本发明涉及复合材料的接合方法和实现该接合方法的接合装置。
背景技术:
以往以来,存在通过施加超声波对将层叠熔点较大程度不同的构件而形成的层叠件彼此加热而将它们相互接合的接合方法。对于层叠件,使用了将例如聚丙烯(相当于熔点相对较低的熔融材料)和铝箔(相当于熔点相对较高的耐热材料)层叠而成的构件。在该接合方法中,将一对复合材料从使其熔融材料彼此面对的状态起相互接合(参照例如专利文献1。)。
现有技术文献
专利文献
专利文献1:日本特开2001-47257号公报
技术实现要素:
发明要解决的问题
然而,在上述专利文献1那样的结构中,在将一对复合材料从使其耐热材料彼此面对的状态起相互接合的情况下,若加热到耐热材料软化的温度,则熔融温度比该耐热材料的熔融温度低的熔融材料有可能熔断或附着到加工构件。另一方面,即使将一对复合材料加热到熔融材料软化的温度,熔融温度比该熔融材料的熔融温度高的耐热材料有可能无法充分地软化而无法接合。
本发明是为了解决上述的问题而做成的,其目的在于提供一种能够将含有熔融材料和耐热材料的一对复合材料从使其耐热材料彼此面对的状态起相互接合的复合材料的接合方法和实现该接合方法的复合材料的接合装置。
用于解决问题的方案
达成上述目的的本发明的复合材料的接合方法是如下方法:使用复合材料,其中,所述复合材料具备:熔融材料;以及含有熔融温度比熔融材料的熔融温度高的耐热构件和使耐热构件与熔融材料结合的结合构件的耐热材料,并将使耐热材料彼此面对的一对复合材料相互接合。接合方法具有接合工序。在接合工序中,利用加工构件按压复合材料,同时施加超声波,并且利用加热构件对结合构件赋予热,从而将使耐热构件彼此从接合部向周围的区域移动而面对的熔融材料彼此接合。在此,在接合工序中,利用加热构件将结合构件加热成玻化温度以上且小于熔点的温度。
达成上述目的的本发明的复合材料的接合装置是如下装置:使用复合材料,其中,所述复合材料具备:熔融材料;以及含有熔融温度比熔融材料的熔融温度高的耐热构件和使耐热构件与熔融材料结合的结合构件的耐热材料,并将使耐热材料彼此面对的一对复合材料相互接合。接合装置具有加工构件和加热构件。加工构件利用加工构件按压复合材料,同时对复合材料施加超声波。加热构件将结合构件加热成玻化温度以上且小于熔点的温度。
附图说明
图1是表示使用第1实施方式的复合材料(陶瓷隔离膜)而构成的锂离子二次电池的立体图。
图2是将图1的锂离子二次电池分解成各构成构件来表示的分解立体图。
图3是表示在图1的袋装电极的两面分别层叠负极后的状态的立体图。
图4是沿着图3中所示的4-4线表示图3的结构的局部剖视图。
图5是表示第1实施方式的复合材料的接合装置的立体图。
图6是表示图5的接合装置的主要部分的立体图。
图7是示意性地表示利用图5的接合装置将一对陶瓷隔离膜相互接合的状态的局部剖视图。
图8是表示第2实施方式的复合材料的接合装置的主要部分的立体图。
具体实施方式
以下,参照附图对本发明的第1实施方式和第2实施方式进行说明。在附图的说明中,对相同的元件标注相同的附图标记,省略重复的说明。为了方便说明,存在附图中的构件的大小、比率被夸张而与实际的大小、比率不同的情况。在图1~图8这全部的图中,使用以X、Y以及Z表示的箭头来表示方位。以X表示的箭头的方向表示陶瓷隔离膜40、正极20等的最终的输送方向X。以Y表示的箭头的方向表示与输送方向X交叉的交叉方向Y。以Z表示的箭头的方向表示陶瓷隔离膜40与正极20的层叠方向Z。
(第1实施方式)
利用接合装置100接合的复合材料(陶瓷隔离膜40)表示在图1~图4中的特别是图2~图4。复合材料(陶瓷隔离膜40)用于构成例如锂离子二次电池1的袋装电极11。
锂离子二次电池1是利用外包装材料50将可进行充放电的发电元件12密封而构成的。发电元件12是将袋装电极11和负极30交替地层叠而构成的,其中,袋装电极11是利用一对陶瓷隔离膜40夹持正极20并接合而成的。即使锂离子二次电池1振动或受到冲击,也利用形成于一对陶瓷隔离膜40的两端的接合部40h抑制正极20的移动,防止隔着陶瓷隔离膜40相邻的正极20和负极30短路。对于使用了复合材料(陶瓷隔离膜40)的锂离子二次电池1的详细内容,随后论述。
接合装置100表示在图5~7中。接合装置100将一对复合材料(陶瓷隔离膜40)相互接合。
接合装置100使含有熔融材料(聚丙烯层41)和层叠于聚丙烯层41且熔融温度比聚丙烯层41的熔融温度高的熔融材料(聚丙烯层41)的陶瓷隔离膜40彼此接合。接合装置100包括输送电极(正极20或负极30)的电极输送部110、输送要在正极20的一面层叠的陶瓷隔离膜40的第1隔离膜输送部120以及输送要在正极20的另一面层叠的陶瓷隔离膜40的第2隔离膜输送部130。另外,接合装置100包括将一对陶瓷隔离膜40相互接合的隔离膜接合部140、输送袋装电极11的袋装电极输送部150以及分别对各构成构件的工作进行控制的控制部160。对于接合装置100的详细内容,随后论述。
首先,对于,参照图1~图4,并基于使用了由接合装置100相互接合的复合材料(陶瓷隔离膜40)的锂离子二次电池1的构成,对该复合材料(陶瓷隔离膜40)进行说明。
图1是表示使用复合材料(陶瓷隔离膜40)而构成的锂离子二次电池1的立体图。图2是将图1的锂离子二次电池1分解成各构成构件来表示的分解立体图。图3是表示在图1的袋装电极11的两面分别层叠负极30后的状态的立体图。图4是沿着在图3中所示的4-4线表示图3的结构的局部剖视图。
正极20相当于电极,是将正极活性物质粘结于作为导电体的正极集电体21的两面而形成的。取出电力的正极电极端子21a从正极集电体21的一端的一部分延伸地形成。多个层叠好的正极20的正极电极端子21a利用焊接或粘接相互固定。
对于正极20的正极集电体21的材料,使用了例如铝制膨胀金属、铝制网、铝制冲压金属。对于正极20的正极活性物质的材料,使用了各种氧化物(LiMn2O4那样的锂锰氧化物、二氧化锰、LiNiO2那样的锂镍氧化物、LiCoO2那样的锂钴氧化物、含锂的镍钴氧化物、或含锂的非晶质五氧化钒)或硫族化合物(二硫化钛、二硫化钼)等。
负极30相当于极性与正极20的极性不同的电极,是将负极活性物质32粘结于作为导电体的负极集电体31的两面而形成的。负极电极端子31a以不与形成于正极20的正极电极端子21a重叠的方式,从负极集电体31的一端的一部分延伸地形成。负极30的长边方向的长度比正极20的长边方向的长度长。负极30的短边方向的长度与正极20的短边方向的长度相同。多个层叠好的负极30的负极电极端子31a利用焊接或粘接相互固定。
对于负极30的负极集电体31的材料,使用了例如铜制膨胀金属、铜制网、或铜制冲压金属。对于负极30的负极活性物质32的材料,使用了吸收并释放锂离子的碳材料。对于这样的碳材料,使用了例如天然石墨、人造石墨、碳黑、活性碳、碳纤维、焦碳、或在非活性气氛中对有机前体(酚醛树脂、聚丙烯腈、或纤维素)进行热处理而合成的碳。
陶瓷隔离膜40设于正极20与负极30之间,使该正极20与负极30电隔离。陶瓷隔离膜40通过将电解液保持于正极20与负极30之间而担保了锂离子的传导性。陶瓷隔离膜40形成为矩形形状。陶瓷隔离膜40的长边方向的长度比负极30的除了负极电极端子31a的部分之外的部分的长边方向的长度长。
如图4所示,陶瓷隔离膜40是将相当于耐热材料的陶瓷层42层叠于例如相当于熔融材料的聚丙烯层41而形成的。陶瓷层42的熔融温度比聚丙烯层41的熔融温度高。一对陶瓷隔离膜40夹持正极20而使陶瓷层42彼此面对地层叠。即、陶瓷层42抵接于正极20的正极活性物质。
在陶瓷隔离膜40的聚丙烯层41中,使聚丙烯形成为片状。使通过使电解质溶解于非水溶剂而制备成的非水电解液向聚丙烯层41浸渗。为了将非水电解液保持于聚丙烯层41,使其含有聚合物。陶瓷层42是通过将浆料涂敷于聚丙烯层41并使该浆料干燥而形成的,该浆料是使例如在高温下对无机化合物进行成形而成的相当于耐热构件的陶瓷粒子42M和相当于粘结构件的粘合剂42N分别分散于挥发性的溶剂而成的。各陶瓷粒子42M被粘合剂42N固定于聚丙烯层41。陶瓷层42由多孔质构成,该多孔质由二氧化硅、氧化铝、锆氧化物、钛氧化物等陶瓷粒子42M和粘合剂42N形成。
一对陶瓷隔离膜40利用分别形成于沿着接合装置100的输送方向X的长边方向的两端的多个接合部40h相互接合。在接合部40h处,在使陶瓷层42彼此面对的状态下,使聚丙烯层41和粘合剂42N局部地熔融,同时使与聚丙烯层41相邻的陶瓷层42向周围的区域移动。即、接合部40h是将通过陶瓷层42移动到周围的区域而面对的聚丙烯层41彼此熔接而形成的。
以利用一对陶瓷隔离膜40夹持正极20的两面的方式层叠而装袋,构成了袋装电极11。接合部40h在沿着一对陶瓷隔离膜40的长边方向的两侧、例如两端部和中央部各形成有合计3个。即使锂离子二次电池1振动或受到冲击,也能够利用在陶瓷隔离膜40的长边方向的两端形成的接合部40h,抑制正极20在袋装电极11内移动。即、能够借助陶瓷隔离膜40防止相邻的正极20与负极30短路。因而,锂离子二次电池1能够维持所期望的电特性。
外包装材料50由例如在内部具有金属板的层压片51、52构成,从两侧包覆发电元件12而密封了发电元件12。在利用层压片51、52密封发电元件12之际,使该层压片51、52的周围的一部分敞开而利用热熔接等将该一部分之外的周围密封。从层压片51、52的敞开着的部分注入电解液,使电荷液向陶瓷隔离膜40等浸渗。通过从层压片51、52的敞开部对内部进行减压,排出空气,同时该敞开部也热粘接而完全密封。
对于外包装材料50的层压片51、52,例如分别层叠3种材料而形成了3层构造。第1层相当于热粘接性树脂,使用了例如聚乙烯(PE)、离聚物、或乙烯-醋酸乙烯共聚物(EVA)。使第1层的材料与负极30相邻。第2层相当于将金属形成为箔状的层,使用了例如Al箔或Ni箔。第3层目相当于树脂性的膜,使用了例如具有刚性的聚对苯二甲酸乙二醇酯(PET)或尼龙。
接着,参照图5和图6,依次说明实现复合材料(陶瓷隔离膜40)的接合方法的接合装置100的构成(电极输送部110、第1隔离膜输送部120、第2隔离膜输送部130、隔离膜接合部140、袋装电极输送部150以及控制部160)。
图5是表示接合装置100的立体图。图6是表示图5的接合装置100的主要部分的立体图。
电极输送部110表示在图5中,从纵长状的正极用基材20A切出并输送正极20。
电极输送部110的电极供给辊111用于保持正极用基材20A。电极供给辊111呈圆柱形状,卷绕有纵长状的正极用基材20A。输送辊112用于将正极用基材20A向输送带113引导。输送辊112呈细长的圆柱形状,在对卷绕于电极供给辊111的正极用基材20A施加了恒定的张力的状态下,将正极用基材20A向输送带113引导。输送带113用于输送正极用基材20A。输送带113由在外周面设有多个吸引口的环形状的带构成,在吸引着正极用基材20A的状态下沿着输送方向X输送。输送带113的沿着与输送方向X交叉的交叉方向Y的宽度比正极用基材20A的宽度长。旋转辊114用于使输送带113旋转。旋转辊114沿着交叉方向Y在输送带113的内周面配设多个,用于使输送带113旋转。多个旋转辊114中的、一个旋转辊是设有动力的驱动辊,其他旋转辊是从动于驱动辊的从动辊。输送辊112和电极供给辊111从动于输送带113的旋转而旋转。
电极输送部110的切断刀115、116用于切断正极用基材20A而成形出正极20。切断刀115、116沿着交叉方向Y相邻地配设,将正极用基材20A切断成预定的形状而成形出正极20。切断刀115在顶端设置有直线状的锐利的刃,将正极用基材20A的一端沿着交叉方向Y呈直线状切断。切断刀116在顶端设置有使局部弯折而高度不同地形成的锐利的刃,将刚刚切断一端之后的正极用基材20A的另一端与正极电极端子21a的形状相对应地切断。承接台117用于承接用于切断正极用基材20A的切断刀115和切断刀116。承接台117隔着所输送的正极用基材20A与切断刀115和切断刀116相对地配设。电极输送部110以使从正极用基材20A切出来的正极20在第1隔离膜输送部120与第2隔离膜输送部130之间通过的方式输出正极20。
第1隔离膜输送部120表示在图5和图6中,用于从陶瓷隔离膜用基材40A将用于层叠于正极20的一面(背面那一侧、图5中的沿着层叠方向Z的下方)的陶瓷隔离膜40切出而向隔离膜接合部140输送。
第1隔离膜输送部120配设于比电极输送部110靠输送方向X的下游侧的位置且配设于沿着层叠方向Z的图5和图6中的下方。第1隔离膜供给辊121用于保持陶瓷隔离膜用基材40A。第1隔离膜供给辊121呈圆柱形状,卷绕有纵长状的陶瓷隔离膜用基材40A。第1加压辊122和第1夹持辊123用于在对陶瓷隔离膜用基材40A施加了恒定的张力的状态下将陶瓷隔离膜用基材40A向第1输送滚筒124引导。第1加压辊122和第1夹持辊123相对地配设,分别呈细长的圆柱形状。
第1输送滚筒124用于将陶瓷隔离膜用基材40A向隔离膜接合部140输送。第1输送滚筒124使呈长方形形状切断的陶瓷隔离膜40接近并且层叠于从电极输送部110输出来的正极20的一面(背面那一侧、图5中的沿着层叠方向Z的下方)。陶瓷隔离膜40使其陶瓷层42那一侧与正极20的一面相对。第1输送滚筒124呈圆柱形状,在其外周面设有多个吸引口。若使第1隔离膜输送部120的第1输送滚筒124旋转,则除了第1加压辊122和第1夹持辊123旋转之外,第1隔离膜供给辊121也从动地旋转。第1切断刀125用于将纵长状的陶瓷隔离膜用基材40A切断而成形出陶瓷隔离膜40。第1切断刀125在顶端设置有直线状的锐利的刃,沿着与输送方向X交叉的交叉方向Y配设,将被第1输送滚筒124吸引着的纵长状的陶瓷隔离膜用基材40A以恒定的宽度切断。
第2隔离膜输送部130表示在图5和图6中,用于从陶瓷隔离膜用基材40A将用于层叠于与正极20的一面相对的另一面(表面那一侧、图5中的沿着层叠方向Z的上方)的陶瓷隔离膜40切出而向隔离膜接合部140输送。
第2隔离膜输送部130配设于比电极输送部110靠输送方向X的下游侧的位置且配设于沿着层叠方向Z的图5和图6中的上方。即、第2隔离膜输送部130以沿着层叠方向Z与第1隔离膜输送部120成为相对面相同(日文:対面同一)的方式相对地配设。第2隔离膜输送部130的第2隔离膜供给辊131、第2加压辊132、第2夹持辊133、第2输送滚筒134以及第2切断刀135由与第1隔离膜输送部120的第1隔离膜供给辊121、第1加压辊122、第1夹持辊123、第1输送滚筒124以及第1切断刀125同样的结构构成。
隔离膜接合部140表示在图5和图6中,用于将一对陶瓷隔离膜40彼此接合。
隔离膜接合部140用于实现接合方法中的接合工序。在接合工序中,利用加工构件(超声波加工变幅杆141)按压陶瓷隔离膜40,同时施加超声波,并且利用加热构件(加热器147)对粘合剂42N赋予热T。这样一来,将使陶瓷粒子42M彼此从接合部40h向周围的区域移动而面对的聚丙烯层41彼此接合。在此,在接合工序中,利用加热器147将粘合剂42N加热成玻化温度以上且小于熔点的温度。
隔离膜接合部140在比第1隔离膜输送部120和第2隔离膜输送部130靠输送方向X的下游侧的位置且沿着输送方向X的两端各配设有一组。在隔离膜接合部140中,超声波加工变幅杆141、增强器142、振子143、按压构件144以及驱动台145配设于比一对陶瓷隔离膜40靠图6中的上方的位置。另一方面,砧座146、加热器147、传感器148以及加热器模块149配设于比一对陶瓷隔离膜40靠图6中的下方的位置。
隔离膜接合部140的超声波加工变幅杆141相当于加工构件,用于按压陶瓷隔离膜40,同时施加超声波而对陶瓷隔离膜40进行加热。超声波加工变幅杆141由金属形成,一体地形成有长方形形状的主体部141a和从该主体部141a的角部突出地形成的突起部141b。超声波加工变幅杆141的突起部141b抵接于陶瓷隔离膜40的聚丙烯层41。超声波加工变幅杆141通过沿着与层叠方向Z交叉的陶瓷层42彼此的接合面振动,对陶瓷隔离膜40施加超声波并产生摩擦热,从而对陶瓷隔离膜40进行加热。
隔离膜接合部140的增强器142用于使从振子143导出来的超声波放大,同时使该超声波向超声波加工变幅杆141传播。增强器142配设于超声波加工变幅杆141与振子143之间。增强器142由金属形成,形成为圆柱形状。振子143用于产生超声波。振子143将其一端紧固于增强器142。振子143利用从外部供给来的电力而产生与超声波的频率相当的振动。按压构件144用于将超声波加工变幅杆141按压于陶瓷隔离膜40。按压构件144将其一端形成为环状,供与超声波加工变幅杆141连接的增强器142贯穿。驱动台145用于使按压构件144朝向陶瓷隔离膜40接近或与陶瓷隔离膜40分开。驱动台145与按压构件144的一端连结。驱动台145使用单轴的直行台。
隔离膜接合部140的砧座146相当于施力构件,用于对一对陶瓷隔离膜40向超声波加工变幅杆141那一侧施力。砧座146沿着层叠方向Z与超声波加工变幅杆141的突起部141b相对地配设。砧座146是不动的,隔着一对陶瓷隔离膜40并利用由超声波加工变幅杆141按压所产生的回弹力对超声波加工变幅杆141进行施力。砧座146由金属形成,形成为长方体形状。加热器147相当于加热构件,用于向粘合剂42N赋予热T。加热器147将陶瓷层42的粘合剂42N加热成玻化温度以上且小于熔点的温度。此外,为了抑制相当于熔融材料的聚丙烯层41的熔融落下,期望的是,粘合剂42N要被加热的温度小于熔融材料的熔点。加热器147收容于加热器模块149,接近砧座146地配设。加热器147由例如电热丝、热电偶或珀尔贴元件等构成。加热器147隔着砧座146对粘合剂42N赋予热T。
隔离膜接合部140的传感器148相当于测定构件,用于测定陶瓷隔离膜40的温度。传感器148收容于加热器模块149,接近加热器147地配设。传感器148由例如热电偶构成。加热器模块149接合砧座146且收容加热器147和传感器148。加热器模块149由金属形成,由在内部具有空间的长方体形状形成。
在此,隔离膜接合部140也可以设为如下结构:在超声波加工变幅杆141和砧座146夹持并接合一对陶瓷隔离膜40的期间内,以追随第1隔离膜输送部120和第2隔离膜输送部130的动作的方式,朝向输送方向X的下游侧移动。在该情况下,若一对陶瓷隔离膜40的接合完成,则隔离膜接合部140朝向输送方向X的上游侧高速地返回。只要如此地构成,隔离膜接合部140不使第1输送滚筒124和第2输送滚筒134等的旋转暂时停止,就能够接合一对陶瓷隔离膜40。
袋装电极输送部150表示在图5和图6中,输送由隔离膜接合部140形成的袋装电极11。
袋装电极输送部150沿着输送方向X与电极输送部110相邻,配设于比第1隔离膜输送部120和第2隔离膜输送部130靠输送方向X的下游侧的位置。输送带151用于输送袋装电极11。输送带151由在外周面设置有多个吸引口的环形状的带构成,在吸引着袋装电极11的状态下沿着输送方向X输送袋装电极11。输送带151的沿着与输送方向X交叉的交叉方向Y的宽度形成得比袋装电极11的宽度短。即、袋装电极11的两端从输送带151相对于交叉方向Y向外方突出。这样一来,输送带151避免了与隔离膜接合部140产生干涉。旋转辊152用于使输送带151旋转。旋转辊152沿着交叉方向Y在输送带151的内周面配设有多个。旋转辊152不从输送带151突出,以避免与隔离膜接合部140产生干涉。多个旋转辊152中的、一个旋转辊是设置有动力的驱动辊,其他旋转辊152是从动于驱动辊的从动辊。
袋装电极输送部150的吸盘153用于吸附袋装电极11。吸盘153以与袋装电极11相对的方式,位于比载置到输送带151的袋装电极11靠层叠方向Z的图5中所示的上方的位置。吸盘153呈板状,在与袋装电极11抵接的面设有多个吸引口。伸缩构件154用于使吸盘153沿着层叠方向Z上下移动。伸缩构件154使其一端与吸盘接合,使其另一端卡定于X轴台155和X轴辅助轨道156。伸缩构件154以空气压缩机等为动力,沿着层叠方向Z伸缩自由。X轴台155和X轴辅助轨道156用于使接合有吸盘153的伸缩构件154沿着输送方向X移动。X轴台155沿着输送方向X配设,使伸缩构件154沿着输送方向X扫描。X轴辅助轨道156与X轴台155平行地配设,对由X轴台155进行的伸缩构件154的扫描加以辅助。载置台157用于临时载置并保管袋装电极11。载置台157呈板状,配设于比输送带151靠沿着输送方向X的下游侧的位置。
控制部160表示在图5中,分别对电极输送部110、第1隔离膜输送部120、第2隔离膜输送部130、隔离膜接合部140以及袋装电极输送部150的工作进行控制。
控制部160的控制器161相当于控制构件,对接合装置100进行控制。控制器161包括ROM、CPU以及RAM。ROM(Read Only Memory只读存储器)储存有涉及接合装置100的控制程序。控制程序包括与电极输送部110的旋转辊114和切断刀115、116、第1隔离膜输送部120的第1输送滚筒124和第1切断刀125以及第2隔离膜输送部130的第2输送滚筒134和第2切断刀135的控制有关的内容。而且,控制程序包括与隔离膜接合部140的振子143、驱动台145、加热器147和传感器148以及袋装电极输送部150的旋转辊152、吸盘153、伸缩构件154和X轴台155的控制有关的内容。CPU(Central Processing Unit中央处理器)基于控制程序对接合装置100的各构成构件的工作进行控制。CPU尤其是基于传感器148的测定结果对加热器147的温度进行控制。RAM(Random Access Memory随机存取存储器)临时存储涉及控制中的接合装置100的各构成构件的各种数据。数据是例如由隔离膜接合部140的传感器148测定出的温度。
接着,除了参照图5和图6之外,还参照图7对接合装置100的动作进行说明。
图7是示意性地表示利用图5的接合装置100将一对陶瓷隔离膜40相互接合的状态的局部剖视图。
如图5所示,电极输送部110利用切断刀115、116将纵长状的正极用基材20A逐张切断成预定的形状,而成形出正极20。电极输送部110将正极20向第1隔离膜输送部120和第2隔离膜输送部130之间输送。
接下来,如图5和图6所示,第1隔离膜输送部120从陶瓷隔离膜用基材40A切出用于层叠于正极20的一面的陶瓷隔离膜40并输送。利用第1切断刀125将纵长状的陶瓷隔离膜用基材40A逐张切断成长方形形状,而成形出陶瓷隔离膜40。第1隔离膜输送部120将陶瓷隔离膜40层叠于从电极输送部110输送来的正极20的一面(背面那一侧、图5中的沿着层叠方向Z的下方)侧。
同样地,如图5和图6所示,第2隔离膜输送部130与第1隔离膜输送部120的动作联动,从陶瓷隔离膜用基材40A切出用于层叠于正极20的与一面相对的另一面的陶瓷隔离膜40并输送。利用第2切断刀135将纵长状的陶瓷隔离膜用基材40A逐张切断成长方形形状而成形出陶瓷隔离膜40。第2隔离膜输送部130将陶瓷隔离膜40层叠于从电极输送部110输送来的正极20的另一面(表面那一侧、图5中的沿着层叠方向Z的上方)侧。
接下来,如图5~图7中的特别是图7所示,隔离膜接合部140将以夹持正极20的方式层叠的一对陶瓷隔离膜40相互接合。
将利用隔离膜接合部140刚刚开始一对陶瓷隔离膜40的接合之后的状态表示在图7的(A)中。如图的7(A)所示,隔离膜接合部140利用加热器147隔着砧座146对一对陶瓷隔离膜40的陶瓷层42的粘合剂42N赋予热T。加热器147将粘合剂42N加热成玻化温度以上且小于熔点的温度。这样一来,使粘合剂42N呈现流动性,使陶瓷粒子42M处于移动自由的状态。
而且,将利用隔离膜接合部140即将完成一对陶瓷隔离膜40的接合之前的状态表示在图7的(B)中。如图7的(B)所示,隔离膜接合部140利用超声波加工变幅杆141按压一对陶瓷隔离膜40,同时施加超声波。砧座146隔着一对陶瓷隔离膜40并利用由于超声波加工变幅杆141按压而产生的回弹力对超声波加工变幅杆141施力。超声波加工变幅杆141沿着与层叠方向Z交叉的陶瓷层42彼此的接合面施加超声波,从而对一对陶瓷隔离膜40进行加热。其结果,陶瓷粒子42M成为移动自由的状态的陶瓷层42彼此局部地向周围的区域移动,将新地相面对并成为软化了的状态的聚丙烯层41彼此接合,形成接合部40h。这样一来,隔离膜接合部140能够使含有熔点较大程度不同的聚丙烯层41和陶瓷层42的一对陶瓷隔离膜40从使该陶瓷层42彼此面对的状态起充分地接合。
之后,如图5所示,袋装电极输送部150输送由隔离膜接合部140形成的袋装电极11。袋装电极输送部150将袋装电极11载置于载置台157而临时保管。
根据上述的第1实施方式,利用以下的构成起到作用效果。
在复合材料(陶瓷隔离膜40)的接合方法中,使用如下复合材料(陶瓷隔离膜40),该复合材料(陶瓷隔离膜40)具备熔融材料(聚丙烯层41)和耐热材料(陶瓷层42),其中,耐热材料(陶瓷层42)含有熔融温度比聚丙烯层41的熔融温度高的耐热构件(陶瓷粒子42M)和用于使陶瓷粒子42M与聚丙烯层41结合的结合构件(粘合剂42N)。在该接合方法中,将使陶瓷层42彼此面对的一对陶瓷隔离膜40相互接合。该接合方法具有接合工序。在接合工序中,利用加工构件(超声波加工变幅杆141)按压陶瓷隔离膜40,同时施加超声波,并且利用加热构件(加热器147)对粘合剂42N赋予热T。这样一来,将使陶瓷粒子42M彼此从接合部40h向周围的区域移动而面对的聚丙烯层41彼此接合。在此,在接合工序中,利用加热器147将粘合剂42N加热成玻化温度以上且小于熔点的温度。
在复合材料(陶瓷隔离膜40)的接合装置100中,使用复合材料(陶瓷隔离膜40),该复合材料(陶瓷隔离膜40)具备熔融材料(聚丙烯层41)和耐热材料(陶瓷层42),其中,耐热材料(陶瓷层42)含有熔融温度比聚丙烯层41的熔融温度高的耐热构件(陶瓷粒子42M)和用于使陶瓷粒子42M与聚丙烯层41结合的结合构件(粘合剂42N)。在该接合装置100中,将使陶瓷层42彼此面对的一对陶瓷隔离膜40相互接合。该接合装置100具有加工构件(超声波加工变幅杆141)和加热构件(加热器147)。超声波加工变幅杆141按压陶瓷隔离膜40,同时对陶瓷隔离膜40施加超声波。加热器147将粘合剂42N加热成玻化温度以上且小于熔点的温度。
根据这样的构成,从聚丙烯层41那一侧按压陶瓷隔离膜40,同时施加超声波并进行加热,并且将粘合剂42N加热成玻化温度以上且小于熔点的温度。通过如此对陶瓷隔离膜40进行加热,能够使粘合剂42N呈现流动性而促进陶瓷粒子42M的移动。因而,通过使相面对的陶瓷层42彼此局部地向周围的区域移动,能够将新地相面对且成为软化了的状态的聚丙烯层41彼此接合。即、能够将含有熔点不同的聚丙烯层41和陶瓷层42的一对陶瓷隔离膜40从使该陶瓷层42彼此面对的状态起充分地接合。
而且,特别是在接合方法中,接合工序能够构成为,一边利用加热器147对粘合剂42N赋予热T,一边利用超声波加工变幅杆141对陶瓷隔离膜40施加超声波。
根据这样的构成,在维持使陶瓷层42的粘合剂42N呈现流动性的状态、同时使陶瓷粒子42M始终处于移动自由的状态之后,能够从聚丙烯层41那一侧按压、同时施加超声波而对陶瓷隔离膜40进行加热。因而,能够使相面对的陶瓷层42彼此非常顺利地向周围的区域移动。
而且,特别是在接合方法中,接合工序能够构成为,从利用超声波加工变幅杆141对陶瓷隔离膜40施加超声波之前利用加热器147对粘合剂42N赋予热T。
根据这样的构成,在通过使陶瓷层42的粘合剂42N呈现流动性而使陶瓷粒子42M处于移动自由的状态之后,能够从聚丙烯层41那一侧按压、同时施加超声波而对陶瓷隔离膜40进行加热。因而,能够使相面对的陶瓷层42彼此非常顺利地向周围的区域移动。
而且,特别是在接合方法中,接合工序能够构成为,利用超声波加工变幅杆141沿着陶瓷层42彼此的接合面施加超声波。
根据这样的构成,能够沿着陶瓷层42彼此的接合面使陶瓷粒子42M和粘合剂42N振动。因而,能够使用该超声波的振动而使相面对的陶瓷层42彼此非常有效地向周围的区域移动。
而且,特别是在接合方法中,能够构成为,对于利用加热器147加热粘合剂42N的温度,设为小于聚丙烯层41的熔点的温度。
根据这样的构成,能够充分地抑制聚丙烯层41的熔融落下。
而且,特别是在接合装置100中,能够设为如下结构:具有隔着一对陶瓷隔离膜40与超声波加工变幅杆141相对并对一对陶瓷隔离膜40向超声波加工变幅杆141那一侧施力的施力构件(砧座146)。在此,加热器147隔着砧座146对粘合剂42N赋予热T。
根据这样的结构,能够利用超声波加工变幅杆141和砧座146充分地按压一对陶瓷隔离膜40,同时隔着该砧座146对位于接合部40h的粘合剂42N非常效率良好地赋予热T。即、能够利用隔着砧座146的加热,非常效率良好地使陶瓷层42的粘合剂42N呈现流动性而使陶瓷粒子42M成为移动自由的状态。
而且,特别是在接合装置100中,能够设为具有测定构件(传感器148)和控制构件(控制器161)的结构。传感器148对加热器147的温度进行测定。控制器161基于传感器148的测定结果对加热器147的温度进行控制。
根据这样的结构,能够考虑由超声波加工变幅杆141的超声波的施加引起的温度变动的影响而对粘合剂42N进行加热。即、不依赖于超声波加工变幅杆141的超声波的施加的状态,就能够利用传感器148和控制器161将粘合剂42N的温度精度良好地控制成玻化温度以上且小于熔点的温度。
(第2实施方式)
参照图8对第2实施方式的实现复合材料(陶瓷隔离膜40)的接合方法的接合装置200进行说明。
第2实施方式的接合装置200的将一对陶瓷隔离膜40的沿着输送方向X的两端进行缝焊的结构与前述的第1实施方式的接合装置100的结构不同。前述接合装置100将一对陶瓷隔离膜40的两端进行了点焊。
在第2实施方式中,对于包括与前述的第1实施方式同样的构成的构件,使用相同的附图标记,省略前述的说明。
参照图8对实现复合材料(陶瓷隔离膜40)的接合方法的接合装置200的构成和动作依次进行说明。
图8是表示接合装置200的主要部分的立体图。
隔离膜接合部240将一对陶瓷隔离膜40的沿着输送方向X的两端连续地接合而形成具有直线状的接合部40i的袋装电极13。隔离膜接合部240在比第1隔离膜输送部120和第2隔离膜输送部130靠输送方向X的下游侧的位置且沿着输送方向X的两端各配设有一组。即、隔离膜接合部240与前述的隔离膜接合部140不同,沿着与输送方向X交叉的交叉方向Y配设有各构成件。隔离膜接合部240与隔离膜接合部140相比较,超声波加工变幅杆241、砧座246和加热器模块249的结构不同。
隔离膜接合部240的超声波加工变幅杆241用于对陶瓷隔离膜40施加超声波。超声波加工变幅杆241由金属形成,形成为圆盘形状。超声波加工变幅杆241沿着一对陶瓷隔离膜40的输送方向X旋转自由地配设。超声波加工变幅杆241被按压构件144按压,并对一对陶瓷隔离膜40中的一个陶瓷隔离膜40的聚丙烯层41进行按压。超声波加工变幅杆241一边旋转一边按压陶瓷隔离膜40,同时沿着与层叠方向Z交叉的陶瓷层42彼此的接合面施加超声波而对一对陶瓷隔离膜40进行加热。
隔离膜接合部240的砧座246用于对一对陶瓷隔离膜40向超声波加工变幅杆241那一侧施力。砧座246隔着一对陶瓷隔离膜40与超声波加工变幅杆241相对。砧座246由金属形成,形成为圆盘形状。超声波加工变幅杆241沿着一对陶瓷隔离膜40的输送方向X旋转自由地配设。砧座246一边旋转一边对超声波加工变幅杆241施力。加热器模块249用于保持砧座246,同时收容加热器147和传感器148。加热器模块249使其一端形成为环状,供砧座246的后部贯穿。加热器模块249在其内部收容有加热器147和传感器148。
根据上述的第2实施方式,利用以下的结构起到作用效果。
在接合装置200中,超声波加工变幅杆241形成为沿着一对陶瓷隔离膜40的输送方向X旋转自由的圆盘形状,连续地按压聚丙烯层41,同时施加超声波。
根据这样的结构,能够利用所谓的缝焊,将一对陶瓷隔离膜40的沿着输送方向X的两端连续地接合而形成直线状的接合部40i。因而,能够更牢固地接合一对陶瓷隔离膜40的两端。
而且,根据这样的结构,超声波加工变幅杆241与一对陶瓷隔离膜40两端的部分抵接,同时一边旋转一边进行焊接,因此,难以附着于聚丙烯层41。因而,能够防止超声波加工变幅杆241在附着于聚丙烯层41的状态下移动,不会给陶瓷隔离膜40带来损伤。
而且,根据这样的结构,仅使超声波加工变幅杆241旋转自由地抵接于陶瓷隔离膜40的聚丙烯层41为佳。即、能够在保持着第1输送滚筒124和第2输送滚筒134继续旋转的状态下一边输送一对陶瓷隔离膜40一边将它们接合。
而且,能够设为如下结构:施力构件(砧座246)形成为沿着一对陶瓷隔离膜40的输送方向X旋转自由的圆盘形状,对一对陶瓷隔离膜40向超声波加工变幅杆241那一侧连续地施力。
根据这样的结构,能够利用超声波加工变幅杆241和砧座246夹持并充分地按压一对陶瓷隔离膜40。因而,与仅利用超声波加工变幅杆241按压一对陶瓷隔离膜40的情况相比较,能够更可靠使陶瓷层42彼此局部地向周围的区域移动,形成接合部40i。
此外,本发明能够基于权利要求书中所记载的构成进行各种改变,这些改变也是本发明的范畴。
例如,在第1实施方式和第2实施方式中,说明了通过使一对陶瓷隔离膜40的陶瓷层42彼此局部地向周围的区域移动而变得有间隙,来将相面对的聚丙烯层41彼此接合的结构。在此,无需使成为接合部40h的部位的陶瓷层42彼此向周围的区域完全移动,只要移动成变得有间隙的程度即可。即、也能够在陶瓷层42彼此的一部分残留于成为接合部40h的部位的状态下,将相面对的聚丙烯层41彼此接合。
另外,在第1实施方式和第2实施方式中,以在构成锂离子二次电池1的袋装电极11中,将用于该袋装电极11的一对陶瓷隔离膜40相互接合的结构进行了说明,但并不限定于这样的结构。也能够适用于除了构成锂离子二次电池1的袋装电极11的袋装电极11以外的复合材料的接合。
另外,在第1实施方式和第2实施方式中,以二次电池为锂离子二次电池1的结构进行了说明,但并不限定于这样的结构。二次电池能够构成为例如聚合物锂电池、镍-氢电池、镍-镉电池。
另外,在第1实施方式和第2实施方式中,以陶瓷隔离膜40的耐热材料是陶瓷层42的结构进行了说明,但并不限定于这样的结构。耐热材料并不限定于陶瓷,是熔融温度比熔融材料的熔融温度高的构件即可。
另外,在第1实施方式和第2实施方式中,以陶瓷隔离膜40的熔融材料是聚丙烯层41的结构进行了说明,但并不限定于这样的结构。熔融材料并不限定于聚丙烯,是熔融温度比耐热材料的熔融温度低的构件即可。
另外,在第1实施方式和第2实施方式中,说明了将陶瓷隔离膜40设为使耐热材料(陶瓷层42)层叠于熔融材料(聚丙烯层41)的单面的结构,但并不限定于这样的结构。陶瓷隔离膜40也可以使耐热材料(陶瓷层42)层叠于熔融材料(聚丙烯层41)的两面而构成。
另外,在第1实施方式和第2实施方式中,以利用一对陶瓷隔离膜40对正极20进行装袋而形成袋装电极11的结构进行了说明,但并不限定于这样的结构。也可以设为利用一对陶瓷隔离膜40对负极30进行装袋而形成袋装电极的结构。此外,也可以设为在将一对陶瓷隔离膜40相互接合之后将正极20或负极30插入而形成袋装电极的结构。
另外,在第1实施方式和第2实施方式中,说明了自动输送正极20、陶瓷隔离膜40以及袋装电极11的结构,但并不限定于这样的结构。也可以设为人工输送正极20、陶瓷隔离膜40、或袋装电极11的结构。
另外,在第1实施方式中,说明了使用超声波加工变幅杆141和砧座146来对一对陶瓷隔离膜40的两端进行点焊的结构,但并限定于这样的结构。也可以设为通过连续地形成接合部来对一对陶瓷隔离膜40的两端进行缝焊的结构。
另外,在第1实施方式中,说明了利用针对超声波加工变幅杆141仅设置有1个的矩形形状的突起部141b和砧座146夹持一对陶瓷隔离膜40、同时施加超声波的结构,但并不限定于这样的结构。超声波加工变幅杆141也可以设为例如呈矩阵状具有多个突起部的结构。另外,超声波加工变幅杆141也可以设为具有例如使顶端变尖或弯曲的突起部的结构。
另外,在第2实施方式中,说明了使用圆盘状的超声波加工变幅杆241和圆盘状的砧座246来对一对陶瓷隔离膜40的两端进行缝焊的结构,但并不限定于这样的结构。也可以设为如下结构:通过使圆盘状的超声波加工变幅杆241和砧座246以恒定的周期与一对陶瓷隔离膜40分开,对一对陶瓷隔离膜40的两端进行点焊。在这样的结构的情况下,能够在继续第1输送滚筒124和第2输送滚筒134的旋转的状态下,直接将输送中的一对陶瓷隔离膜40的两端接合。
附图标记说明
1、锂离子二次电池;11、13、袋装电极;12、发电元件;20、正极;20A、正极用基材;21、正极集电体;21a、正极电极端子;30、负极;31、负极集电体;31a、负极电极端子;32、负极活性物质;40、陶瓷隔离膜(复合材料);40A、陶瓷隔离膜用基材;40h、40i接合部;41、聚丙烯层(熔融材料);42、陶瓷层(耐热材料);42M、陶瓷粒子(耐热构件);42N、粘合剂(结合构件);50、外包装材料;51、52、层压片;100、200、接合装置;110、电极输送部;111、电极供给辊;112、输送辊;113、输送带;114、旋转辊;115、116切断刀;117、承接台;120、第1隔离膜输送部;121、第1隔离膜供给辊;122、第1加压辊;123、第1夹持辊;124、第1输送滚筒;125、第1切断刀;130、第2隔离膜输送部;131、第2隔离膜供给辊;132、第2加压辊;133、第2夹持辊;134、第2输送滚筒;135、第2切断刀;140、240、隔离膜接合部;141、241、超声波加工变幅杆(加工构件);141a、主体部;141b、突起部;142、增强器;143、振子;144、按压构件;145、驱动台;146、246、砧座(施力构件);147、加热器(加热构件);148、传感器(测定构件);149、249、加热器模块;150、袋装电极输送部;151、输送带;152、旋转辊;153、吸盘;154、伸缩构件;155、X轴台;156、X轴辅助轨道;157、载置台;160、控制部;161、控制器(控制构件);T、热;X、输送方向;Y、(与输送方向X交叉的)方向;Z、层叠方向。