本发明涉及语音识别技术领域,具体涉及一种语音关键词识别方法、装置、终端及服务器。
背景技术:
随着科技的发展,语音唤醒技术在电子设备中的应用越来越广泛,其极大程度的方便了用户对电子设备的操作,允许用户与电子设备之间无需手动交互,即可通过语音关键词激活电子设备中相应的处理模块。
例如,苹果手机采用关键词“siri”作为激活苹果手机中的语音对话智能助理功能的语音关键词,当苹果手机检测到用户输入包括关键词“siri”的语音时,自动激活苹果手机中的语音对话智能助理功能。
有鉴于此,提供一种语音关键词识别方法、装置、终端及服务器,以实现对语音中的语音关键词的识别,对于语音唤醒技术的发展是至关重要的。
技术实现要素:
有鉴于此,本发明实施例提供一种语音关键词识别方法、装置、终端及服务器,以实现对语音中的语音关键词的识别。
为实现上述目的,本发明实施例提供如下技术方案:
一种语音关键词识别方法,包括:
从构成第一语音的第一帧序列中选取一个帧确定为第一目标帧;
从语音关键词包括的关键字序列中选取一个关键字确定为目标关键字;
确定所述第一目标帧的隐层特征向量是否与所述目标关键字对应的关键字模板匹配成功,所述关键字模板指示包括所述目标关键字的第二语音中的第二目标帧的隐层特征向量;
在匹配成功的情况下,若逐一针对关键字序列中的每个关键字对应的关键字模板,均已确定出位于所述第一语音中的帧的隐层特征向量与其匹配成功,确定所述第一语音中包括所述语音关键词。
一种语音关键词识别装置,包括:
第一目标帧确定单元,用于从构成第一语音的第一帧序列中选取一个帧确定为第一目标帧;
目标关键字确定单元,用于从语音关键词包括的关键字序列中选取一个关键字确定为目标关键字;
匹配单元,用于确定所述第一目标帧的隐层特征向量是否与所述目标关键字对应的关键字模板匹配成功,所述关键字模板指示包括所述目标关键字的第二语音中的第二目标帧的隐层特征向量;
识别单元,用于在匹配成功的情况下,若逐一针对关键字序列中的每个关键字对应的关键字模板,均已确定出位于所述第一语音中的帧的隐层特征向量与其匹配成功,确定所述第一语音中包括所述语音关键词。
一种终端,包括存储器和处理器,所述存储器用于存储程序,所述处理器调用所述程序,所述程序用于:
从构成第一语音的第一帧序列中选取一个帧确定为第一目标帧;
从语音关键词包括的关键字序列中选取一个关键字确定为目标关键字;
确定所述第一目标帧的隐层特征向量是否与所述目标关键字对应的关键字模板匹配成功,所述关键字模板指示包括所述目标关键字的第二语音中的第二目标帧的隐层特征向量;
在匹配成功的情况下,若逐一针对关键字序列中的每个关键字对应的关键字模板,均已确定出位于所述第一语音中的帧的隐层特征向量与其匹配成功,确定所述第一语音中包括所述语音关键词。
一种语音关键词识别服务器,包括存储器和处理器,所述存储器用于存储程序,所述处理器调用所述程序,所述程序用于:
从构成第一语音的第一帧序列中选取一个帧确定为第一目标帧;
从语音关键词包括的关键字序列中选取一个关键字确定为目标关键字;
确定所述第一目标帧的隐层特征向量是否与所述目标关键字对应的关键字模板匹配成功,所述关键字模板指示包括所述目标关键字的第二语音中的第二目标帧的隐层特征向量;
在匹配成功的情况下,若逐一针对关键字序列中的每个关键字对应的关键字模板,均已确定出位于所述第一语音中的帧的隐层特征向量与其匹配成功,确定所述第一语音中包括所述语音关键词。
本发明实施例公开了一种语音关键词识别方法、装置、终端及服务器,通过从构成第一语音的第一帧序列中确定第一目标帧;从语音关键词包括的关键字序列中确定目标关键字;在确定目标帧的隐层特征向量与目标关键字对应的关键字模板匹配成功时(关键字模板指示包括目标关键字的第二语音中的第二目标帧的隐层特征向量),若逐一针对关键字序列中的每个关键字对应的关键字模板,均已确定出位于第一语音中的帧的隐层特征向量与其匹配成功,确定第一语音中包括语音关键词的方式,有效实现了对第一语音中的语音关键词的识别。进一步的,便于使用语音唤醒技术的电子设备在识别出第一语音中包括语音关键词时,自动激活与所述语音关键词相应的处理模块。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请实施例提供的一种语音关键词识别服务器的结构示意图;
图2为本申请实施例提供的一种语音关键词识别方法的流程图;
图3为本申请实施例提供的另一种语音关键词识别方法的流程图;
图4为本申请实施例提供的一种从构成第一语音的第一帧序列中选取一个帧确定为第一目标帧的方法流程图;
图5为本申请实施例提供的一种从语音关键词包括的关键字序列中选取一个关键字确定为目标关键字的方法流程图;
图6为本申请实施例提供的一种与目标关键字对应的关键字模板的生成方法流程图;
图7为本申请实施例提供的一种基于分别与每个帧对应的终层特征向量,从所述第二帧序列中选取与所述目标关键字的相似程度最高的帧作为第二目标帧的方法流程图;
图8为本申请实施例提供的另一种语音关键词识别方法的流程图;
图9为本申请实施例提供的一种语音关键词识别装置的结构示意图;
图10为本申请实施例提供的一种关键字模板生成单元的详细结构示意图;
图11为本申请实施例提供的一种第二目标帧确定单元的详细结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例:
本申请实施例提供一种语音关键词识别方法,应用于终端或服务器。
在本申请实施例中,优选的,终端为电子设备,例如,移动终端、台式机等。以上仅仅是本申请实施例提供的终端的优选方式,发明人可根据自己的需求任意设置终端的具体表现形式,在此不做限定。
可选的,应用本申请实施例提供的一种语音关键词识别方法的服务器(此处可称为语音关键词识别服务器)的功能可由单台服务器实现也可由多台服务器构成的服务器集群实现,在此不做限定。
以服务器为例,本申请实施例提供的一种语音关键词识别服务器的结构示意图,具体请参见图1。语音关键词识别服务器包括:处理器11和存储器12。
其中处理器11、存储器12、通信接口13通过通信总线14完成相互间的通信。
可选的,通信接口13可以为通信模块的接口,如gsm模块的接口。处理器11,用于执行程序。
处理器11可能是一个中央处理器cpu,或者是特定集成电路asic(applicationspecificintegratedcircuit),或者是被配置成实施本发明实施例的一个或多个集成电路。
存储器12,用于存放程序。
程序可以包括程序代码,所述程序代码包括计算机操作指令。在本发明实施例中,程序可以包括上述用户界面编辑器对应的程序。
存储器12可能包含高速ram存储器,也可能还包括非易失性存储器(non-volatilememory),例如至少一个磁盘存储器。
其中,程序可具体用于:
从构成第一语音的第一帧序列中选取一个帧确定为第一目标帧;
从语音关键词包括的关键字序列中选取一个关键字确定为目标关键字;
确定所述目标帧的隐层特征向量是否与所述目标关键字对应的关键字模板匹配成功,所述关键字模板指示包括所述目标关键字的第二语音中的第二目标帧的隐层特征向量;
在匹配成功的情况下,若逐一针对关键字序列中的每个关键字对应的关键字模板,均已确定出位于所述第一语音中的帧的隐层特征向量与其匹配成功,确定所述第一语音中包括所述语音关键词。
相应的,本申请实施例提供的一种终端的结构中至少包括如上述图1所示的语音关键词识别服务器的结构,有关终端的结构请参见上述对语音关键词识别服务器的结构的描述,在此不做赘述。
相应的,本申请实施例提供一种语音关键词识别方法的流程图,请参见图2。
如图2所示,该方法包括:
s201、从构成第一语音的第一帧序列中选取一个帧确定为第一目标帧;
s202、从语音关键词包括的关键字序列中选取一个关键字确定为目标关键字;
s203、确定所述第一目标帧的隐层特征向量是否与所述目标关键字对应的关键字模板匹配成功,所述关键字模板指示包括所述目标关键字的第二语音中的第二目标帧的隐层特征向量;在匹配成功的情况下,执行步骤s204。
可选的,预设有语音模型,将包括所述目标关键字的第二语音(第二语音包括第二帧序列)输入所述语音模型后,可得到第二语音中的第二目标帧的隐层特征向量,与所述目标关键字对应的关键字模板指示所得到的隐层特征向量。
可选的,所述语音模型基于lstm(longshort-termmemory,时间递归神经网络)以及ctc(connectionisttemporalclassification,目标准则)生成。
以上仅仅是本申请实施例提供的语音模型生成的优选方式,发明人可根据自己的需求任意设置语音模型的具体生成过程,在此不做限定。
可选的,将包括第一帧序列的第一语音输入所述语音模型,可得到与所述第一语音中的第一目标帧对应的隐层特征向量。
相应的,将所述第一目标帧的隐层特征向量与所述目标关键字对应的关键字模板进行匹配,确定所述第一目标帧的隐层特征向量是否与所述目标关键字对应的关键字模板匹配成功,如果匹配成功执行步骤s204。
在本申请实施例中,优选的,确定所述第一目标帧的隐层特征向量是否与所述目标关键字对应的关键字模板匹配成功,包括:计算所述第一目标帧的隐层特征向量与所述目标关键字对应的关键字模板之间的余弦距离;若计算得到的余弦距离满足预设值,则确定所述第一目标帧的隐层特征向量与所述目标关键字对应的关键字模板匹配成功;若计算得到的余弦距离不满足预设值,则确定所述第一目标帧的隐层特征向量与所述目标关键字对应的关键字模板匹配不成功(失败)。
s204、若逐一针对关键字序列中的每个关键字对应的关键字模板,均已确定出位于所述第一语音中的帧的隐层特征向量与其匹配成功,确定所述第一语音中包括所述语音关键词。
可选的,在步骤s203确定匹配成功的情况下,判断当前是否已经逐一针对关键字序列中的每个关键字对应的关键字模板,均已确定出位于所述第一语音中的帧的隐层特征向量与其匹配成功;如果是,确定所述第一语音中包括所述语音关键词。
图3为本申请实施例提供的另一种语音关键词识别方法的流程图。
如图3所示,该方法包括:
s301、从构成第一语音的第一帧序列中选取一个帧确定为第一目标帧;
s302、从语音关键词包括的关键字序列中选取一个关键字确定为目标关键字;
s303、确定所述第一目标帧的隐层特征向量是否与所述目标关键字对应的关键字模板匹配成功,所述关键字模板指示包括所述目标关键字的第二语音中的第二目标帧的隐层特征向量;在匹配成功的情况下,执行步骤s304;在匹配不成功的情况下,返回执行步骤s301;
s304、判断是否已逐一针对关键字序列中的每个关键字对应的关键字模板,均已确定出位于所述第一语音中的帧的隐层特征向量与其匹配成功,如果是,执行步骤s305;如果否,返回执行步骤s301;
可选的,逐一针对关键字序列中的每个关键字对应的关键字模板,均已确定出位于所述第一语音中的帧的隐层特征向量与其匹配成功,包括:针对关键字序列中的每个关键字对应的关键字模板,均已确定出位于所述第一语音中的帧的隐层特征向量与其匹配成功;并且,匹配关键字模板成功的各个关键字,按照匹配成功的先后顺序进行排序后得到的结果为所述关键字序列。
s305、确定所述第一语音中包括所述语音关键词。
为了便于对本申请实施例提供的一种语音关键词识别方法的理解,现提供一种从构成第一语音的第一帧序列中选取一个帧确定为第一目标帧的方法流程图,请参见图4。
如图4所示,该方法包括:
s401、确定构成第一语音的第一帧序列中的、第一个从未被确定为第一目标帧的帧;
s402、将所确定的帧,作为从构成所述第一语音的第一帧序列中确定的第一目标帧。
可选的,第一语音包括第一帧序列,所述第一帧序列由依次排列的至少一个帧构成。所述从构成第一语音的第一帧序列中选取一个帧确定为第一目标帧,包括:从第一帧序列中选取一个帧作为第一目标帧,所述第一目标帧为所述第一帧序列中的从未被作为第一目标帧的、且在所述第一帧序列中排序最靠前的帧。
为了便于对本申请实施例提供的一种语音关键词识别方法的理解,现提供一种从语音关键词包括的关键字序列中选取一个关键字确定为目标关键字的方法流程图,请参见图5。
如图5所示,该方法包括:
s501、确定语音关键词包括的关键字序列中的,与最近一次匹配成功的关键字模板对应的关键字相邻的下一关键字;
可选的,关键字序列由依次排序的多个关键字构成。
例如,若语音关键词包括的关键字序列为“小红你好”时,若最近一次匹配成功的关键模板对应的关键字为“红”,则语音关键词包括的关键字序列中的,与最近一次匹配成功的关键字模板对应的关键字相邻的下一关键字为关键字“你”。
s502、判断所述下一关键字被连续确定为目标关键字的次数是否达到预设的阈值;若所述下一关键字被连续确定为目标关键字的次数未达到预设的阈值,执行步骤s503;若所述下一关键字被连续确定为目标关键字的次数达到所述阈值,执行步骤s504;
可选的,所述预设的阈值为30次,以上仅仅是本申请实施例提供的阈值的优选方式,发明人可根据自己的需求任意设置阈值的具体内容,在此不做限定。
s503、将所述下一关键字确定为目标关键字;
s504、将所述关键字序列中的第一个关键字确定为目标关键字。
例如,若语音关键词包括的关键字序列为“小红你好”时,所述将所述关键字序列中的第一个关键字确定为目标关键字,包括:将关键字序列中的第一个关键字“小”,确定为目标关键字。
为了便于对本申请实施例提供的一种语音关键词识别方法的理解,现提供一种与目标关键字对应的关键字模板的生成方法流程图,请参见图6。
如图6所示,该方法包括:
s601、确定包括所述目标关键字的第二语音,所述第二语音由第二帧序列构成;
可选的,生成与目标关键字对应的关键字模板的过程包括:确定包括所述目标关键字的第二语音,所述第二语音由第二帧序列构成,所述第二帧序列由依次排列的至少一个帧构成。
s602、将所述第二语音作为预设的语音模型的输入信息,确定分别与所述第二帧序列中的每个帧对应的终层特征向量;
可选的,预设有语音模型,所述语音模型的输入信息为语音(如第二语音)/帧,输出信息可包括分别与输入的每个帧对应的隐层特征向量和终层特征向量。
在本申请实施例中,优选的,将所述第二语音作为所述语音模型的输入信息,得到所述第二语音包括的第二帧序列中的每个帧对应的终层特征向量。
s603、基于分别与每个帧对应的终层特征向量,从所述第二帧序列中确定第二目标帧;
可选的,基于第二语音包括的第二帧序列中的每个帧对应的终层特征向量,从所述第二语音中选取一个帧作为第二目标帧。
s604、根据将所述第二目标帧作为所述语音模型的输入信息所得到的与所述第二目标帧对应的隐层特征向量,生成与所述目标关键字对应的关键字模板。
可选的,所述第二目标帧作为所述语音模型的输入信息,得到的与所述第二目标帧对应的隐层特征向量的过程,可以在步骤s602中实现,将所述第二语音作为预设的语音模型的输入信息,确定分别与所述第二帧序列中的每个帧对应的终层特征向量,以及分别与所述第二帧序列中的每个帧对应的隐层特征向量;进而,在步骤s604执行过程中,直接从步骤s602的“分别与所述第二帧序列中的每个帧对应的隐层特征向量”结果中,直接获取与所述第二目标帧对应的隐层特征向量。
以上仅仅是本申请实施例的优选方式,发明人可根据自己的需求任意设置“将所述第二目标帧作为所述语音模型的输入信息所得到的与所述第二目标帧对应的隐层特征向量”的实现方式,如将“将所述第二目标帧作为所述语音模型的输入信息所得到的与所述第二目标帧对应的隐层特征向量”过程独立于步骤s602实现,在此不做限定。
可选的,第二语音的个数为至少一个,所述根据与所述第二目标帧对应的隐层特征向量,生成与所述目标关键字对应的关键字模板,包括:确定分别与每个第二语音的第二目标帧对应的隐层特征向量,对所确定的各个隐层特征向量求平均,并将所得到的结果作为与所述目标关键字对应的关键字模板。
为了便于对本申请实施例提供的一种语音关键词识别方法的理解,现提供一种基于分别与每个帧对应的终层特征向量,从所述第二帧序列中确定第二目标帧的方法进行详细介绍。
在本申请实施例中,优选的,所述帧对应的终层特征向量,包括:所述帧分别与所述语音模型中预设的文字集中的每个文字之间的相似度,所述目标关键字为所述文件集中的一个文字。
例如,若文字集为5200个汉字,则所述帧对应的终层特征向量包括:所述帧分别与所述5200个汉字中的每个汉字的相似度。
所述基于分别与每个帧对应的终层特征向量,从所述第二帧序列中确定第二目标帧,包括:基于分别与每个帧对应的终层特征向量,从所述第二帧序列中选取与所述目标关键字的相似程度最高的帧作为第二目标帧;其中,帧与所述目标关键字的相似程度根据所述帧分别与所述文字集中的每个文字之间的相似度确定。
为了便于理解,现提供一种基于分别与每个帧对应的终层特征向量,从所述第二帧序列中选取与所述目标关键字的相似程度最高的帧作为第二目标帧的方法流程图,请参见图7。
如图7所述,该方法包括:
s701、从所述第二帧序列中确定至少一个第一候选帧,所述第一候选帧与所述目标关键字的相似度小于所述第一候选帧与所述文字集中的至少一个文字的相似度,所述至少一个文字的个数小于预设数值;
s702、从所述至少一个第一候选帧中确定至少一个第二候选帧,所述至少一个第二候选帧为所述至少一个第一候选帧中与所述目标关键字的相似度最大的各第一候选帧;
s703、从所述至少一个第二候选帧中确定第二目标帧,按照相似度从高到低的顺序,所述第二目标帧与所述目标关键字的相似度位于所述第二目标帧与各文字的相似度中的排名,高于除所述第二目标帧外的每个所述第二候选帧与所述目标关键字的相似度位于所述第二候选帧与各文字的相似度中的排名。
进一步的,为了便于对本申请实施例提供的如图7所示的一种基于分别与每个帧对应的终层特征向量,从所述第二帧序列中选取与所述目标关键字的相似程度最高的帧作为第二目标帧的方法的理解,现举例说明:
若第二语音包括的第二帧序列包括四个帧,分别为帧1、帧2、帧3和帧4,语音模型中预设的文字集包括4个文字,分别为文字1、文字2、文字3和文字4,其中文字3为目标关键字。
将第二语音作为语音模型的输入信息输入至所述语音模型,得到与帧1对应的终层特征向量1、与帧2对应的终层特征向量2、与帧3对应的终层特征向量3,以及与帧4对应的终层特征向量4。
其中,终层特征向量1包括帧1与文字1的相似度11、帧1与文字2的相似度12、帧1与文字3的相似度13和帧1与文字4的相似度14,其中,相似度11为20%、相似度12为30%、相似度13为15%、相似度14为50%;
终层特征向量2包括帧2与文字1的相似度21、帧2与文字2的相似度22、帧2与文字3的相似度23和帧2与文字4的相似度24,其中,相似度21为15%、相似度22为5%、相似度23为65%、相似度24为95%;
终层特征向量3包括帧3与文字1的相似度31、帧3与文字2的相似度32、帧3与文字3的相似度33和帧3与文字4的相似度34,其中,相似度31为10%、相似度32为20%、相似度33为65%、相似度34为30%;
终层特征向量4包括帧4与文字1的相似度41、帧4与文字2的相似度42、帧4与文字3的相似度43和帧4与文字4的相似度44,其中,相似度41为10%、相似度42为20%、相似度43为55%、相似度44为30%。
首先,从所述第二帧序列中确定至少一个第一候选帧,所述第一候选帧与所述目标关键字的相似度小于所述第一候选帧与所述文字集中的至少一个文字的相似度,所述至少一个文字的个数小于预设数值,若所述预设数值为3时,则说明:从所述第二帧序列中确定至少一个第一候选帧,具体的,第一候选帧与文字集中的每个文字的相似度按照从大到小的顺序进行排列得到一个序列,所述第一候选帧与目标关键字的相似度位于此序列的前3位以内(所述第一候选帧与目标关键字的相似度位于此序列的第1位、第2位或第3位)。此时,从所述第二帧序列中确定的至少一个第一候选帧包括3个,分别为帧2、帧3和帧4。
从所述至少一个第一候选帧中确定至少一个第二候选帧:因此时相似度23和相似度33相等,均为65%;相似度43为55%;故从所述至少一个第一候选帧中确定出的至少一个第二候选帧包括2个,分别为帧2和帧3。
从所述至少一个第二候选帧中确定第二目标帧:因与帧3对应的相似度33在帧3对应的各个相似度中的排名为第1位;帧2对应的相似度23在帧2对应的各个相似度中的排名为第2位,故选择与所述第1位对应的帧3作为第二目标帧。
通过上述对本申请实施例提供的一种语音关键词识别方法的详细介绍,使得本申请实施例提供的一种语音关键词识别方法更加清晰、完整,便于本领域技术人员理解。
进一步的,为了便于理解上述实施例提供的一种语音关键词识别方法,下面对此方法进行更具体的详细说明,请参见图8。
如图8所示,该方法包括:
需要注意的是:该方法中对应的第一语音包括的第一帧序列中的每个帧设置有唯一的帧id,其中,帧在所述第一帧序列中的序位号即为所述帧的帧id。例如,第一帧序列包括依次排序的三个帧,分别为帧1、帧3和帧2。则,帧1的序位号为1,帧id为1;帧3的序位号为2,帧id为2;帧2的序位号为3,帧id为3。
可选的,语音关键词包括的关键字序列中的每个关键字设置有唯一的关键字id,其中,关键字在所述关键字序列中的序位号为所述关键字的关键字id。例如,关键词序列包括依次排序的4个关键字,分别为关键字1、关键字3关键字2和关键字4。则,关键字1的序位号为1,关键字id为1;关键字3的序位号为2,关键字id为2;关键字2的序位号为3,关键字id为3;关键字4的序位号为4,关键字id为4。
s801、初始化帧id:n=0;关键字id:m=1;计算器置零;
s802、i=n++;判断第一语音包括的第一帧序列中的第i个帧的隐层特征向量与语音关键词中的第m个关键字对应关键字模板是否匹配成功;如果匹配成功,执行步骤s803;如果匹配失败,执行步骤s806;
s803、判断当前所述关键字是否为所述语音关键词包括的关键词序列中的最后一个关键字;如果是,执行步骤s804;如果否,执行步骤s805;
s804、确定所述第一语音中包括所述语音关键词;
s805、设置计数器的计数s为触发初始值;n++;返回执行步骤s802;
可选的,触发初始值即为上述步骤s502中所涉及到的所述阈值。可选的,所述触发初始值为30。
以上仅仅是本申请实施例提供的触发初始值的优选方式,发明人可根据自己的需求任意设置触发初始值的具体数值,在此不做限定。
s806、s--;
可选的,s--表示计数器的计数减一。
s807、判断计数器的计数s是否大于0;若是,返回执行步骤s802;若否,返执行步骤s801。
以上仅仅是本申请实施例提供的一种语音关键词识别方法的优选方式,具体的,发明人可根据自己的需求任意设置本申请实施例提供一种语音关键词识别方法的具体实现方式,在此不做限定。
通过上述对本申请实施例提供的一种语音关键词识别方法的详细介绍,使得本申请实施例提供的一种语音关键词识别方法更加清晰、完整,便于本领域技术人员理解。
上述本发明公开的实施例中详细描述了方法,对于本发明的方法可采用多种形式的装置实现,因此本发明还公开了一种装置,下面给出具体的实施例进行详细说明。
图9为本申请实施例提供的一种语音关键词识别装置的结构示意图。
如图9所示,该装置包括:
第一目标帧确定单元91,用于从构成第一语音的第一帧序列中选取一个帧确定为第一目标帧;
目标关键字确定单元92,用于从语音关键词包括的关键字序列中选取一个关键字确定为目标关键字;
匹配单元93,用于确定所述第一目标帧的隐层特征向量是否与所述目标关键字对应的关键字模板匹配成功,所述关键字模板指示包括所述目标关键字的第二语音中的第二目标帧的隐层特征向量;
识别单元94,用于在匹配成功的情况下,若逐一针对关键字序列中的每个关键字对应的关键字模板,均已确定出位于所述第一语音中的帧的隐层特征向量与其匹配成功,确定所述第一语音中包括所述语音关键词。
进一步的,本申请实施例提供的一种语音关键词识别装置还包括:返回执行单元,用于:在匹配失败的情况下,返回执行“从构成第一语音的第一帧序列中选取一个帧确定为第一目标帧”步骤。
本发明实施例提供第一目标帧确定单元91的一种可选结构。
可选的,第一目标帧确定单元91包括:
第一确定单元,用于确定构成第一语音的第一帧序列中的、第一个从未被确定为第一目标帧的帧;
第二确定单元,用于将所确定的帧,作为从构成所述第一语音的第一帧序列中确定的第一目标帧。
本发明实施例提供目标关键字确定单元92的一种可选结构。
可选的,目标关键字确定单元92包括:
第三确定单元,用于确定语音关键词包括的关键字序列中的,与最近一次匹配成功的关键字模板对应的关键字相邻的下一关键字;
第四确定单元,用于若所述下一关键字被连续确定为目标关键字的次数未达到预设的阈值,将所述下一关键字确定为目标关键字;
第五确定单元,用于若所述下一关键字被连续确定为目标关键字的次数达到所述阈值,将所述关键字序列中的第一个关键字确定为目标关键字。
进一步的,本申请实施例提供的一种语音关键词识别装置还包括:关键字模板生成单元。
本发明实施例提供的关键字模板生成单元的一种可选结构,请参见图10。
如图10所示,所述关键字模板生成单元,包括:
第二语音确定单元101,用于确定包括所述目标关键字的第二语音,所述第二语音由第二帧序列构成;
终层特征向量确定单元102,用于将所述第二语音作为预设的语音模型的输入信息,确定分别与所述第二帧序列中的每个帧对应的终层特征向量;
第二目标帧确定单元103,用于基于分别与每个帧对应的终层特征向量,从所述第二帧序列中确定第二目标帧;
关键字模板生成子单元104,用于根据将所述第二目标帧作为所述语音模型的输入信息所得到的与所述第二目标帧对应的隐层特征向量,生成与所述目标关键字对应的关键字模板。
在本申请实施例中,优选的,所述帧对应的终层特征向量,包括:所述帧分别与所述语音模型中预设的文字集中的每个文字之间的相似度,所述目标关键字为所述文件集中的一个文字;所述第二目标帧确定单元,具体用于:基于分别与每个帧对应的终层特征向量,从所述第二帧序列中选取与所述目标关键字的相似程度最高的帧作为第二目标帧;其中,帧与所述目标关键字的相似程度根据所述帧分别与所述文字集中的每个文字之间的相似度确定。
本发明实施例提供第二目标帧确定单元的一种可选结构,请参见图11。
如图11所示,所述第二目标帧确定单元,包括:
第一候选帧确定单元111,用于从所述第二帧序列中确定至少一个第一候选帧,所述第一候选帧与所述目标关键字的相似度小于所述第一候选帧与所述文字集中的至少一个文字的相似度,所述至少一个文字的个数小于预设数值;
第二候选帧确定单元112,用于从所述至少一个第一候选帧中确定至少一个第二候选帧,所述至少一个第二候选帧为所述至少一个第一候选帧中与所述目标关键字的相似度最大的各第一候选帧;
第二目标帧确定子单元113,用于从所述至少一个第二候选帧中确定第二目标帧,按照相似度从高到低的顺序,所述第二目标帧与所述目标关键字的相似度位于所述第二目标帧与各文字的相似度中的排名,高于除所述第二目标帧外的每个所述第二候选帧与所述目标关键字的相似度位于所述第二候选帧与各文字的相似度中的排名。
综上:
本发明实施例公开了一种语音关键词识别方法、装置、终端及服务器,通过从构成第一语音的第一帧序列中确定第一目标帧;从语音关键词包括的关键字序列中确定目标关键字;在确定目标帧的隐层特征向量与目标关键字对应的关键字模板匹配成功时(关键字模板指示包括目标关键字的第二语音中的第二目标帧的隐层特征向量),若逐一针对关键字序列中的每个关键字对应的关键字模板,均已确定出位于第一语音中的帧的隐层特征向量与其匹配成功,确定第一语音中包括语音关键词的方式,有效实现了对第一语音中的语音关键词的识别。进一步的,便于使用语音唤醒技术的电子设备在识别出第一语音中包括语音关键词时,自动激活与所述语音关键词相应的处理模块。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(ram)、内存、只读存储器(rom)、电可编程rom、电可擦除可编程rom、寄存器、硬盘、可移动磁盘、cd-rom、或技术领域内所公知的任意其它形式的存储介质中。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。