一种多级结构钨颗粒增强铝基复合材料的制备方法与流程

文档序号:12414337阅读:799来源:国知局
一种多级结构钨颗粒增强铝基复合材料的制备方法与流程

本发明属于多级结构钨颗粒增强铝基复合材料制备技术领域,具体涉及一种多级结构钨颗粒增强铝基复合材料的制备方法。



背景技术:

颗粒增强铝基复合材料兼具基体和增强相的优点,具有较高的比强度和弹性模量、良好的导电性和导热性、低密度等优点,在航空、航天、汽车和电子等领域有着广泛的应用。金属钨具有高熔点、高硬度、化学性质稳定等优点,与陶瓷增强相相比,又具有良好的导电性以及与基体的相容性。钨颗粒增强铝基复合材料是一种耐高温、高强度、高耐磨的轻质结构功能一体化材料,极具应用潜力和实用价值。

由于铝和钨的熔点和密度差别较大(钨熔点3422℃,密度19.35g/cm3;铝的熔点660℃,沸点2467℃,密度2.7g/cm3),常规的金属基复合材料制备方法,如搅拌铸造法和熔铸法,无法获得组织致密的钨颗粒增强铝基复合材料,这些方法并不适用于基体和增强相密度差别较大的材料。专利CN105401001A提出采用粉末冶金法制备钨颗粒增强铝基复合材料,复合材料强度较高,但是由于增强相在基体中弥散分散,导致复合材料的塑性较差,Al-W界面结合性差也影响了复合材料的强度,限制了复合材料的进一步应用。



技术实现要素:

本发明的目的是提出一种多级结构钨颗粒增强铝基复合材料的制备方法,具体技术方案如下:

一种多级结构钨颗粒增强铝基复合材料的制备方法,具体包括如下步骤:

1)将钨粉和铝粉混合后进行球磨,得到铝包覆的钨颗粒团簇复合粉末;

2)将步骤1)中的铝包覆的钨颗粒团簇复合粉末和铝粉混合,得到复合粉体;

3)将步骤2)中的复合粉体装在铝制包套中,振实,真空加热除气并封口;

4)热等静压烧结步骤3)中的复合粉体,之后去除表面铝制包套,即得到多级结构钨颗粒增强铝基复合材料。

步骤1)中钨粉纯度大于99%,粒径为2~12μm。

所述铝粉为纯度大于99%的铝粉,粒径为4~200μm。

步骤1)中钨粉的质量百分比为40~80%,铝粉的质量百分比为60~20%。

步骤2)中铝包覆的钨颗粒团簇复合粉末的质量百分比为12.5~70%,铝粉的质量百分比为87.5~30%。

步骤1)中球磨采用行星式球磨机,在真空或氩气保护条件下进行,磨球与粉末的重量比为(3:1)~(10:1),转速300~500转/min,球磨时间4~40h。

步骤2)中混合采用双锥混料机,在氩气保护的条件下进行,磨球与粉末的重量比为(1:1)~(3:1),混合时间为8~24h。

步骤3)中真空加热除气条件:加热温度400~450℃,真空度低于1×10-3Pa。

步骤4)中热等静压烧结的条件为:升温速率不大于10℃/min,烧结温度为500~550℃,压力为100~200MPa,保温时间为2~4h。

步骤4)中多级结构钨颗粒增强铝基复合材料中钨颗粒的质量百分含量为5%~56%。

本发明的有益效果为:本发明利用高能球磨-低能混合-热等静压的工艺制备了多级结构钨颗粒增强铝基复合材料。在高能球磨过程中,W粉和Al粉经历了变形-破碎-团聚的过程,形成Al-W颗粒团簇复合粉末。颗粒团簇再与Al粉在低能混合过程实现均匀分散,通过热等静压烧结实现了复合材料的致密化,形成亚微米-微米显微组织结构。该复合材料以Al为基体,Al-W团聚体为增强相,可形成超过100μm的团簇结构,团簇之间的基体材料具有较大的变形区,改善了以往Al-W复合材料中钨增强相弥散分布的现象,提高了复合材料的塑性,改善了Al-W界面结合性,团簇表面粗糙状态也提高了团簇与基体的界面结合力,提高了复合材料的综合性能。复合材料具有致密度高、强度高、塑性好以及使用温度高等优点,是一种轻质高强复合材料,具有较大的应用潜力。另外该制备工艺可以实现大规模的工业应用生产。

该工艺制备的多级结构钨颗粒增强铝基复合材料,具有界面结合力强、力学性能好的特点,致密度大于99.5%,室温抗弯强度大于400MPa,室温抗拉强度大于300MPa,室温屈服强度大于200MPa,室温延伸率6%,是一种轻质高强复合材料,具有较大的应用潜力。

附图说明

图1为实施例1制备的Al-W颗粒团簇复合粉末的扫描电镜显微组织图。

图2为实施例1制备的多级结构钨颗粒增强铝基复合材料截面的低倍扫描电镜显微组织图。

图3为实施例1制备的多级结构钨颗粒增强铝基复合材料截面的高倍扫描电镜显微组织图。

具体实施方式

本发明提出了一种多级结构钨颗粒增强铝基复合材料的制备方法,下面结合实施例对本发明做进一步介绍。

实施例1

本实施例中多级结构钨颗粒增强铝基复合材料按照质量百分比50%钨和50%铝基体组成,钨颗粒增强铝基复合材料的制备方法步骤如下:

(1)称取钨粉400g,铝粉200g,不锈钢磨球3kg,使用行星式球磨机在氩气保护的环境中,以转速为400转/分钟的条件下进行球磨,球磨时间为8h,获得Al包覆的W颗粒团簇复合粉末;

(2)称取步骤(1)中的Al包覆的W颗粒团簇复合粉末750g与铝粉250g,使用双锥混料机在氩气保护的条件下混料,磨球与粉料重量比为1:1,混合时间为8h,得到复合粉体;

(3)将步骤(2)中的复合粉体在预先制好的铝制包套中并振实,并进行真空加热除气处理,除气温度为400℃,升温速率为50℃/h,真空度低于1×10-3Pa条件下升温,除气时间不少于12h,真空度低于1×10-3Pa的条件下封口;

(4)步骤(3)中的复合粉体以10℃/min的升温速率升温至520℃,在压力为200MPa的热等静压条件下保温2h,随炉冷却至室温实现复合材料的成型,使用车床去除表面铝包套,即得到多级结构钨颗粒增强铝基复合材料。

得到的复合材料致密度为99.8%,复合粉体形貌见图1,复合材料的截面显微组织参见图2和图3,可见复合材料组织由基体与团聚体组成,团聚体内部为W颗粒在Al基体中弥散分布状态,室温抗拉强度320MPa,室温抗弯强度450MPa,室温屈服强度230MPa,延伸率7.5%。

实施例2

步骤同实施例1,不同在于步骤(1)中钨粉质量为480g,铝粉为120g。

得到的复合材料致密度为99.9%,室温抗拉强度315MPa,室温抗弯强度476MPa,室温屈服强度205MPa,延伸率6%。

实施例3

步骤同实施例1,不同在于称取的Al包覆的W颗粒团簇复合粉末质量为700g,铝粉质量为300g。

热等静压温度由520℃变为550℃。

得到的复合材料致密度为99.7%,室温抗拉强度310MPa,室温抗弯强度520MPa,室温屈服强度200MPa,延伸率6%。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1