发明领域
本发明涉及一种为治疗目的而向使用者供应加热的、增湿的气体流的装置。本发明具体涉及在该装置中使用的用于控制多个器件中的气体流的湿度的多个传感器,这些器件提供增湿空气是用于:呼吸增湿治疗、高流量氧气治疗、CPAP治疗、Bi-PAP治疗、OPAP治疗等,或用于吹入法或微创手术的气体增湿。
背景
为治疗目的而向患者提供增湿气体流的设备或系统是本技术领域众所周知的。用于提供这种类型的治疗(例如呼吸增湿)的系统具有一种结构,这种结构中,气体从一个气体源被递送至一个增湿器室。当这些气体在该增湿器室中的热水上方经过、或穿过加热的、增湿的空气时,它们变得是水蒸气饱和的。然后,这些被加热的、增湿的气体经由一个气体导管和一个使用者接口被递送至该增湿器室下游的使用者或患者。
该气体递送系统可以是一个由分离的单元组装成的模块式系统,以该气体源作为一个辅助呼吸单元或鼓风机单元。也就是说,该增湿器室/加热器与该鼓风机单元是分离的(模块式)物件。这些模块经由多个连接导管被串联使用,以便允许气体从该鼓风机单元传到该增湿器单元。
作为替代方案,该呼吸辅助装置可以是一个集成式系统,其中该鼓风机单元和该增湿器单元在使用中被容纳于同一个壳体之中。
在模块式系统和集成式系统二者中,由该鼓风机单元提供的这些气体一般来源于周围的大气。
医院中典型地使用的第三种一般形式的呼吸辅助系统是以下这种:该呼吸辅助系统从典型地在使用区(例如一间病房)外部的中央气体源接收它所使用的气体的至少一部分。一个气体导管或类似物被连接在安装于例如病房(或类似物)的墙壁中的一个进口中间。该气体导管在使用中直接连接至该增湿器室上,或如果有需要,一个逐级下降的控制单元或类似物可以被串联连接在该气体进口与该增湿器室之间。这种类型的呼吸辅助系统总体上用于患者或使用者可能需要氧气治疗的情况中,而氧气是从该中央气体源供应的。常见的是,来自该气体源的纯氧气在递送至患者或使用者之前例如通过使用定位于该逐级下降的控制单元中的一个文丘里管而与大气空气进行混合。在至少一些气体是从中央源中递送的这类系统中,不需要一个分离的流量发生器或鼓风机,即这些气体是在压力下从该进口被递送,该逐级下降的控制单元将该压力和流量改变至所需要的水平。
图1示出了仅使用大气气体的一种已知的、现有技术类型的模块式系统的一个实例。
在典型的集成式系统和模块式系统中,这些大气气体被吸进或以其他方式进入一个主要“鼓风机”或辅助呼吸单元,在其出口处提供气体流动。该鼓风机单元和该增湿器单元与该鼓风机单元配合、或以其他方式刚性地连接至该鼓风机单元。例如,该增湿器单元通过一个滑入式或推动式连接与该鼓风机单元配合,这确保了该增湿器单元被刚性地连接至该主要鼓风机单元上并且在其上坚固地固持在位。这种类型的系统的一个实例是US 7,111,624中展示和描述的费雪派克医疗保健公司(Fisher和Paykel Healthcare)“滑入式”水室系统。这种设计的一个变体是一个滑入式或夹卡式设计,其中该室在使用中被封闭在该集成式单元的一部分之内。WO 2004/112873中描述了这种类型的设计的一个实例。
经由一个气体导管和一个接口向患者提供加热的、增湿的气体流动的系统所遇到的问题之一在于充分地控制该气体的特征。无疑地,希望以精确地准确的温度、湿度、流量以及氧含量(如果患者在接受氧气治疗)向这位患者递送气体(即当气体离开使用者接口时)以便提供所必需的治疗。如果不以正确的或所要求的特征向患者递送气体,那么治疗方案可能变得无效。经常地,最希望的情况是以恒定的流速向使用者递送水蒸气完全饱和的气体(即以大致上100%的相对湿度)。治疗方案的其他类型或变体可能需要少于100%的相对湿度。呼吸回路不是稳态系统,并且很难确保气体是以大致上正确的特征被递送给使用者。在一系列的环境温度、环境湿度水平以及在递送点处的一系列气体流量下可能很难达到这一结果。气体流的温度、流速以及湿度都是相互关联的特征。当一个特征改变时,其他特征也将改变。许多外部变量可以影响一个呼吸回路内的气体、并且使得很难以大致上准确的温度、流速以及湿度向使用者递送气体。举例而言,患者或使用者与增湿器出口之间的递送导管被暴露于环境大气条件中,并且在该导管内的加热的、增湿的气体沿该导管在该增湿器室的离开端口与使用者接口之间行进时,该气体可能发生冷却。这种冷却可能在该导管内部引起“雨水冲洗(rain-out)”(也就是说,在该导管的内表面上形成冷凝物)。由于WO 01/13981中详细解释的原因,雨水冲洗是极度不希望的。
为了辅助实现以具有所需特征的气体来递送气体流,现有技术系统已使用被定位于整个呼吸导管的各个位置处的多个传感器(即温度和湿度传感器)。热敏电阻器总体上被用作温度传感器,因为它们可靠且廉价。如US 6,895,803中描述的这些的湿度传感器适合用于为治疗目的而向使用者递送加热的、增湿的气体的系统。
专利公布WO 2001/13981描述一种用于使用这些传感器的输出来控制该增湿气体供应系统的多个方面的系统。专利公布WO2009/145646描述了另一种使用多个传感器的输出来控制该增湿气体供应系统的多个方面的系统。这个公布文件的内容通过引用以其整体结合在此。
在气体流中提供传感器的常规途径是提供一个穿透管壁的探针。该探针延伸进入气体流中。在经常位于气体流的大约中部附近的探针尖端处提供一个热敏电阻。
该探针可以被固定在位(例如,被提供于该气体供应的主体内的一个永久位置处)或作为一个可去除的探针(例如,布置于如呼吸回路的一个可替换部件的部分之中)。在一个可去除的探针的情况下,附接该探针的部件可以包括一个合适的端口,该探针被推进该端口以伸入该导管的内部。
将该探针的传感器部分居中放置于该气体流中被认为是为了提供该气体流的特性(不管是温度、湿度还是流量)的代表性读数所希望的。不幸地,在这个位置中,该传感器易受到用于例如用窄柄的末端上的小海绵清洁气体通道内部时的作用力的影响。另外,该伸出的传感器可能妨碍完全清洁该气体通道的能力。尤其可能出现以下这种情况:伸出的探针延伸进入该通道中、在该通道的一个开口端与该通道中的一个弯曲部之间。在该弯曲部与该探针之间的区域变得难以接近,尤其在该探针正后面的表面区域。尝试接近这些区域可能导致对该探针的损坏。
发明简述
本发明的目标是提供一种传感器安排、或包括一种传感器安排的装置,其目的至少是克服上述缺点。
在一个方面,本发明在于一种用于向患者供应增湿气体的装置,该装置包括:一个增湿气体供应;一个气体供应通道,其位于该增湿气体供应下游并且使用中的患者上游;一个传感器,其嵌入于该通道的壁的外侧中或定位于该外侧上;一个控制器,该控制器接收该传感器的输出、且被适配成从该传感器的输出而得出对流动穿过该通道的气体的一种特性的评估、或根据该传感器的输出而向该增湿气体供应提供一个控制输出;其中该通道的壁将该传感器与该通道中的气体流分离开。
根据另一个方面,该传感器被置于该管的壁的外部表面中的一个凹陷之中。
根据另一个方面,该凹陷伸入流动穿过该管的气体的流动路径中,到达不大于该管的直径的30%的程度。
根据另一个方面,该气体通道具有的直径在10mm与30mm之间。
根据另一个方面,该气体通道的紧邻该传感器的部分是由一种在25℃下具有的热导率小于1W/mK、并且最优选地小于0.4wmk的材料制成。
根据另一个方面,该管壁的紧邻该传感器的部分是由一种塑料材料制成,这种塑料材料是例如聚碳酸酯或聚丙烯。
根据另一个方面,该传感器是一个热敏电阻。
根据另一个方面,一个第二传感器被提供在邻近该第一传感器的一个位置处,该第二传感器也被定位成使得该通道的壁位于该第二传感器与在该气体通道中流动的气体之间,该控制器从该第二传感器接收输出,该控制器被适配成从该输出来确定在该气体通道中流动的气体的物理特性的导数、并且对使用该第一传感器和使用该第二传感器得出的这些导数进行比较。
根据另一个方面,该传感器被定位于该气体通道的邻近该增湿气体供应的一个部分之中。
根据另一个方面,该增湿气体供应被容纳于一个壳体内,并且该气体通道的一部分穿过该壳体,并且该传感器被定位于该气体通道在该外壳内的这个部分之中。
根据另一个方面,该控制器基于该传感器的输出并且基于该增湿气体供应的多个操作条件来评估该气体流动的物理特性。
根据另一个方面,该控制器对包括多个参数在内的增湿气体供应的条件进行补偿,这些参数指示了用于该增湿气体供应中的功率、该增湿气体供应壳体内部的环境温度、由该增湿气体供应的穿过该气体通路的气体的流速、向该增湿气体供应中的一个流量发生器的功率输入、向该增湿气体供应中的一个增湿器的功率输入、向该增湿气体供应中的一个控制器的功率输入、或它们的任意组合。
根据另一个方面,该气体通路的这个包括该传感器的部分被形成为一个弯头,该传感器在该弯头的转弯部分之处或附近。
根据另一个方面,该传感器被定位于液体可以在该气体通道中积聚的一个位置之中。
根据另一个方面,提供了与该第一传感器间隔开的一个另外的传感器,该第一传感器和该另外的传感器之一被定位于液体可以在该气体通道中积聚的一个位置之中,并且另一个被定位于液体将不会在该气体通道中积聚的一个位置之中,该控制器被适配成基于该第一传感器和该第二传感器的输出来计算流动穿过该通道的气体的相对湿度的评估结果。
根据另一个方面,该传感器被定位于该气体路径的远离该增湿气体供应的一个部分中,如在沿着通向患者一个气体供应导管、邻近该患者或沿着该通道居中的一个位置处。
根据另一个方面,该增湿气体供应包括一个增湿器,该增湿器带有一个加热器和邻近该加热器的一个储器,该储器用于容纳一定体积的水。
根据另一个方面,该增湿器包括一个加热板,并且该储器包括在使用中与该加热器相板触的一个可去除的容器。
根据另一个方面,该增湿气体供应包括一个弯头,该弯头的输出被提供给该增湿器的一个进口。
根据另一个方面,该弯头与该增湿器加热器被安排在同一个壳体之中。
在另一个方面,本发明在于一种用于向患者供应增湿气体的装置,该装置包括:一个气体供应通路,是由一个通道壁的内表面界定的;一个传感器,其嵌入于该通道的通道壁的一个外表面中或接触该外表面;一个控制器,该控制器接收该传感器的输出、并且被适配成从该传感器的输出而得出对流动穿过该通道的气体的一种特性的评估、或用于增湿气体供应的一个控制输出;其中该通道的壁将该传感器与该通道中的气体流分离开。
对于本发明所涉及的领域的普通技术人员来说,本发明的在结构上的许多改变以及广泛不同的实施方案以及应用可以自身给出启示而不背离如在所附的权利要求书中界定的本发明的范围。在此的披露和说明纯粹是说明性的、而并非旨在以任何意义进行限制。
如本说明书使用的术语“包括”是指“至少部分地由……组成”,也就是说,当解释本说明书中包括该术语的叙述时,在各叙述中以该术语在前的特征都需要存在,但是其他特征也可以存在。
附图简要说明
现在将参照附图对本发明的一个优选形式进行描述。
图1示出了一位使用者从已知的、现有技术类型的模块式鼓风机/增湿器呼吸辅助系统接收增湿空气的示意图。
图2a示出了一位使用者接收增湿空气的示意图,该使用者戴着鼻罩并且从一个模块式鼓风机/增湿器呼吸辅助系统接收空气。
图2b示出了一位使用者接收增湿空气的示意图,其中该使用者戴着鼻套管并且从一个模块式鼓风机/增湿器呼吸辅助系统接收空气。
图3示出了一位使用者接收增湿空气的示意图,其中该使用者戴着鼻罩并且从一个集成式鼓风机/增湿器呼吸辅助系统接收空气。
图4示出了一位使用者接收增湿空气的示意图,其中该使用者戴着鼻套管,该呼吸辅助系统经由一个壁进口从一个中央源接收气体、并且向一个控制单元提供这些气体,该控制单元向与该控制单元对齐的并且在该控制单元下游的一个增湿器室提供这些气体。
图5示出了用于图2或图3的呼吸辅助系统的一个数据集的图形表示,这些数据在使用中被载入该系统控制器中,该图展示出代表在一系列的环境大气温度下的七个不同的恒定流速以及在一个给定流速和环境温度下的一系列目标温度的曲线。
图6示出了用于图2、图3或图4的呼吸辅助系统的一个替代数据集的图形表示,来自查找表的数据在使用中被载入系统控制器中,这些替代数据与来自图5中图解展示的表格的等效数据进行比较或与其一起使用,这些图线展示出代表有少量环境空气运动时一系列环境大气温度下两种不同的稳定流速的以及在一个给定流速和环境温度下的一系列目标温度下的曲线,并且在具有来自增湿室的高对流热损耗的一系列环境温度下显示了相同的稳定流速。
图7示出了在适合用于图2、图3或图4的呼吸辅助系统的控制器与如图2、图3或图4示出的优选形式的呼吸辅助系统的其他部件之间的连接的示意图。
图8是根据本发明的一个优选实施方案结合了一个温度传感器的导管弯头的截面侧视图。
图9是图8的导管弯头的截面顶视图。
图10是结合了一对可能对确定湿度有用的温度传感器的一个导管弯头的截面侧视图。
图11是根据本发明另一个实施方案包括一个温度传感器的一个连接器套管的截面侧视图。
图12是根据本发明另一个实施方案包括一个温度传感器的一个连接器套管的截面侧视图。
优选实施方案的详细说明
本发明提供了一种改良的传感器安排,该传感器安排较不可能被损坏并且允许这些传感器所在的导管的更有效的清洁。图8至11中展示了这些传感器安排,并且下文对这些安排进行了详细描述。这些传感器与一个控制器协同操作,该控制器基于这些传感器的输出和该系统的主导条件来评估气体流动的热特性。在一些实施方案中,该控制器还控制该系统的操作的多个方面,如气体流速和施加给一个增湿器的加热器的功率。在此情况下,温度传感器的输出可以直接馈入控制算法而无需将这些传感器输出转换成评估的温度的任何中间步骤。而是,该控制算法直接对这些主导系统条件进行补偿。
首先参照图2至图4对可以结合根据本发明的传感器安排的一般系统配置进行描述。
图2a和图2b中示出了根据第一实例系统配置,使用者2从一个模块式辅助呼吸单元和增湿器系统1接收空气的示意图。该系统1为了治疗目的(例如,为了降低阻塞性睡眠呼吸暂停的发病率,为了提供CPAP治疗,为了提供治疗目的的增湿作用,或类似目的)而向使用者2提供加热的、增湿的气体的加压流。下文对该系统1进行了详细描述。
该辅助呼吸单元或鼓风机单元3具有一个内部压缩机单元、流量发生器或风扇单元13(一般可以被称为流动控制机构)。来自大气的空气经由一个大气进口40进入该鼓风机单元3的外壳、并且被吸入穿过该风扇单元13。该风扇单元13的输出是可调节的,即风扇速度是可变的。加压的气体流离开该风扇单元13和该鼓风机单元3,并且经由一个连接导管4行进至一个增湿器室5,从而通过一个进入端口或进口端口23进入该增湿器室5。
在使用中该增湿器室5容纳一定体积的水20。在优选的实施方案中,在使用中该增湿器室5被定位在具有一个加热板12的一个增湿器底座单元21的顶部。对该加热板12通电以加热该室5的底座,并且因此加热该室5的内容物。该室5中的水随着被加热而蒸发,并且该增湿器室5内部的气体(在水20的表面上方)变热且变湿。经由进口端口23进入该增湿器室5的气体流通过该加热的水的上方(或穿过这些被加热的、增湿的气体,这种情况适用于较大的室和流速)并且因此变热且变湿。该气体流然后经由一个离开端口或出口端口9离开该增湿器室5,并且进入一个递送导管6。
当在本说明书中参照本发明提及一个“增湿器单元”时,这应当被当成至少是指该室5,并且如果适当的话,是指该底座单元21以及加热板12。
这些被加热的、增湿的气体沿该递送导管6的长度通过并且经由一个使用者接口7被提供给患者或使用者2。该导管6可以经由一个加热丝(未图示)或类似物来加热以帮助防止雨水冲洗。该导管典型地具有一个圆形的内部截面。该导管的内部直径典型地为约20mm,但是可以在10mm与30mm之间。这些典型的尺寸适用于气体流动通路的弹性部分和刚性部件二者,这些刚性部件是例如弯头和连接器以及集成在该增湿气体供应的部件中的多个部分。
图2a所示的使用者接口7是环绕并且覆盖使用者2的鼻子的一个鼻罩。然而,应指出,鼻套管(如图2b所示)、全罩式面罩、气管造口术接头或任何其他合适的使用者接口可以取代所示的鼻罩。一个中央控制器或控制系统8定位于鼓风机壳体(控制器8a)或增湿器底座单元(控制器8b)之一中。在这种类型的模块式系统中,优选的是使用分离的鼓风机控制器8a和增湿器控制器8b,并且最优选的是控制器8a、8b是相连的(例如通过缆线或类似物),这样它们可以在使用中相互通信。
控制系统8经由定位在该增湿器底座单元21或该鼓风机单元3上或二者上的使用者控件11来接收使用者输入信号。在优选的实施方案中,该控制器8还接收来自位于在整个系统1的不同点处的传感器的输入。
图7示出了控制器8的输入和输出中的一些的示意图。应指出,未展示所有可能的连接以及输入和输出,图7代表了这些连接中的一些并且是一个代表性实例。
下文将对这些传感器和它们的位置进行更加详细的描述。响应于来自控件11的使用者输入和从这些传感器接收到的信号,该控制系统8确定一个控制输出,在该优选的实施方案中,该控制输出发送多个信号以调节用于该增湿器室加热板12的功率和该风扇13的速度。下文将更详细地描述用于确定该控制器确定该控制输出的方式的程序设计。
图3示出了使用者2从根据本发明的第二形式的一种集成式鼓风机/增湿器系统100接收空气的示意图。除了增湿器室105已经与该鼓风机单元103集成而形成一个集成单元110以外,该系统以与图2所示且以上描述的模块式系统1非常类似的方式进行操作。由定位在该集成单元110的壳体内部的风扇单元113提供一个加压气体流。由加热板112(在该实施方案中,该加热板是该鼓风机单元103的结构的一体的部分)加热该增湿器室105中的水120。空气经由一个进入端口123进入该增湿器室105、并且经由离开端口109离开该增湿器室105。该气体流经由一个递送导管106和一个接口107被提供给使用者2。该控制器108被容纳于该集成单元100的外壳内。多个使用者控件111被定位在该单元100的外表面上。
图4示出了使用者2从另一形式的呼吸辅助系统200接收空气的示意图。该系统200总体上可以被表征为一个远程源系统、并且经由一个壁进口1000从一个远程源接收空气。
该壁进口1000经由一个进口导管201连接至一个控制单元202上,该控制单元从进口1000接收气体。该控制单元202具有多个传感器250、260、280、290,这些传感器分别测量进入的气体流的湿度、温度和压力以及流量。
该气体流然后被提供至一个增湿器室205,其中该气体流以一种与以上所述类似的方式被加热且增湿并且被提供给一位使用者。应指出,当针对如系统200的一个远程源系统提及“增湿器单元”时,这应当被当作是指结合了该控制单元202,即来自该远程源的气体可以直接与一个进口相连接,或经由该控制单元202(为了降低压力或类似的)与一个进口相连接,但是该控制单元和该增湿器室应当被解释为属于一个总体的“增湿器单元”。
如果有需要,系统200可以通过将该中央源作为O2源、或通过将大气空气与经由定位于该控制单元202中的一个文丘里管90或类似物从该中央源进入的O2进行混合,来向使用者提供O2或一种O2成分。优选的是,该控制单元202还具有一个充当流动控制机构的阀门或类似机构,以便调节穿过该系统200的气体的流速。
传感器
图2、图3以及图4示出的模块式和集成式系统1、100和200具有定位在整个系统的多个点处的多个传感器。下文将对涉及该呼吸辅助系统1的这些传感器进行描述。
如图2所示的优选形式的模块式系统1在以下优选的位置具有至少以下传感器:
1)一个环境温度传感器60,其定位于该鼓风机壳体的内部、附近或之上,被配置或适配成测量从大气进入的空气的温度。最优选的是,该温度传感器60定位于风扇单元13之后(下游)的气流中,并且尽可能靠近该增湿器室的进口或入口。
2)一个增湿器单元离开端口温度传感器63,其定位在该室的离开端口9处、或定位在该递送导管6的装置末端(与患者端相对)处。出口温度传感器63被配置或适配成在气体流离开室5时测量该气体流的温度(在任一配置中,该离开端口温度传感器63可以被认为是在该室离开端口9的近端)。
优选地根据本发明来提供传感器63,其中该传感器通过管的壁而与气体流分开并且基本上不伸入该气体流中。
类似地,多个传感器在图3所示的集成系统100和图4的系统200中被安排在基本上相同的位置处。例如,对于图3的集成系统来说,一个环境温度传感器160定位于鼓风机壳体内的气体流中,恰好在该增湿器室入口端口123之前(上游)。一个室离开端口温度传感器163被定位在该室离开端口109处、并且被配置成在气体流离开室105时测量该气体流的温度(在任一配置中,该离开端口温度传感器163可以被认为是在该室离开端口109的近端)。对于任一实施方案来说,作为替代方案,这个传感器可以定位在该递送导管106的装置末端(与患者端相对)处。一个类似编号的系统被用于图4所示的呼吸辅助系统,即环境温度传感器260、风扇单元213、定位在该室离开端口209处的室离开端口温度传感器263等。
同样优选的是,该呼吸辅助系统1(和100、200)具有定位为邻近该加热板12的一个加热板温度传感器62,该传感器被配置成测量该加热板的温度。具有一个加热板温度传感器的这个或这些呼吸辅助系统是优选的,因为该加热板温度传感器给出了该加热板的状态的即时指示。然而,这个或这些系统不是绝对必须具有该加热板温度传感器。
而且最优选的是,这些系统具有一个流量探针,即系统1中的流量探针61,该流量探针定位在该风扇单元13的上游并且被配置成测量气体流量。尽管该流量探针可以定位在该风扇的下游或其他任何适当的地方,但是该流量探针的优选位置是该风扇单元的上游。此外,优选的是,一个流量探针形成该系统的一部分,但是流量探针不是绝对必须是该系统的一部分。
现在下文将对该呼吸辅助系统1的布局和操作进行详细描述。系统100与系统200的操作和布局是基本上相同的,并且除了必要的地方之外将不会对其进行详细描述。
对于呼吸辅助系统1来说,来自所有传感器的读数被反馈给控制系统8。控制系统8还接收来自这些使用者控件11的输入。
稍后将对另外的替代性的附加传感器和它们的布局进行详细描述。
温度传感器安排
根据本发明,温度传感器63(或163,或263)被安排成使得该导管的壁将该温度传感器与气体流分开。
优选地,该传感器被嵌入于该导管的壁的外部表面中的一个凹窝之中。该凹窝可以延伸而伸入气体流中。例如,该管壁的紧邻该凹窝的内表面可以鼓出或伸入该气体流中。作为替代方案,该凹窝可以被容纳于一般厚度的管壁内,这样使得该管壁的紧邻该凹窝的内表面不需要相对于周围的内表面伸出。作为替代方案,该传感器可以被固定到没有容纳凹窝的外壁表面上。
在该凹窝是由伸入气体流中的管壁的内表面形成时,伸出的程度优选地被限制成小于该位置处的导管直径的1/3。如果容纳该凹窝的这个鼓出部的伸出量超过这,那么将无法实现与在该导管壁的外侧容纳该传感器有关的实质性益处。最优选地,不存在与传感器位置有关的、进入气体流动路径中的鼓出部或凸起。这比带有某种进入流动路径中的凸起的一种安排更易于制造,因为塑料模具将典型地不那么复杂。
根据本发明的传感器安排的预知优点是,导管部件比典型的现有技术传感器更易于模制、更易于清洗并且较不易于受损,典型的现有技术传感器包括一个探针,该探针伸入气体流动路径中以便将传感器部件放置在气体流动的大约中心处。我们已经发现,放置在导管壁外侧的传感器,或导管壁在传感器与气体流动之间的传感器可以用于充分地评估气体流动的温度、露点温度或湿度,其中一个相关联的控制器可以对多个主导系统条件进行补偿。
图8和图9示出了优选的传感器实现方式。图8示出了一个导管弯头800,该导管弯头包括在增湿气体离开增湿器之后的气体流动路径的一部分。气体在末端814处进入该导管弯头、沿由箭头816指示的方向流动并且在末端818处离开。该弯头800可以由任何适合的塑料材料构造。例如,该弯头可以由聚碳酸酯模制而成。该连接器的外表面被模制成包括一个凹陷802。凹陷802横穿该导管的轴线对齐(图9中最佳可见)、并且在至少一个末端是开放的。该弯头的凹陷外表面向外鼓出(820)以容纳该凹陷。该凹陷与该气体流动分隔开了该部件的壁804的厚度的大约一半。然而,可以使用留有足够厚度的塑料以便维持该连接器的完整性的任何分隔。
该凹窝或凹陷可以横穿或沿该部件的外侧延伸以便有助于有效的模制工具。
一个温度传感部件806被定位并且固定在该凹陷802之中。该温度传感部件可以是具有根据温度而变的可测量特性的任何电气或电子部件。热敏电阻器是合适的器件的实例。该传感器可以通过任何适合的方法固定在位。最优选地,该传感器806由如环氧胶或氰基丙烯酸酯胶等粘合剂来固定。
导线810从该传感器延伸出。
在这个位置中,该传感器不与该气体流进行紧密的热接触、但是与管的壁进行紧密的热接触。
内部通道812不会被任何突出的探针堵塞,并且可以对全范围的管进行清洗,例如通过固定到窄棒上的海绵来清洗。没有突出的探针可能被试图进行的清洗损坏。
该温度传感器优选地定位于该弯头中的低点处。这个位置是可能会因增湿空气流动而潮湿的一个区域。因为在正常使用条件下该流动是完全或几乎完全饱和的,所以这可以提高向管壁的热传递。下文提出的控制算法已经证明了传感器在这个位置中是稳健的。
对于许多应用来说,安全要求规定了冗余度水平或检查该控制系统的完整性的能力。参照图9,一个第二传感器904可以被放置在该第一传感器806的旁边并且以与该第一传感器806相同的方法被固定在位。该第二传感器可以位于与该第一传感器相同的凹陷中,例如每个传感器被放置在延伸横穿管的外部的一个凹窝中的稍微间隔开的多个位置处。作为替代方案,该导管可以被形成为具有稍微间隔开的凹陷802、902(如图所示),在每个凹陷中放置且固定有一个传感器。来自每个传感器的导线从该凹陷沿伸出。
在这个双传感器实施方案中,该控制器可以直接比较传感器的输出、或可以被校准以便基于多个系统条件来独立地计算每个传感器输出的导数,并且然后比较这些结果。如果这些传感器输出或这些传感器输出的导数明显不同,那么该控制器将指示一个错误或将以安全模式允许、或进行这二者。因为这些传感器定位于稍微不同的多个位置处,所以每个传感器输出的导数的比较是优选的。将根据多个系统条件独立地计算每个导数,该计算是根据具体的传感器位置来校准的。
图10示出了结合有多个传感器的另一个实施方案。根据图10的安排,这些传感器提供在间隔开的位置处,特别旨在显示不同的操作条件。具体来说,图10的安排在导管1000的外部表面上的一个位置1004处提供一个温度传感器1002,在该位置处可预期该导管没有任何积聚的冷凝物,并且在该导管的外部表面上的一个位置1008处提供另一个传感器1006,在该位置处可预期该导管的内部表面积聚了冷凝物。
在特定的安排中,紧邻一个流动弯头提供这些传感器,并且该弯头被安排成使得该弯头的曲线1010稍微低于1012该弯头的两个末端的下部。
第二传感器1006被提供于管壁的内部表面的最低程度的位置处、在管壁的外侧之中。在这个位置1008处,表面水分最可能在该增湿气体递送装置的操作中积聚。
第一传感器1002被提供在沿该弯头的外部表面的另一个位置1004处。该第一传感器的位置较少受约束,但是可以是例如在该导管的内表面在使用中处于基本上垂直的一个位置处,这样使得冷凝液滴较不可能停留于该位置处。因此,例如该第一传感器可以位于该弯头的上肢上的任何位置处、或在沿该弯头的下肢的各侧的中点的任何位置处。
该控制器可以被编程为使用来自这个安排中的第一和第二传感器的输出来评估气体流的湿度。该控制器程序可以使用该第一传感器来评估该气体流的温度。该第二传感器可以受通过气体流动而积聚的冷凝物的蒸发的影响、并且可以近似于一个湿度传感器中的湿球传感器。每个传感器经受该系统的外部影响,包括气体流速和环境热效应。该控制器能以下文中关于单个温度传感器所述的相同方式对这些效应进行补偿。
在要求冗余度的情况下,多个传感器可以被提供在如以上关于图8所论述的每个位置处。
湿度控制方法
优选的控制系统8具有预载入该控制器中的至少一个数据集。针对带有特殊部件的特殊系统配置(例如带有用于收集数据的具体的特殊鼓风机单元和增湿器单元的系统1或系统100,或系统200),在受控条件(例如在一个测试区域或实验室中)下预测量或预计算形成了该数据集的数据。在使用中典型地会遇到的许多条件范围下收集数据,然后将该预测量(预设)的数据作为一体的软件或硬件载入控制器8中用于这些生产系统,或作为将被用于例如模糊逻辑算法中的数据进行湿度控制。
图5中作为图表示出了特别适合用于系统1的一个数据集。x轴示出了从18℃至35℃的一系列的环境温度。在使用中,通过环境温度传感器60来测量呼吸辅助系统中在室5之前或上游的气体的环境温度,并且该环境温度数据被转发到控制器8。最优选的是,温度传感器60测量在气体刚好进入室5之前时气体的环境温度。为创建数据集,一个典型的系统1被放置在以下环境中:其中环境温度可以在一系列的温度上被保持在一个已知的、恒定的水平。
在使用中,使用者通过调节这些控件11来选择流速。控制器8接收来自使用者控件11的输入并且调节风扇速度以基本上匹配所请求的这个流速(通过将该风扇的速度改变至一个已知是基本上与特定呼吸回路配置所要求的流量相对应的速度,或通过使用流量探针61来测量流量并且经由控制器8使用反馈机制来将该流速调节至所要求的或所请求的水平)。图5的图表中示出了针对七个不同的恒定风扇速度的七个不同的恒定流速。线70至76与不同流速的对应关系如下:线70-流速是15升/分。线71-流速是20升/分。线72-流速是25升/分。线73-流速是30升/分。线74-流速是35升/分。线75-流速是40升/分。线76-流速是45升/分。
Y轴示出了一系列的目标室温度。这些温度可以作为温度传感器值被存储,而不需要符合实际校准的温度。也就是说,针对任何给定的风扇速度(流速和压力)以及任何给定的环境温度,对于室5中位于水20上方的气体来说存在一个“最佳的”或“理想的”目标出口温度,该目标出口温度如Y轴所显示。这个“理想的”温度是一个给定的恒定流量和恒定环境温度下的露点温度。也就是说,在该温度下气体能够以需要的饱和度(需要的湿度水平)离开室5并且然后以用于有效治疗的正确温度和压力被递送至使用者2。当气体离开该室5时,这个室离开端口温度传感器63测量了一个温度。控制器8被适配成接收由该室出口温度传感器63测量的温度数据以及与进入该室5的气体温度(如由环境温度传感器60测量出的温度)相关的数据。流速如以上所述被预先设定至一个恒定值,因此该控制器8已经“知道”该恒定流速。因为该控制器8“知道”流速和环境温度二者,所以该控制器能够例如从结合在该预载入的数据集(例如,图5中图解示出的数据)中的范围中查询一个“理想的”目标出口温度读数。然后控制器8将所测量的室出口温度值与在给定的已知流速和环境温度下的“理想的”目标室温度进行比较。如果目标温度的测量值不匹配该‘理想的’目标值,那么控制器8产生或确定一个合适的控制输出,并且相应地调节用于加热板的功率,要么提高功率以提高室5内的气体温度,要么降低功率以降低气体温度。控制器8以这种方式调节功率以便使得在出口或离开端口处测量的温度与所需要的目标温度相匹配。在优选的实施方案中,控制器8调节这些输出特征的机制是经由一个比例积分微分控制器(P.I.D.控制器)或本领域已知的许多类似机制中的任何一个。
该控制器还可以通过例如使用载入该控制器8中的模糊逻辑控制算法、或在等式中利用所测温度和流动数据作为变量的数学公式,来产生或确定一个合适的控制输出。
下文示出多个数学公式的实例。这些总体上对应于在图5中针对从15至45升/分的流速范围图解示出的数据。
实例:使用者2的治疗方案指定了某个流速和压力,例如45升/分的流量。该鼓风机或风扇单元13的速度被设定(通过控件11)成在这个流速下递送气体。如果一个流量探针61是该系统的一部分,那么可以通过将来自该流量传感器或流量探针61的实时流量读数反馈至该控制器8来动态地调节这个流速,必要时该控制器8调节该风扇速度。这能够经由如下文详细描述的构成了控制器8的一部分的一个P.I.D.控制器或类似物来完成。优选的是,动态地调节且监控该流速。然而,如果流量探针不是该系统的一部分,那么该流速是从风扇速度来假设或计算的,并且被假设成对于一个恒定的风扇功率水平来说是恒定的。图5的图表上的线76示出了45升/分的流速。在这个实例中,使用者2正睡在具有基本上30℃的环境温度的一个卧室之中。30℃的空气进入该呼吸辅助装置中并且随着空气通过该壳体内的风扇以及连接通道,该空气稍微变暖。环境温度传感器60测量了将要进入该增湿器室中的空气的温度。因为环境温度和流速是已知的,所以控制器8能够计算出所需要的目标温度,如图5的图表的Y轴所示。从这个具体实例中可以看出室的目标温度是39.4℃。这个室出口温度传感器63测量了室5的出口处的温度(在该离开点处的气体温度与在室的内容物20上方的空间中的空气温度基本上是相同的)。如果由该室出口温度传感器63测量出的气体温度不是39.4℃,那么控制器8确定并且产生一个合适的控制输出,该控制输出相应地改变用于加热板12的功率。如上,如果由环境温度传感器60测量出的环境温度发生变化,那么这将被反馈到控制器8并且在适当时使用P.I.D.控制算法或类似方式改变这些输出。
这种系统超过现有技术中披露的系统的优点之一如下:在现有技术系统中,随着环境温度接近目标露点温度,加热板将吸收较少功率并且不使该增湿器室中水的温度升高那么多。因此,气体在离开该室时倾向于是未完全饱和的。以上描述的方法以如下方式克服这一问题:通过使用针对一个已知配置的系统而言的环境温度或更优选地室进口温度、室出口温度以及流速的值,以便产生被认为对于气体饱和度以及针对设定的流速和具体的环境温度下递送至使用者来说是基本上为最佳或“理想的”温度的一个目标室出口温度。
另一个优点是系统1能够精确地控制湿度水平而无需一个精确的湿度传感器。
另一个优点是当从该压缩机或鼓风机向该增湿器室递送气体、并且进入的气体具有升高的温度时,该室温度能够被精确地补偿以达到所需要的露点。这在进入该室的空气或气体是暖的时候并且同样在当温度随着流量增加而升高的情况下尤其有利。在操作中,任何流量发生器都会引起在大气进口与出口之间的空气温度的升高。这个温度改变在一些类型的流量发生器中可能更加突出。该系统的多个部件的温度可以在该系统首次被激活的时间点与后来某个时间点(例如在合理延长的时间段内,如1至2小时内)之间发生变化。也就是说,当操作该系统时该系统的多个部件可以升温,其中该系统需要一些时间来达到稳定的操作状态。如果这些部件是定位于空气进入该系统的点与空气进入该室的点之间的空气路径之中或附近,那么这些气体的温度将发生变化,即在气体沿这个路径行进时,将有一些热量从这些部件转移到这些气体中。因此可以看出:在气体进入该室时测量这些气体的温度减小了向控制计算中引入温度测量误差的可能性,因为当系统达到稳定的操作状态时,该系统的进入点处的气体温度可能不同于该室的进入点处的气体温度。然而,总体上发现:尽管最优选的是测量该室的进入点处的气体温度,但是在大多数情况下测量大气气体温度也是可以接受的。
以上描述的方法基本上类似于集成装置100或装置200,尽管因为该装置具有稍微不同的配置,查找表中的预设的或预测量的以及预载入的值可能是不同的。在其他形式中,使用者可以选择一个压力率(并且将针对多个压力值而不是多个流量值来修改该数据集)。
另外的替代性传感器布局
在以上概述的装置和方法的变体中,该系统(系统1或系统100或系统200)还具有下文概述的其他传感器。
1)一个患者端温度传感器15(或115或215)被定位在递送导管6的患者端处(或可替代地在接口7之中或之上)。也就是说,在该患者或递送点之处或附近。当阅读本说明书时,“患者端”或“使用者端”应当被当作是指靠近该递送导管(例如递送导管6)的使用者端、或在患者接口7之中或之上。除非另外指出特殊的位置,否则这是适用的。在任一配置中,患者端温度传感器15可以被认为是在使用者或患者2之处或附近。
这些传感器优选地是根据本发明的安排来提供的。这些传感器通过管的壁与气体流分开并且基本上不伸入该气体流中。如图11所示,温度传感器1115可以用与图8和图9中描述的构造等效的一种构造被提供成使得连接器1100的壁1102位于该温度传感器与该气体流之间。因此,例如,所示出的连接器包括横穿该外表面而间隔开的一对凹陷1104。每个凹陷之中定位有一个传感器1115,例如热敏电阻器。每个传感器1115通过如环氧胶等合适的粘合剂被固定在该凹陷之中。
根据这种安排,该导管的内部不会被任何突出的探针堵塞。根据这种安排,该传感器没有暴露于气体流中,因此该气体流不需要任何后续的灭菌或处理。此外,该导管的内表面可以更容易被清洗。作为替代方案,剥离套筒1110可以被提供至该导管的内表面上而不被一个伸出的传感器阻塞。该剥离套筒可以在第一次使用之后被拆离该导管,这样使得该导管可以通过插入一个新的剥离套筒被再使用(这样使得该导管可以被使用多次),或者不插入一个剥离套筒,这样使得该导管都可以被再使用一次。最初可以结合多层的剥离套筒,这样使得该导管可以相应地再多次使用。
参照图12,提供到该管壁的外侧上的这些传感器可以被结合到与该管壁可分开的一个外壳之中。例如,导管连接器1202可以包括适合于容纳该外壳部件1206的一个凹窝。呈锥体、唇缘或夹子(1208)形式的固定特征可以将该外壳部件1206定位于该凹窝1204之中。传感器1210可以被提供于该外壳部件中的一个位置处,该位置将在该外壳部件被定位于该凹窝1204中时邻近该凹窝的表面。根据这种安排,尽管该导管是一次性的,但是这些传感器可以被使用。
来自该患者端温度传感器15的读数被反馈到控制器8并且被用于确保在递送点处的气体的温度与在室出口处的气体的目标患者温度(该目标患者温度是该室出口处的目标露点温度)基本上匹配。如果来自该患者端温度传感器15的读数指示,随着气体沿递送导管6的长度行进而气体温度下降,那么控制器8可以提高该导管加热丝(展示为图2a上的丝75-未示出但是存在于图3和图4示出的替代优选形式的呼吸辅助系统200和400中、以及图2b中示出的系统之中)的功率以维持该气体温度。如果可用于该导管加热丝75的功率不能够允许在递送点处的气体达到等于室出口9处的露点温度,那么控制器8使目标室出口温度降低(至低于该露点温度)。控制器8使该室出口温度降低至处于或接近该导管加热丝能够向患者递送的最大气体温度的一个水平,该最大气体温度是由患者端温度传感器15测量的。控制器8载有预定的数据集、并且通过使用该数据(该数据类似于图5中以图解形式示出的数据)调节该加热板、或该导管加热丝或二者的功率。对于恒定的流量水平并且对于由环境温度传感器60测量出的一个测量环境温度(该测量环境温度可以发生变化)来说,存在一个理想的患者端温度。控制器8调节该加热板和该导管的一个或多个功率输出,以便使该导管的患者端的温度(由温度传感器15测量出)与这个理想温度相匹配。
如果系统中的气体的其他条件是已知的(气体条件),那么为达到精确性,以上方法可以被进一步精细化。例如,如果进入鼓风机的气体的湿度水平或进入的气体的气体压力是已知的。为达到这点,以上描述的系统1、100以及200的替代实施方案还可以具有位于进入的气体路径中的一个气体条件传感器(例如湿度传感器或压力传感器)。对于模块式系统1来说,一个湿度传感器50被展示在大气进口40附近。对于集成系统100来说,这被显示为湿度传感器150(等等)。以一种类似于以上概述的控制方法的方式,控制器8预先载有一个湿度水平数据集。对于恒定的流速和已知的环境或外部湿度水平来说,在该室出口处(或在递送至使用者的点处)存在一个理想的气体温度。该数据集含有针对一系列的环境湿度和流速的这些理想值,这些理想值类似于图5中以图解形式示出的值。控制器8用从该控制器的存储器中的数据集检索出的“理想的”温度读数来调节该加热板或该加热丝、或二者的功率输出,以匹配所测量出的室出口温度读数(或患者端温度)。以类似的方式,如果进入该增湿室鼓风机的气体的压力水平是已知的,则可以将以上方法精细化以达到精确性,从而将一个压力传感器定位于进入该增湿室的气体路径中(显示压力传感器80位于图2中模块式系统的进入气体路径中。压力传感器180展示于图3中集成式系统的进入气体路径中。压力传感器280展示于图4的中央气体源系统的进入气体路径中)。应当指出,如果对于恒定流量的条件、环境温度以及另一个气体条件(例如湿度或压力)图形地绘制用于该数据集的数据,那么将要求在三个轴(X轴、Y轴以及Z轴)上绘制图形,在绘制时,这些图形将会是“三维的”。