一种降低六方氮化硼二维薄膜厚度的方法
【技术领域】
[0001 ]本发明属于材料领域,具体涉及一种氮化硼原子层薄膜的制备方法。
【背景技术】
[0002]自2004年首次用机械剥离法制得石墨烯,全世界掀起了研究石墨烯及其他二维(2D)材料的热潮,已成功制备多种2D材料,如硫化钼、钴酸锂、硅烯、锗烯及砷烯和锑烯等。六方氮化硼h-BN也是结构类似石墨烯的二维材料,具有媲美石墨烯的高热导率;比石墨烯更高的化学稳定性,在空气中,1000°C不发生氧化,而石墨烯600°C发生氧化;h-BN是绝缘体,介电常数3-4,击穿电压0.7V/nm,与氧化硅接近,是是石墨烯非常好的基底材料,与氧化硅基底相比,h-BN原子在平面内成键,垂直方向没有任何悬键,表面平整度达到原子级,能够减少界面对电子的散射,可以使石墨烯电子迀移率提高一个数量级。六方氮化硼在未来纳米二维电子器件制备中具有广阔的应用前景。
[0003]六方氮化硼二维薄膜最常用也最具有应用前景的制备方法是化学气相沉积法(CVD法)。该方法氮化硼生成于铜催化剂表面,采用聚合物作为支撑,溶解去除铜催化剂最终转移至至目标衬底。人们期望通过CVD法获得高质量、大尺寸、原子层数可控h-BN原子层薄膜。在上世纪70年代左右,已用CVD法成功合成h-BN[ 10-11 ],当时的研究主要关注氮化硼体材料的结构和性能。1995年Nagashima等人用环硼氮烧在超高真空、高温条件下,在金属表面外延生长了 h-BN单原子层,发现h-BN的电子结构与生长基底(镍、钯和铂)无关。2005年Preobrajenski等人在铜和镍基底上生长了单原子层h_BN,发现h_BN化学吸附在铜镍基底表面,h-BN与镍之间的化学键比较强,与铜之间的化学键比较弱。2010年,受石墨烯制备启发,Ajayan等人首次用CVD法在金属铜箔表面制备出大尺寸多原子层h-BN薄膜,并成功将h-BN薄膜转移至其它基底表面。
[0004]综上所述,通过化学气相沉积法可以在金属催化剂基底表面合成氮化硼。虽然六方氮化硼可以通过CVD法制备,但是目前氮化硼薄膜质量较差,氮化硼单晶晶畴尺寸小。氮化硼CVD法生长时通常是层-岛状混合生长模式,存在生长的薄膜厚度不可控制的缺点,而且薄膜表层生长有颗粒状的氮化硼。本方法是通过热处理的方法将氮化硼薄膜表层上颗粒状的氮化硼去除,降低氮化硼薄膜厚度,同时留下底层高质量的氮化硼薄膜。
【发明内容】
[0005]本发明针对现有六方氮化硼二维薄膜生长技术的不足,提出了一种降低六方氮化硼二维薄膜厚度的方法。
[0006]本发明方法采用化学气相沉积法(CVD法)以铜为基底,高温保温后快速冷却,在铜催化剂薄膜表面制备氮化硼薄膜,然后转移至硅片等基底表面,再通过在不同气氛中进行热处理去除薄膜表层颗粒物,获得厚度减薄的高质量的氮化硼原子层薄膜材料。
[0007]本发明一种降低氮化硼原子层薄膜厚度的方法的具体步骤是:
[0008]步骤(I)、将铜片用浓度为0.5?1.5mol/L的盐酸浸洗5?10秒,去离子水清洗后用氮气吹干,放入电炉的石英管中;
[0009]步骤(2)、石英管中持续通入氩气和氢气的混合气,氩气与氢气的流量比为I?3:2,将电炉温度升至900?1000°C后保温5?30分钟。
[0010]步骤(3)、同时向石英管内通入硼氨烷蒸气,20?30分钟后关闭通入硼氨烷蒸气。硼氨烷蒸气通过水浴加热硼氨烷产生,水浴温度40?100°C。
[0011]步骤(4)、电炉停止加热,将石英管冷却到常温,冷却速率为20?30°C/min,然后关闭通入氢气和氩气,取出铜片。
[0012]步骤(5).将铜片取出,在铜片上表面旋涂PMMA溶液,PMMA溶液在空气中干燥5?30分钟形成PMMA薄膜黏附在铜片表面,然后浸入氯化铁溶液中溶解去除铜片,之后将漂浮在氯化铁溶液表面的PMMA薄膜转移至硅基底表面,接着将硅基底浸入丙酮中,经过30?180分钟,获得转移至硅片表面的氮化硼二维薄膜,为原子层薄膜,薄膜的厚度在2?30nm之间。
[0013]步骤(6).将步骤(5)转移至硅片表面的氮化硼薄膜,放入退火炉中,在一定气氛中于500?1000°C热处理10?360分钟,获得厚度减薄后的氮化硼薄膜,薄膜厚度在0.5?5nm之间。
[0014]所述的一定气氛为氢气、氧气、氩气、氮气、氧气或空气。
[0015]所述的原子层薄膜厚度在单原子层至15个原子层厚度之间。
[0016]本发明的有益效果:本发明方法通过热处理方法去除氮化硼薄膜表层的结晶性差的氮化硼颗粒膜,留下高质量的氮化硼二维原子层薄膜,这种方法对于减薄氮化硼薄膜的厚度、提高氮化硼二维薄膜的质量以及高质量氮化硼的生长都是有借鉴意义的。
【具体实施方式】
[0017]实施例1:
[0018]步骤(I).将铜片(3cm x 2cm x 0.05cm)用浓度为0.5mol/L的盐酸浸洗10秒,去离子水清洗后用氮气吹干,放入电炉的石英管中;
[0019]步骤(2).石英管中持续通入氩气和氢气的混合气,氩气与氢气的流量比为1:2,将电炉温度升至900 V后保温30分钟;
[0020]步骤(3).同时向石英管内通入硼氨烷蒸气,20分钟后关闭通入硼氨烷蒸气。通入的硼氨烷蒸气是通过水浴加热得到,水浴温度40°C。
[0021]步骤(4).电炉停止加热,将石英管冷却到常温,冷却速率为20°C/min,然后关闭通入氢气和氩气,取出铜片。
[0022]步骤(5).将铜片取出,在铜片上表面旋涂PMMA溶液,PMMA溶液在空气中干燥5分钟形成PMMA薄膜黏附在铜片表面,然后浸入氯化铁溶液中溶解去除铜片,之后将漂浮在氯化铁溶液表面的PMMA薄膜转移至硅基底表面,接着将硅基底浸入丙酮中,经过30分钟,获得转移至硅片表面的氮化硼二维薄膜材料,薄膜的厚度在2?30nm之间。
[0023]步骤(6).将步骤(5)转移至硅片表面的氮化硼薄膜,放入退火炉中,在氢气中于1000°C热处理10分钟,获得厚度减薄后的氮化硼薄膜,薄膜厚度在2?5nm之间。
[0024]实施例2:
[0025]步骤(I).将铜片用浓度为0.6moI/L的盐酸浸洗9秒,去离子水清洗后用氮气吹干,放入电炉的石英管中;
[0026]步骤(2).石英管中持续通入氩气和氢气的混合气,氩气与氢气的流量比为15:10,将电炉温度升至1000°C后保温20分钟。
[0027]步骤(3).同时向石英管内通入硼氨烷蒸气,30分钟后关闭通入硼氨烷蒸气;通入的硼氨烷蒸气是通过水浴加热得到,水浴温度100°C。
[0028]步骤(4).电炉停止加热,将石英管冷却到常温,冷却速率为30°C/min,然后关闭通入氢气和氩气,取出铜片。
[0029]步骤(5).将铜片取出,在铜片上表面旋涂PMMA溶液,PMMA溶液在空气中干燥3