热材料的热效应对混合料进行加热。

可选的,步骤s3中包括以下步骤:

s311,将粉末状的混合料制成成型的样品;

s312,采用微波加热实现对成型的样品的烧结。

可选的,步骤s312中,将所述样品放入保温层中,所述保温层设置在微波腔体内,所述微波腔体设有微波入口,微波通过所述微波入口对所述样品进行烧结。

可选的,步骤s3中包括以下步骤:

s321,采用微波加热混合料,使混合料融化或部分融化;

s322,采用融化或部分融化的混合料进行浇注。

可选的,步骤s322中,将融化的混合料注入铸型中;然后经冷却结晶形成制品。

可选的,对所述制品可受控实现对微波吸收发热材料在主料整体中分散、弥散或偏析。

可选的,所述微波吸收发热材料为高介质损耗效应的材料,包括石墨烯、氧化铜、氧化锌、铁氧体、碳化硅。

可选的,所述主料包括金属、合金、高分子材料、陶瓷、玻璃。

本发明提供的基于微波吸收发热材料的成型方法,将微波吸收发热材料粉体化,与需要成型的主料混合后,采用多种频率的微波对混合料加热,借助微波吸收发热材料实现对混合料的加热,并通过对环境因素的组合控制,实现混合料均匀或非均匀可控成型。

该成型方法,采用微波进行加热,利用了微波吸收发热材料对微波的反应,混合料内部的吸波粒子在微波电磁能作用下动能增大、扩散系统提高,可实现吸波材料在低温条件下的快速升温,然后即可对混合料进行加热,同时,通过控制升降温、时间、气氛、压力等条件,可使混合料实现均匀或非均匀可控成型。微波加热的过程是依靠材料自身吸收微波能并转化为内部粒子的动能和势能,因此被整体均匀加热,内部不存在温度梯度。该成型方法利用微波进行加热,缩短了加热时间,提高了加热效果,能够消除传统的成型方法的缺陷。

附图说明

附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。

图1为本发明所提供的基于微波吸收发热材料的成型方法一种具体实施方式的流程图;

图2为本发明所提供的基于微波吸收发热材料的成型方法的一种具体实施方式的结构示意图。

其中,图2中的附图标记和部件名称之间的对应关系如下:

样品1;保温层2;微波腔体3。

具体实施方式

以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。

请参考图1,图1为本发明所提供的基于微波吸收发热材料的成型方法一种具体实施方式的流程图。

在一种具体的实施方式中,本发明提供了一种基于微波吸收发热材料的成型方法,包括以下步骤:

步骤s1,将微波吸收发热材料粉体化;

步骤s2,将粉体化的微波吸收发热材料与主料混合;

步骤s3,采用多种频率的微波对混合料加热,借助微波吸收发热材料实现对混合料的加热,并通过对环境因素的组合控制,实现混合料均匀或非均匀可控成型。

该成型方法,先将微波吸收发热材料粉体化,然后与需要成型的主料混合均匀,采用不同功率的微波对混合料进行加热,借助微波吸收发热材料对整体混合料进行快速加热,并通过对环境因素的组合控制,实现混合料均匀或非均匀可控成型,可以进行烧结操作,也可以进行熔铸操作。

采用微波进行加热,利用了微波吸收发热材料对微波的反应,混合料内部的吸波粒子在微波电磁能作用下动能增大、扩散系统提高,可实现材料在低温条件下的快速升温,然后即可对混合料进行加热,同时,通过控制升降温、时间、气氛、压力等条件,可使混合料实现均匀或非均匀可控成型。

微波加热的过程是依靠材料自身吸收微波能并转化为内部粒子的动能和势能,因此被整体均匀加热,内部不存在温度梯度。该成型方法利用微波进行加热,缩短了加热时间,提高了加热效果,同时还能够消除传统的成型方法的缺陷。

在具体的实施方式中,步骤s2中,主料与微波吸收发热材料的混合方式可以有多种形式,可以将主料堆埋在微波吸收发热材料中,也可以将主料与微波吸收发热材料均匀共混,还可以将主料与微波吸收发热材料采用其他非均匀的方式共混,例如分层混合或造粒混合。在具体的操作过程中,可以根据成型要求,采用相应的混合方式。

进一步具体的实施方式中,环境因素包括升降温曲线、时间、气氛、混合比例、压力。

通过控制微波吸收发热材料的比例、微波功率、时间、炉内气氛、压力等要素,可以实现均匀熔铸或不同程度的偏析熔铸,获得不同的熔铸产品宏观性能的组合。

微波加热过程中,还可以改变炉内气氛,通入不同的气体,并使其保持一定的压力,都能够对成型过程产生一定的影响。

主料和微波发热材料混合比例的不同,混合料的性能就不同,相应的混合料的加热方式和加热过程也不相同,不同的混合比例可以获得不同宏观性能的产品。

具体的,主料和微波发热材料混合的比例为0.1-1%,利用主料的热效应对混合料进行加热;主料和微波发热材料混合的比例为1-10%,利用混合料的热效应对混合料进行加热;主料和微波发热材料混合的比例为10-99.9%,利用微波发热材料的热效应对混合料进行加热。

微波吸收发热材料所占的比例越大,微波加热的效果越好;通过选用不同功率的微波,调整微波的加热时间,也可以调整微波的加热效果,进而获得不同的混合料的加热效果,能够控制混合料的加热速度、加热时间,以获得不同的加热效果。加热过程中,还可以分别控制升温过程、恒温过程和降温过程的时间,得到不同晶体结构,获得不同宏观性能的产品。

一种优选的具体实施方式中,步骤s3中包括以下步骤:

步骤s311,将粉末状的混合料制成成型的样品;

步骤s312,采用微波加热实现对成型的样品的烧结。

传统的烧结过程是将粉状物料转变为致密体,比如陶瓷、耐火材料等,成型后通过烧结得到的是一种多晶材料,烧结过程影响晶粒的尺寸及晶界形状和分布,进而影响材料的性能。

采用微波进行烧结的过程中,材料内部的粒子在微波电磁能作用下动能增大,扩散系数提高,可以实现材料在低温条件下快速烧结并保证微观结构的均匀性。微波烧结依靠材料自身吸收微波能并转化为内部粒子的动能和势能,因此样品被整体均匀加热,内部不存在温度梯度,可以承受更快的加热速率,缩短烧结时间。

微波辐射可提高粒子动能、有效加速粒子扩散。烧结过程包括致密化阶段和晶粒生长阶段,致密化速率主要与坯体颗粒间粒子扩散速率有关,晶粒生长速率则主要依赖与晶界扩散速率。所以微波烧结有助于提高材料致密度,增加晶粒均匀性。微波烧结可以实现对材料的低温快速烧结,烧结过程无需热传导,没有热惯性,热源可即时发热或瞬时停止,这些都体现了高效节能的特点。同时,微波热源不会污染烧结体,能够方便实现真空及各种气氛下的烧结。

请参考图2,图2为本发明所提供的基于微波吸收发热材料的成型方法的一种具体实施方式的结构示意图。

进一步具体的实施方式中,步骤s312中,将所述样品1放入保温层2中,所述保温层2设置在微波腔体3内,所述微波腔体3设有微波入口,微波通过所述微波入口对所述样品1进行烧结。

如图2所示,烧结过程中,可以实现样品1内外整体同时升温,加热过程是能量的转换过程,能量主要集中在被加热的样品1上,微波效应同时具有热效应和非热效应,可以实现低温加热,该烧结装置结构简单,工艺过程简单,易于控制。

另一种优选的具体实施方式中,步骤s3中包括以下步骤:

步骤s321,采用微波加热混合料,使混合料融化或部分融化;

步骤s322,采用融化或部分融化的混合料进行浇注。

传统的浇注过程,融化浇注材料时需要达到很高的温度,冷却过程中由于析晶温度不一致,容易产生晶粒偏析使制品存在缩孔等缺陷。

利用微波进行加热,融化混合料,混合料内部的粒子在微波电磁能作用下动能增大、扩散系统提高,可实现材料在低温条件下的快速升温,微波加热的过程是依靠材料自身吸收微波能并转化为内部粒子的动能和势能,因此被整体均匀加热,能够实现混合料的低温快速融化,然后进行浇注,能够增加结晶过程中晶粒的均匀性。

进一步的具体实施方式中,步骤s322中,将融化的混合料注入铸型中;然后经冷却结晶形成制品。

浇注过程中主要通过微波控制熔化的气氛、熔融温度和冷却条件,这样能够保证高的生产效率、析晶符合要求,获得高品质的制品。

进一步的,对所述制品可受控实现对微波吸收发热材料在主料中分散、弥散或偏析。

对进行热处理的过程中,不但可以消除偏析,还可以实现对微波吸收发热材料的去除,保证主料的纯度。

上述各具体的实施方式中,利用微波加热的原理可以制作微波器件,实现对混合料的加热,可根据加工对象对微波器件进行智能化调整,控制混合料的烧结顺序和过程,或融化与凝固顺序及过程。该微波器件可实现间歇式、脉冲式和连续化生产。

具体的,所述微波吸收发热材料为高介质损耗效应的材料,包括石墨烯、氧化铜、氧化锌、铁氧体、碳化硅。所述主料可以为金属、合金、高分子材料、陶瓷、玻璃。

微波吸收发热材料包括但不限于石墨烯、氧化锌、铁氧体等,可根据主料的需要进行选择性设计。同时,主料可以是各种金属和合金材料及非金属材料,包括但不限于高岭土。高岭土洁白细腻、松软土状,具有良好的可塑性和耐火性等理化性质。

可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1