专利名称:导电层形成用水性分散液、导电层、电子器件、电路板及其制造方法,以及多层布线板及其 ...的利记博彩app
技术领域:
本发明涉及导电层形成用水性分散液、用此分散液形成的导电层、具有此导电层的电子器件、带有用上述导电层形成用水性分散液形成的导电层的电路板及其制造方法,以及多层布线板以及制造此多层布线板的方法。
背景技术:
在基板上形成电极和布线图形等导电层的方法,过去常用电镀金属的方法。除了采用这种导电层的形成方法外,还有将导电粉末分散在液态热固性树脂材料中制成导电糊,借助于涂布和印刷等方法使导电糊附着在基板上,然后将树脂热固化。在特开平9-134891号公报上公开的方法,是将金属超微粒子均一分散在有机分散剂中制成金属超微粒子分散液,在半导体基板上涂布此分散液后,加热除去有机溶剂,同时使金属超微粒子熔融成薄膜。
近年来对电子仪器提出高性能化和小型化要求,于是开始使用集成度高、电极数目多的电子器件,并要求以高密度安装这种电子器件。为此,开始用在基板一面或两面交互层叠绝缘层和布线层的多层印刷电路板,代替仅在一面形成布线层的单面印刷电路板以及在两面形成布线层的双面印刷电路板,作为电子仪器布线板和搭载电子器件的布线板。
已有多层印刷电路板的制造方法,主要采用在绝缘层两面形成互相导电布线层的多数芯基板,以及将热固性树脂预成形片交互层叠后热压,通过绝缘层将多数布线基板层叠在一起(以下叫作“层叠加压法”)。
然而在这种层叠加压法中,为在相邻芯布线板中的布线层间实现电连接,不能沿厚度方向仅仅贯通存在于该布线层间的绝缘层,形成层间延伸的短路部分(埋设通路和素压通路),而必须沿厚度方向将该多层布线板全体贯通形成在层间延伸的短路部分(通孔),因而很难形成高密度布线层。
鉴于上述理由,对于有高密度布线层印刷电路板的制造方法,人们最近开始关注积层法,即依次在芯布线板上形成绝缘层和布线层的方法。采用这种积层法,能沿厚度方向仅贯通该布线层间的绝缘层形成延伸的短路部分,以实现各布线层间电连接,因而能形成高密度布线层。
具体说明如下这种积层法是在芯基板上形成有通孔的绝缘层,该通孔与应当形成的层间短路部分(通路)互相对应,然后在此绝缘层的通孔内形成构成层间短路部分的导电层,同时在该绝缘层表面上形成布线层,将此工序重复预定次数后,可以得到目的多层布线板。
以上在芯基板表面上形成有通孔绝缘层的已知方法有,在芯基板表面上涂布液态射线固化性树脂材料后,对涂布膜曝光处理和显影处理,以形成与目的短路部分(通路)对应的通孔的绝缘层的方法,以及在芯基板表面涂布液态热固性树脂材料或者配置片状热固性树脂材料后热处理,形成绝缘层,用激光照射该绝缘层,形成与目的层间短路部分对应通孔的方法等。
此外,在绝缘层通孔内形成导电层的已知方法还有,用无电解淀积法使绝缘层通孔内表面沉积金属形成金属膜,以此金属膜为电极电沉积金属,由所需厚度的这种金属层形成导体的方法;用无电解淀积法在绝缘层的通孔内面沉积预定厚度的金属层形成导体的方法;以及例如用丝网印刷等方法,在绝缘层通孔内充填上述导电糊,对导电糊进行固化处理,形成由热固性树脂中将导电性粉末分散而成的导体的方法等。
但是上述电镀法由金属离子沉积成电镀膜的成长速度缓慢,要形成一定厚度(例如10微米以上)的导电膜,以及形成充满上述通孔和通路的导电层或者在上述层间形成短路部分时,要获得所需厚度金属层需要很长时间,因而不能获得高生产率。特别在上述积层方法中,形成每个绝缘层时,必须使该绝缘层形成沿其厚度方向贯通延伸的层间短路部分,电镀金属析出速度低,对生产率产生很大影响。
而且采用导电糊和金属超微粒子分散液涂布印刷等方法形成导电层,很难精确控制得到导电层的厚度和导电层的形成位置等。尤共是采用树脂和导电粉末组成的导电糊一般有较高粘度(例如25℃下为100Pa·s左右),很难在所需位置和以所需形状形成高精度导电层。此外,若绝缘层上通孔的直径小(例如直径小于100微米),很难在该通孔内充填这种高粘度导电糊,因而不能得到连接可靠性高的多层布线板。
此外,特开平9-134891号公报记载的方法,虽然能够降低金属超微粒子分散液的粘度,但是因不含树脂成分,所以在形成厚导电层时会产生导电层裂纹,此外导电层与基板的附着性也差。
本发明目的在于提供一种能用电沉积法高效而高精度地形成导电层用的水性分散液、由这种水性分散液形成的导电层、以及具有这种导电层的电子器件和印刷电路基板。
本发明的其他目的在于提供一种高效而高精度地制造电路基板的方法,其中包括用上述导电层形成用水性分散液作电沉积液形成导电层的工序。
本发明的另一目的在于提供一种生产率高、连接可靠性好的多层布线板及其制造方法。
发明内容
本发明提供的以下构成的导电层形成用水性分散液、导电层、电子器件、电路板及其制造方法,以及多层布线板及其制造方法,可以达到上述目的。
1一种导电层形成用水性分散液,其特征在于预先将数均粒径1微米以下的导电微粒和,由聚合性化合物和聚合物中至少一种物质组成的有机粒子分散在水性介质中,用电沉积法可以使之形成导电层。
2按照上述1中所述的导电层形成用水性分散液,其中所说的导电微粒和所说的有机粒子间体积比为99∶1~40∶60。
3按照上述1或2中所述的导电层形成用水性分散液,是由在有机溶剂中分散所说的导电微粒得到的导电微粒分散液和,在水性介质中分散所说的有机粒子得到的有机粒子分散液二者混合而成的。
4一种导电层,其特征在于是使用上述1~3中任何一项所述的导电层形成用水性分散液,利用电沉积法形成的,其容积电阻系数在10-4Ω·cm以下。
5一种电子器件,其特征在于其中具有使用上述1~3中任何一项所述的导电层形成用水性分散液由电沉积法形成的导电层。
6一种电路基板,其特征在于其中具有绝缘层和导电层,所说的导电层包含贯通该绝缘层的贯通导电部分,所说的导电部分是用上述1~3中任何一项所述的导电层形成用水性分散液作为电沉积液利用电沉积法形成的。
7一种电路基板的制造方法,其特征在于是使用上述1~3中任何一项所述导电层形成用水性分散液的电路基板的制造方法,其中包括(a)在绝缘层上形成通孔的工序,(b)在该绝缘层一表面上包含该通孔的部位设置导电箔的工序,以及(c)使用上述导电层形成用水性分散液作为电沉积液,以所说的导电箔为一个电极用电沉积法,在上述通孔内形成贯通导电部分的工序。
8一种电路基板的制造方法,其特征在于是使用上述1~3中任何一项所述导电层形成用水性分散液的电路基板的制造方法,其中包括(a)在形成有导体图形的芯布线基板上形成绝缘层的工序,(b)在该绝缘层上制作布线图形,使上述导体图形部分露出,形成具有通孔的绝缘层图形的工序,(c)以该绝缘层图形为掩模材料作无电解淀积,以此方法在包含上述通孔内的部分形成非电解淀积层的工序,以及(d)用上述导电层形成用水性分散液作电沉积液,以上述导体图形和上述非电解淀积层为一个电极用电沉积法,形成包含上述通孔内贯通导电部分的导电层的工序。
9一种电路基板的制造方法,其特征在于是数个由上述7或8中方法得到的电路基板积层而成的。
10一种多层布线基板,具有由绝缘基板两面互相电连接的基板布线层形成的芯布线基板,至少层叠在此芯布线基板一面上的绝缘层,在此绝缘层上形成的布线层,以及将此布线层电连接到上述基板布线层上的、沿其厚度方向将上述绝缘层贯通延伸的层间短路部分,其特征在于,上述层间短路部分由高分子物质中所含导电微粒形成的导体构成,该导体是由导电微粒以及聚合性化合物和聚合物中至少一种物质组成的有机粒子在水性介质中分散形成的电沉积液中,电沉积处理而成的。
11按照上述10中所述的多层布线板,其特征在于其中有将绝缘基板两面形成的布线层基板互相电连接的、沿其厚度方向将该绝缘基板贯通延伸的基板短路部分,该基板短路部分由高分子物质中所含导电微粒形成的导体构成,该导体是在水性介质中分散有导电微粒以及聚合性化合物和聚合物中至少一种物质组成的有机粒子的电沉积液中电沉积处理而形成的。
12按照上述10或11所述的多层布线板,其特征在于构成层间短路部分和/或基板短路部分的导体中导电微粒的比例为40~99%。
13一种多层布线板的制造方法,是上述10~12中任何一项所述的多层布线板的制造方法,其特征在于包括以下工序准备一种芯布线基板板材的工序,所说的板材由绝缘基板,以及在此绝缘基板一面上形成了基板布线层,和在此绝缘基板另一面形成了与该基板布线层电连接的金属层构成,在此芯基板板材一面上形成具有与应当在该基板布线层上形成的层间短路部分对应形成通孔的绝缘层的工序,以在此绝缘层上形成的、处于芯布线基板板材上的基板布线层作析出电极,在由导电微粒以及聚合性化合物和聚合物中至少一种物质组成的有机粒子于水性介质中分散而成的电沉积液中进行电沉积处理,以此在该绝缘层通孔内形成构成层间短路部分的导体的工序。
14按照上述13所述的多层布线板的制造方法,其特征在于准备一种具有绝缘基板,以及在此绝缘基板的至少另一面上形成的金属层的基板形成材料,在此基板形成材料的绝缘基板上,形成沿其厚度方向贯通的通孔,以此基板形成材料的上述金属层作析出电极,在由导电微粒以及聚合性化合物和聚合物中至少一种物质组成的有机粒子于水性介质中分散而成的电沉积液中电沉积处理,以此在该绝缘基板的通孔内形成构成基板短路部分的导体,然后在绝缘基板的一面上形成基板布线部分,以此制成芯布线基板材料。
15按照上述13或14所述的多层布线板的制造方法,其特征在于所述导电微粒和所述有机粒子在电沉积液中的体积比为99∶1~40∶60。
以下详细说明本发明。
(a)关于导电微粒本发明中使用的导电微粒构成材料,只要有导电性就没有特别限制,但是从获得长期稳定导电性的观点看,优选难氧化的材料。这种材料的具体实例可以举出金、银、铜、铝、锌、镍、钯、铂、钴、铑、铱、铁、钌、锇、铬、钨、钽、钛、铋、铅、硼、硅、锡和钡中选出的金属或其合金等。而且也可以并用两种以上不同材料构成的导电微粒。这种导电微粒优选容积电阻系数小于10-5Ω·cm的,更优选小于7×10-6Ω·cm的。
在上述1~9记载的发明中,必须使用数均粒径1微米以下,优选0.5微米以下,更优选0.3微米以下的上述导电微粒。若数均粒径超过1微米,则粒子容易在本发明的导电层形成用水性分散液中沉降,使水性分散液的储存稳定性不足。对数均粒径的下限并无限制,通常在0.02微米以上。而且在上述10~15记载的发明中,导电微粒的数均粒径也优选处于上述范围之内。本说明书记载的“粒径”是指初级粒径。
从容易制造的观点来看,这种导电微粒优选用气相蒸发法、电解法、还原法制造的金属微粒。
本发明的导电微粒,可以使用球状、多角状、鳞片状或针状品。其中多角状或鳞片状导电微粒间因接触面积大而特别优选。
(b)关于有机粒子(b-1)有机粒子的组成本发明中的有机粒子,由“聚合性化合物和聚合物中至少一种物质”构成。其中所说的“聚合性化合物”是指具有聚合性基团的化合物,其中包括完全固化前的前体聚合物、聚合性低聚物和单体等。另外所谓“聚合物”是指实际上完成了聚合反应的化合物。但是也可以是电沉积后利用加热、湿气等使之交联的物质。
上述有机粒子,为实现电沉积而优选表面有电荷的物质。这种表面电荷可以是阴离子或阳离子型电荷。其中当导电微粒材料为铜时,从含这些粒子水性分散液的储存稳定性好的角度来看,有机粒子的表面电荷优选阳离子型。
上述有机粒子优选由丙烯酸系、环氧系、聚酯系和聚酰亚胺系树脂中选出的一种或两种以上物质制成。除了这些树脂之外还可以含有其他成分。此外这些树脂间也可以互相化学结合,或者与其他成分之间化学结合。
本发明中,电沉积后以热等分解除去树脂成分的场合下,特别优选以丙烯酸系树脂为主要成分的有机粒子。而在不将其分解除去的场合下,从容易形成机械特性、化学特性和电学特性优良的导电层的观点来看,特别优选以聚酰亚胺系树脂为主要成分的有机粒子。其中所说的“聚酰亚胺系”是指聚酰亚胺树脂或者电沉积后通过加热能固化的前体聚合物(例如聚酰胺酸等)、聚酰亚胺树脂形成用单体与其他单体间共聚物或其前体聚合物、聚酰亚胺树脂或其前体聚合物与其他化合物的反应物,而且其中也包括聚酰亚胺树脂形成用单体、低聚物等,关于其他树脂也同样。
(b-2)有机粒子的水乳液本发明的水乳液通常可以使用将上述有机粒子分散在“水性介质”中调整得到的水乳液。
以下说明主要由丙烯酸系树脂组成的有机粒子的水乳液(以下叫作“丙烯酸系树脂乳液”。)、主要由环氧系树脂组成的有机粒子的水乳液(以下叫作“环氧系树脂乳液”。)、主要由聚酯系树脂组成的有机粒子的水乳液(以下叫作“聚酯系树脂乳液”。)以及主要由聚酰亚胺系树脂组成的有机粒子的水乳液(以下叫作“聚酰亚胺系树脂乳液”。)的制造方法。
(i)丙烯酸系树脂乳液的制造方法丙烯酸系树脂乳液的制造方法没有特别的限制,例如可以用通常的乳液聚合法和,搅拌下将在醇等有机溶剂中使之聚合后的反应液添加到水中使树脂分散的方法制造。单体可以使用从一般的丙烯酸系和/或甲基丙烯酸系单体中选出的一种或两种以上单体。此时为了得到的有机粒子能够电沉积,通常与具有阳离子基团或阴离子基团的单体共聚。其共聚比例优选占所说的使用全部单体的5~80(更优选10~50)重量%。(ii)环氧系树脂乳液的制造方法对环氧系树脂乳液的制造方法没有特别限制,可以采用过去已知的方法,例如特开平9-235495和9-208865号公报中记载的方法等。(iii)聚酯系树脂乳液的制造方法对聚酯系树脂乳液的制造方法没有特别限制,可以采用过去已知的方法,例如特开昭57-10663、57-70153和58-174421号公报中记载的方法等。
(iv)聚酰亚胺系树脂乳液的制造方法对聚酰亚胺系树脂乳液的制造方法没有特别限制,但是关于本发明中优选使用的聚酰亚胺系树脂乳液及其制造方法可以举出以下两种。
(1)由有机溶剂可溶性聚酰亚胺(A)和亲水性聚合物(B)的复合粒子组成的聚酰亚胺系树脂乳液。这种聚酰亚胺系树脂乳液优选用例如特开平11-49951号公报中记载的方法制造。
(2)由含有聚酰胺酸(C)和疏水性化合物(D)的复合粒子组成的聚酰亚胺系树脂乳液。这种聚酰亚胺系树脂乳液优选用例如特开平11-60947号公报中记载的方法制造。
这些聚酰亚胺系树脂乳液由于作为水分散体的储存稳定性优良,而且这种乳液中的粒子通过电沉积可以形成能够保持聚酰亚胺本身的耐热性、电绝缘性、机械特性和耐化学品性等特性的电沉积膜,因而优选。
以下就上述方法(1)中所用聚酰亚胺系树脂乳液的制造方法作进一步详细说明。
关于“(A)有机溶剂可溶性聚酰亚胺”的合成方法并无特别限制,例如在有机极性溶剂中将四羧酸二酐和二胺化合物混合缩聚,得到聚酰胺酸后,用加热酰亚胺化法或化学酰亚胺化法使该聚酰胺酸产生脱水闭环反应,可以合成聚酰亚胺。而且通过使四羧酸二酐和二胺化合物间进行多级缩聚反应,也能合成具有嵌段结构的聚酰亚胺。
这种有机溶剂可溶性聚酰亚胺,优选具有羧基、氨基、羟基、磺酸基、酰胺基、环氧基、异氰酸酯基等反应性基团(a)中一种以上的基团。具有反应性基团(a)的聚酰亚胺的合成方法,可以举出例如以合成聚酰胺酸使用的羧酸二酐、二胺化合物、羧酸单酐、单胺化合物等为反应原料,使用具有反应性基团(a)的化合物进行脱水闭环反应后,使之残留反应性基团(a)的方法。
“(B)亲水性化合物”,例如由具有氨基、羧基、羟基、磺酸基、酰胺基等一种以上亲水性基团,在20℃水中的溶解度通常在0.01克/100克水以上,优选在0.05克/100克水以上的亲水性聚合物组成。上述亲水性基团之外,优选具有一种以上能够与上述(A)成分中反应性基团(a)反应的反应性基团(b)。这种反应性基团(b),除了例如环氧基、异氰酸酯基、羧基之外,还可以举出与上述亲水性基团同样的基团。这样的亲水性聚合物,可以通过使具有亲水性基团和/或反应性基团(b)的单乙烯基单体单独聚合或者共聚的方法,或者通过使这些单乙烯基单体与其他单体共聚的方法得到。
适当选择这种有机溶剂可溶性聚酰亚胺(A)和亲水性聚合物(B),使反应性基团(a)和亲水性聚合物中反应性基团(b)组合后具有适当的活性,再将该聚酰亚胺和该亲水性聚合物一起例如在有机溶剂中以液态混合,必要时加热下使二者反应。然后将此反应液与水性介质混合,根据情况至少除去一种有机溶剂后,可以得到一种由该聚酰亚胺和该亲水性聚合物以互相结合状态包含在同一粒子内的复合粒子所组成的聚酰亚胺系树脂乳液。
其次就上述方法(2)中使用的聚酰亚胺系树脂乳液的制造方法作进一步详细说明。
关于本身是聚酰亚胺前体的“聚酰胺酸(C)”的合成方法并无特别限制,例如在有机极性溶剂中,通过使四羧酸二酐和二胺化合物进行缩聚反应,可以得到聚酰胺酸。而且通过使四羧酸二酐和二胺化合物进行多级缩聚反应,也能合成具有嵌段结构的聚酰胺酸。其中通过使聚酰胺酸脱水闭环,还可以使用部分酰亚胺化的聚酰胺酸。
此外,“疏水性化合物(D)”是至少能与上述聚酰胺酸中的酰胺酸基反应的基团(以下叫作“反应性基团”)的化合物。这种反应性基团例如可以举出环氧基、异氰酸酯基、碳化二亚胺基、羟基、巯基、卤素、烷基磺酸基、芳基磺酰基、偶氮基、羰基等。这些反应性基团在疏水性化合物中可以存在一种以上。其中所说的“疏水性”是指在20℃水中的溶解度通常小于0.05克/100克水,优选小于0.01克/100克水,更优选0.005克/100克水。
这种疏水性化合物可以使用从环氧化聚丁二烯、双酚A型环氧树脂、萘系环氧树脂、芴系环氧树脂、联苯型环氧树脂、缩水甘油酯型环氧树脂、烯丙基缩水甘油醚、缩水甘油(甲基)丙烯酸酯、1,3,5,6-四缩水甘油基-2,4-己二醇、N,N,N’N’-四缩水甘油基间二甲苯二胺、甲代亚苯基二异氰酸酯、二环己基碳化二亚胺、聚碳化二亚胺、胆固醇、苄基醇对甲苯磺酸酯、氯代醋酸乙酯、三嗪三硫醇、重氮甲烷和双丙酮(甲基)丙烯酰胺等中选出的一种或两种以上物质。
例如在有机溶剂中将这种聚酰胺酸(C)和疏水性化合物(D)以溶液态混合使之反应后,将此反应溶液与水性介质混合,根据情况至少除去一部分有机溶剂,这种方法可以得到由同一粒子内含有聚酰胺酸和疏水性化合物的复合粒子组成的聚酰亚胺系树脂乳液。
其中对上述(1)和(2)方法中使用的四羧酸二酐并无特别限制,其实例可以举出丁四酸二酐、1,2,3,4-环丁四酸二酐、3,3’,4,4’-二环己四酸二酐、2,3,5-三羧基环戊基乙酸二酐、1,3,3a,4,5,9b-六氢-5-(四氢-2,5-二氧代-3-呋喃基)萘并[1,2-c]-呋喃-1,3-二酮等脂肪族四羧酸二酐或脂环族四羧酸二酐;1,2,4,5-苯四酸二酐、3,3’,4,4’-二苯甲酮四甲酸二酐、3,3’,4,4’-二苯砜四甲酸二酐等芳香族四羧酸二酐等。这些四甲酸二酐可以单独使用或两种以上混合并用。
而且对于上述(1)和(2)方法中可以使用的二胺化合物并无特别限制,其实例可以举出;例如对苯二胺、4,4’-二氨基二苯基甲烷、2,2-双[4-(4-氨基苯氧基)苯基]丙烷等芳族二胺类;1,1-间亚二甲苯基二胺、1,3-丙二胺、四亚甲基二胺、4,4’-亚甲基双(环己二胺)等脂肪族二胺或脂环族二胺类;2,3-二氨基吡啶、2,4-二氨基-6-二甲氨基-1,3,5-三嗪、2,4-二氨基-5-苯基噻唑、双(4-氨基苯基)苯胺等分子内具有两个叔氨基和该叔氨基以外氮原子的二胺类;单取代的苯二胺类;二氨基有机硅氧烷等。这些二胺化合物可以单独使用或者两种以上混合并用。
(c)关于水性分散液本发明的水性分散液是上述导电微粒和上述有机粒子在水性介质中分散的液体。本说明书中所说的“水性介质”是指含水性介质,这种水性介质中水含量通常大于0.5重量%,优选10重量%以上。水含量低于0.5重量%时,难于直接使用这种水性分散液作为电解液,因而不好。另一方面若水含量过高,则由于导电微粒等的分散稳定性差,所以水含量优选50重量%以下,更优选40重量%以下,最好在20重量%以下。
必要时与水共同使用的其他介质,可以举出例如制造上述的上述的聚酰胺酸或聚酰亚胺时使用的极性非质子溶剂、酯类、酮类、酚类、醇类、胺类等。其中从作为导电微粒的金属粒子的分散稳定性角度来看,优选含有10~90(更优选20~70)重量%由一种或两种以上1~10个碳原子醇类组成的醇类。而且这种水性介质还优选含有0.01~5(更优选0.1~1)重量%单乙醇胺、二乙醇胺等胺类,这样能够提高分散稳定性。
在水性分散液中所含导电微粒和有机粒子之间的容积比,优选处于99∶1~40∶60范围内,更优选处于95∶5~40∶60范围内,最好处于85∶15~60∶40范围内。导电微粒在导电微粒和有机粒子合计量中所占的比例低于40容积%时,由于容积电阻系数过高,作为导电层使用缺乏实用性。另一方面,若导电微粒的比例高于80容积%,则成膜性、形状保持性和对基板的粘接性均不足,而且导电层有产生裂纹等之虞。
这种水性分散液的优选pH值为3~12(更优选4~10),优选的固形成分浓度为1~50重量%(更优选5~30重量%),20℃下的优选粘度值为1~100mPa·s。pH、固形成分浓度或粘度一旦处于上述范围之外,往往会因粒子的分散性等降低使储存稳定性不足,或者因不能获得足够的电沉积速度而使生产率降低,或者使处理或使用时的操作性下降,或者难于电沉积在通孔内等细长形状部分之中。
这种水性分散液优选采用将上述导电微粒分散在有机溶剂中得到导电微粒分散液以及将上述有机粒子分散在水性介质中得到的有机粒子分散液,优选是上述的水乳液加以混合的方法制备。
上述“导电微粒分散液”中使用的有机溶剂,从分散稳定性和对水乳液中介质的溶解性能等观点来看,优选由一种或两种以上1~10个碳原子的醇类溶剂,特别优选使用乙醇、异丙醇或其混合溶剂。使导电微粒在有机溶剂中分散的方法,可以举出使用均质机、高压均质机、超声波混合机等的方法,或者将其组合使用的方法。这种导电微粒分散液,优选含有3~40重量%,更优选含有5~30重量%导电微粒。
其中,在本发明的水性分散液中除了上述导电微粒和上述有机粒子之外,还可以含有从以下式(1)所示的有机硅烷、这种有机硅烷具有的水解性基团部分或全部水解后的水解产物以及这种水解产物部分脱水缩合而成的部分缩合物中选出的至少一种物质(以下统称为“有机硅烷缩合物等”)。由这种水性分散液形成的导电层,特别是在电沉积后加热固化的场合下,在导电层中通过有机硅烷缩合物等的交联作用,可以使机械特性和化学特性均变得优良。
(R1)nSi(OR2)4-n(1)
(式中,R1表示氢原子或1~8个碳原子的一价有机基团,R2表示1~5个碳原子的烷基、1~6个碳原子的酰基或苯基,n表示1或2的整数,R1和R2可以相同或不同。)上式(1)中,作为R1是1~8个碳原子的有机基团,可以举出例如直链或具有支链的烷基、被卤素取代的烷基、乙烯基、苯基和3,4-环氧环己基乙基等。其中R2也可以有羰基。其中R1优选1~4个碳原子烷基或苯基。
作为R2是1~5个碳原子的烷基或1~6个碳原子的酰基,可以举出例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、乙酰基、丙酰基、丁酰基等。其中R2优选1~4个碳原子的烷基。
作为优选使用的有机硅烷的实例,可以举出二甲基二甲氧基硅烷、二甲基二乙氧基硅烷、异丁基三甲氧基硅烷和苯基三乙氧基硅烷。这些有机硅烷,可以使用其中一种或两种以上并用。
上述的“有机硅烷缩合物等”,优选能在本发明的水性分散液中与上述有机粒子形成复合粒子的。这种“复合粒子”是指构成上述有机粒子的化合物与有机硅烷缩合物等化学键合的物质,以及在上述有机粒子表面或内部吸附了有机硅烷的的物质等。
这种有机硅烷缩合物等的使用量,若以上述有机粒子为100重量份,则优选为0.1~500重量份,更优选0.5~250重量份。有机硅烷缩合物等的使用量,低于0.1重量份时往往得不到所需的效果,而超过500重量份的情况下导电层的粘接性等有降低的倾向。
这种复合物粒子可以用下述(1)或(2)方法等制造。其中也可以使用这些方法的组合方法。
(1)将上述有机硅烷添加到上述有机粒子乳液中,至少使一部分有机硅烷吸附在上述有机粒子上之后,使这种有机硅烷进行水解反应和缩合反应。
(2)在上述水性介质中分散的上述有机硅烷存在下,进行使上述有机粒子生成的反应。
在上述方法(1)中微粒使有机硅烷吸附在有机粒子上,将有机硅烷添加到乳液中后可以采用充分搅拌等方法。此时,优选使添加的有机硅烷有10重量%(更优选30重量%)以上吸附在粒子上。为了避免在吸附不充分阶段就产生有机硅烷的水解、缩合反应,通常可以将反应体系的pH调整到4~10,优选5~10,更优选6~8。使有机硅烷吸附在有机粒子上的处理温度,优选在70℃以下,更优选50℃以下,最好是0~30℃。处理时间通常为5~180分钟,优选20~60分钟。
使被吸附的有机硅烷水解和缩合时采用的温度,通常为30℃以上,优选50~100℃,更优选70~90℃;聚合物时间优选0.3~15小时,更优选1~8小时。
在上述方法(2)中,使用均质机或超声波混合机等,在烷基苯磺酸等强酸性乳化剂水溶液中混合上述有机硅烷,通过水解和缩合可以得到在水性介质中分散的有机硅烷缩合物等。在这种有机硅烷缩合物等存在下,优选采用乳液聚合法可以生成上述有机粒子。
(d)关于导电层本发明的水性分散液,通常优选在其原始浓度下直接用作形成导电层用的电沉积液,但是也可以在稀释或浓缩后使用。而且必要时还可以添加过去已知的适当添加剂。使用这种电沉积液和通常的电沉积方法,可以制造在电极表面上电沉积有水性分散液中的导电微粒和有机粒子的导电层。
这种电沉积工序后,优选用以下方法降低导电微粒界面的导电电阻。
(1)为了除去存在于导电微粒表面上的金属氧化物等非导电性物质,应当在还原性气氛下焙烧电沉积形成的层。例如在混有0.1~5体积%氢的惰性气体气氛中,于200~500℃下焙烧30~180分钟,可以将金属氧化物还原。而且此表面通过用乙酸、甲酸、丙酸等弱酸的50~100%水溶液洗涤,可以除去金属氧化物等非导电性物质。
(2)使金属在导电微粒的表面析出。例如,浸渍在电镀液中通过脉冲电流,可以使金属有效地在微粒的界面上析出。通电时间与脉冲周期之比,优选0.6以下,更优选0.3以下。电镀的金属可以使用铜、镍、金、铂、银、锡、焊锡合金等公知物质。
此外,可以利用加热除去电沉积粒子中的树脂成分,这样能够降低导电层的容积电阻系数。这种场合下,优选采用能在较低温度下分解除去的丙烯酸系树脂作为所说的树脂成分,例如通过在200~800℃下加热30~180分钟,几乎能够除去全部树脂成分。其中像上述那样在还原性气体气氛中焙烧的场合下,在此焙烧的同时能够分解除去树脂成分。
而且也可以使用热固性树脂作为树脂成分,在电沉积后再将此树脂成分加热固化。这种场合下,优选使用含有上述有机硅烷缩合物等的水性分散液。所说的热固性树脂,优选使用环氧树脂或聚酰亚胺树脂,最好使用聚酰亚胺树脂。热固化条件只要是树脂成分不被分解除去的温度就没有其他特别限制,但是加热温度优选100~400℃,更优选150~300℃。而且加热时间优选5分钟以上,更优选10分钟以上。将树脂成分加热固化能够提高导电层的机械特性,而且导电层因烧固作用而变得更加致密,所以还能提高电气特性。由于在导电层中残留的树脂成分具有粘合剂作用,所以还能使导电层的粘接性和耐冲击性更加优良。其中像上述那样在还原性气体气氛中焙烧膜的场合下,也能利用这种焙烧热使树脂成分加热固化。
按照本发明的水性分散液,可以得到容积电阻系数在10-4(更优选0.5×10-4)Ω·cm以下的导电层。这种导电层以膜状形成的场合下,其厚度优选为1~80(更优选3~50,最好为5~20微米)微米。用本发明的水性分散液并采用电沉积法形成这种厚度的导电层,能够有效地发挥制造的优点。
(e)关于电子器件用本发明的水性分散液能够有效地制造高精度膜厚度的导电层。而且即使是在贯通绝缘层的通孔和辅助孔等细长形状部分内,也能有效地形成高精度导电层。这种导电层十分适于作为导电电路、印刷电路及其组合而成的布线基板(例如多层布线板)等电子器件使用。
(f)关于电路基板(f-1)构成本发明的电路基板,具有绝缘层以及用上述导电层形成用水性分散液形成的导电层。一部分此导电层可以构成贯通上述绝缘层的贯通导电部分。
关于构成此导电层的材料没有特别限制,可以根据得到的电路基板的用途,选择使用聚酰亚胺树脂、环氧树脂、双马来酰亚胺树脂、酚醛树脂等。优选例如在一般作为积层布线板芯板基板使用的玻璃环氧基板、BT树脂基板等,或者在积层布线板的绝缘层中使用的环氧系树脂层、聚酰亚胺系树脂层等。对于绝缘层的厚度并无特别限制,但是在芯板基板的场合下,通常为20~150(优选50~100)微米,而对于基板绝缘层而言一般为5~100(优选10~50)微米。
作为绝缘层使用的聚酰亚胺系树脂层,特别优选用由弹性模数小于10GPa的聚酰亚胺系树脂复合物制成的。这种聚酰亚胺系树脂复合物,正如特开2000-44800号公报中公开的那样,可以使用由(A)聚酰亚胺成分和(B)其他聚合物成分组成的物质。聚酰亚胺成分(A),优选使用有机溶剂可溶性的,有嵌段结构的聚酰亚胺、末端改性的聚酰亚胺、具有反应性基团的聚酰亚胺和聚酰胺酸。作为其他成分(B),优选使用具有能够直接与(A)聚酰亚胺成分反应的反应性基团,或者具有通过交联剂能够间接与之反应的反应性基团的物质。其他成分(B)的具体实例可以举出,例如丙烯酸聚合物等乙烯基的单体聚合物、天然橡胶及其环氧化物、聚丁二烯及其环氧化物、苯乙烯-丁二烯橡胶、异戊二烯橡胶、聚氨酯橡胶、丙烯腈橡胶、乙烯-丙烯橡胶、含氟聚合物、硅氧烷聚合物等。
通常将贯通上述绝缘层的通孔填满或者沿通孔侧壁表面形成膜。这种通孔的直径优选为4~150(更优选6~100,最好10~90)微米。在此直径范围的通孔内,利用本发明水性分散液电沉积法,能够充分发挥在其内部形成贯通导电部分的优点。在沿着通孔侧壁表面形成膜状导电部分的场合下,该膜的厚度优选1~50(更优选2~30,最好3~20)微米。
(f-2)制造方法上述电路基板可以用例如上述7中所述的方法(以下也称为“方法1”)制造。按照此方法制造工序的附图1进行说明。
首先如图1(a)所示,在绝缘层41上形成通孔411。接着如图1(b)所示,将导电箔42层叠在绝缘层41的一个表面41a上。此导电箔42可以覆盖表面41a的全部或仅一部分,但是至少设置在包含通孔411一个开口端上的部分。也就是说,导电箔42的一部分形成通孔411的底面421。然后,使附图1(b)所示的基板与由权利要求1~3所述的水性分散液组成的电沉积液接触,使此电沉积液充满通孔411,以导电箔42为一个电极进行电沉积。用这种方法,如图1(c)所示,可以使导电微粒和有机粒子电沉积在底面421上,形成贯通通孔411内的贯通导电部分431。
接着如图1(d)所示,将另一导电箔42层叠在绝缘层41的另一表面41b上,然后按照过去公知的方法腐蚀导电箔42,形成导体图形44,如图1(e)所示,用这种方法可以得到表面41a形成的导体图形44和表面41b上形成的导体图形44被贯通导电部分431连接起来的电路基板。其中,在电沉积后适当工序中利用对基板适当加热的方法,能够使形成贯通导电部分431的树脂热固化,而且在绝缘层41是由半固化树脂制成的场合下,此阶段还能使其同时热固化。
而且本发明的电路基板也能用上述8中所述的方法(以下也叫作“方法2”)制造。利用有关此方法制造工序的附图2进行说明。
在此方法中首先在形成了导体图形的芯布线基板上形成导电层。芯布线基板,如图2(a)所示,可以使用按照附图1(a)~(e)的工序制造的、具有绝缘层(也叫作芯板绝缘层)41、导电图形44和贯通导电部分431的芯布线基板。
在这种芯布线基板48的两表面上,如图2(b)所示,涂布感光性树脂形成绝缘层45。按照常法制成图形,如图2(c)所示,形成具有使导体图形44的一部分露出的通孔451的绝缘层46。然后如图2(d)所示,以此绝缘层图形46作为掩模材料,用常法进行非电解淀积,形成非电解淀积层47。这种非电解淀积层47既可以如图2(c)所示那样在基板的全部表面上形成,也可以仅在一部分表面上形成,但是至少应当包含通孔451内的部分上形成,以便与处于通孔451底部位置的导体图形44导通。
然后,使附图2(d)所示的基板与上述1~3中所述的水性分散液接触,使此电沉积液充满通孔451内,以非电解淀积层为一个电极进行非电解淀积。利用这种方法可以使导电微粒和有机粒子电沉积在非电解淀积层47上,形成包含通孔451内形成的通孔导电部分432的导电层43,如图2(e)所示。
在此附图2(e)所示的基板中,在上述7中所述方法得到的电路基板的两个表面上各层叠一层按照上述8中所述的方法得到的电路基板。自这种状态下制成导电层43的图形后,重复附图2(b)~(e)的操作,可以在其上进一步层叠上述8所述的方法得到的电路基板。而且,也可以仅仅层叠按照上述7的方法得到的电路基板,或者仅仅层叠数片按照上述8所述的方法得到的电路基板,或者仅仅在按照上述7的方法得到的电路基板的一面层叠一片或数片按照上述8的方法得到的电路基板。
(g)关于多层布线板以下说明上述10~15中所述的多层布线板的构成及其制法。(g-1)构成附图3是表示本发明多层布线基板一个实例构成的断面说明图。这种多层布线基板,具有芯布线基板10,此芯布线基板10中于绝缘基板11的上表面形成有第一基板布线层12,在该绝缘基板11的下表面上形成有第二基板布线层13,第一基板布线层12和第二基板布线层13之间被沿其厚度方向贯通绝缘基板11延伸的基板短路部分互相电导通。
在芯布线基板10的上表面上形成上部绝缘层20,在此上部绝缘层20的上面形成上部布线层21,此上部布线层21由沿其厚度方向贯通上部绝缘层20延伸的层间短路部分与第一基板布线层12电连接。而且在包含上布线层21的上部绝缘层20的上面设有焊锡阻挡层25,此阻挡层25上有使该上部布线层21中部件连接区域露出的开口26。
另一方面,在芯布线基板10的下面形成有下部绝缘层30,在此下部绝缘层30的下面形成有下部布线层31,此下部布线层31经沿其厚度方向贯通下部绝缘层30延伸的层间短路部分32与第二基板布线层13实现电连接。而且在包含下部布线层31的下部绝缘层30的上面设有焊锡阻挡层35,此阻挡层35上有使该下部布线层31中部件连接区域露出的开口36。
构成此芯布线基板10中绝缘基板11的材料,优选使用耐热性好的绝缘性树脂,其具体实例可以举出玻璃纤维增强型环氧树脂、玻璃纤维增强型聚酰亚胺树脂、玻璃纤维增强型酚醛树脂、玻璃纤维增强型双马来酰亚胺三嗪树脂、聚酰亚胺树脂、聚酰胺树脂和聚酯树脂等。
基板短路部分14可以使用已有的印刷电路板上使用的各种结构,例如由非电解淀积和电解电镀形成的筒状金属堆积体结构,在热固性树脂中分散有导电性粒子的导电性糊材料的固化物等,优选构成下述层间短路部分22和层间短路部分32的材料,即在水性介质中分散导电性微粒与聚合性化合物和聚合物中的至少一种构成的有机粒子形成的电沉积液通过电沉积处理而形成的导电体。
构成上绝缘部20和下绝缘部30的材料可以使用已有的印刷电路板中所使用的各种热固性树脂材料或射线固化性树脂材料。
在上绝缘部20和下绝缘部30上形成的层间短路部分22、32是由高分子物质中含有的导电性微粒形成的导电体构成的,该导电体是在特定电沉积液中通过电沉积处理而形成的。
因此,用来形成层间短路部分22、32的特定电沉积液是在水性介质中分散有导电性微粒与聚合性化合物和聚合物中的至少一种化合物而形成的。作为此电沉积液优选上述1~3中记载的形成导电层用电沉积液。
上述层间短路部分22、32优选含有导电性微粒40-99体积%,更优选60-95体积%。
满足了上述条件,可以确实形成导电性高的,例如体积电阻系数优选在1×10-4Ω·cm以下,更优选0.5×10-4Ω·cm以下的层间短路部分22、32。
(g-2)制造方法以上所述多层布线板,例如可按如下方法制造。
首先如图4所示,在绝缘基板11的上面形成第1基板布线层12,在该绝缘基板11的下面制作形成有通过基板短路部14与第1基板布线层12电连接的金属层13A的芯布线基板材料10A。
该芯布线基板材料10A,例如可按以下方法制造。即,如图5所示,制作在绝缘基板11的下面形成金属层13A的积层材料10B,如图6所示,在该积层材料10B上的绝缘基板11上要形成基板短路部分对应之处形成一种沿其厚度方向贯通该绝缘基板11的通孔14H。然后在上述电沉积液中,以金属层13A作为析出阳极,对此积层材料10B进行电沉积处理,这样能够在通孔14H内形成一种在金属层13A的表面上由电沉积液中的导电微粒和有机粒子堆积而成的堆积体,这种堆积体必要时再经热处理,如图7所示,将能形成沿其厚度方向贯通绝缘基板11延伸的基板短路部分14。而且必要时,将绝缘基板11的上面进行研磨处理后,使绝缘基板11的上面形成第一基板布线层12,这样能够得到附图4所示的芯布线基板材料10A。
以上在绝缘基板11上形成通孔14H的方法,从能够得到小直径通孔14H的角度来看,可以适当采用激光照射的方法。
作为电沉积方法,从容易控制厚度的角度来看,优选采用恒压法。电沉积处理的具体条件,应当根据电沉积液中所含导电微粒和有机粒子的材料种类和浓度等适当选定,例如外加50~500V电压,处理0.5~200分钟。
加热处理电沉积形成的堆积体的场合下,应当根据电沉积液中有机粒子的材质适当设定,例如加热温度优选100~400℃,更优选150~300℃,加热时间优选5分钟以上,更优选10分钟以上。
形成第一基板布线层12的方法,可以采用已有的印刷电路板的制造方法,例如可以采用扣除法,即对绝缘基板11的整个上表面实施非电解淀积或电镀铜形成金属层,对该金属层实施光蚀处理除去一部分金属层,形成布线层,或者采用附加法,即对绝缘基板11的上表面实施光刻和非电解淀积,直接形成图形状金属层,或者采用其他方法等。
在这样的芯布线基板10A的上表面形成上部绝缘层20,如图8所示,此上部绝缘层20上形成有与应当形成层间短路部分22对应的通孔22H。接着在上述电沉积液中,以第一基板布线层12作为析出阳极进行电沉积处理,这样能够在通孔22H内形成在第一基板布线层12表面上的堆积了电沉积液中导电微粒和有机粒子组成的堆积体,这种堆积体在必要时经热处理可以形成,如图9所示,沿着绝缘层20厚度方向贯通延伸的层间短路部分22。
以上形成有通孔22H的上部绝缘层20的方法,可以采用在芯布线基板10A的上面涂布液态射线固化性树脂材料,然后对该涂布膜实施曝光处理和显影处理,以便形成具有通孔22H的上部绝缘层20的方法,或者采用在芯布线基板10A的表面涂布液态热固性树脂材料或设置片状热固性树脂材料并施加热处理,形成上部绝缘层20,对这种上部绝缘层照射激光,以形成通孔22H的方法等。
关于电沉积处理及其具体条件,与上述基板短路部分14形成时相同。
这种方法形成的上部绝缘层20和层间短路部分22,必要时对该上部绝缘层20的表面进行研磨处理后,如图10所示,对该上部绝缘层20的上表面进行非电解淀积和电镀,形成金属层21A。
进而对芯布线基板10A中上的金属层13A进行光蚀处理,除去其中一部分,在绝缘基板10的下表面上形成第二基板布线层13,这种方法可以形成芯布线基板10。
然后在芯布线基板10的下表面,如图12所示,形成具有与应当形成层间的短路部分对应的通孔32H下部绝缘层30。接着在上述电沉积液中以第二基板布线层13为析出阳极进行电沉积处理,可以在通孔32H内形成在第二基板布线层13的表面上堆积着电沉积液中的导电微粒和有机粒子形成的堆积体,这种堆积体必要时经热处理,如图13所示,可以形成沿着上部绝缘层20厚度方向贯通延伸的层间短路部分22。
以上关于形成具有通孔32H的下部绝缘层30的方法、电沉积处理的方法和具体条件,与上述关于上部绝缘层20和层间短路部分22的形成相同。
其次对在上部绝缘层20的表面上形成的金属层21A进行光刻处理,除去其中一部分,如图14所示,形成上部布线层21,同时根据需要对下部绝缘层30的下表面进行研磨处理后,可以在该下部绝缘层30的下面形成下部布线层31。
其中关于形成下部布线层31的方法,与形成上述第一基板布线层12的方法相同,可以采用以往制造印刷电路板时用来形成布线层的方法;采用扣除法的场合下,进行其光蚀处理时,可以采用与上部布线层21形成时金属层21A光蚀处理的同一工序。
在包含上部布线层21的上部绝缘层20的上表面以及包含下部布线层31的下部绝缘层30的下表面,各形成具有使上部布线层21和下部布线层31上的元件连接区露出的开口26和36的焊锡阻挡层25和35,这样可以得到附图3所示结构的多层布线板。
采用这种多层布线板,在由导电微粒和有机粒子分散而成的电沉积液中,以基板布线层12、13作为析出阳极,通过电沉积处理,由于层间短路部分22、32可以在短时间内形成,所以在制造该多层布线板时可以获得高生产率。
而且由于电沉积液容易制成粘度低的,所以用这种电沉积液时,即使上部绝缘层20和下部绝缘层30上各形成的通孔21H和31H直径很小,这种电沉积液也能充分进入通孔21H和31H之内,其中结果能够确实形成所需的层间短路部分22和32,因而可以获得高度连接可靠性。
本发明的导电层形成用水性分散液由于能用电沉积法形成导电层,所以与涂布、印刷等已有技术相比,能够容易形成位置等精度高的导电层。而且因为无需电镀而利用微粒的电沉积形成膜,所以膜的生长速度高、生产率优良。采用这种水性分散液可以使作为树脂成分的有机粒子与导电微粒一起电沉积,因而能够得到与基板粘接性优良的导电层。本发明中由于树脂成分以粒子形式被分散在水性介质中,所以与在有机溶剂或无溶剂时使用树脂成分的情况不同,树脂成分的浓度和分子量对分散液粘度的影响小,能够制成适宜电沉积粘度的分散液。
用这种分散液形成的本发明的导电层,如上所述,可以制成与基板粘接性优良、膜厚精度和位置精度均高的导电层。本发明的导电层因产生这样的特性,所以十分适于将导电电路、凸点电极及其组合而成的电路基板等电子器件使用。
按照本发明的电路基板制造方法,可以高效地制造具有包含贯串本发明水性分散液形成绝缘层的贯通导电部分导电层的电路基板。
本发明的多层布线板,采用在导电微粒和有机粒子分散而成的电沉积液中,以基板布线层作为析出电极通过电沉积处理的方法制造的,由于在短时间内能够形成层间短路部分,所以该多层布线基板制造时能获得高生产率。
而且作为电沉积液,粘度低的容易制备,使用这种电沉积液,即使绝缘层上形成的通孔直径小,电沉积液也能充分进入通孔之内,因而能确实形成所需的层间短路部分,得到的连接可靠性高。
按照本发明的多层布线板的制造方法,采用在导电微粒和有机粒子分散而成的电沉积液中,以基板布线层作为析出电极通过电沉积处理,在短时间内能形成层间短路部分,所以可以获得高生产率。
而且作为电沉积液,浓度低的容易制备,使用这样的电沉积液时,即使绝缘层上形成的通孔直径小,电沉积液也能充分进入通孔之内,所以能确实形成所需的层间短路部分,因而能够制造连接可靠性高的多层布线基板。
附图1(a)~(e)是表示电路基板用方法1制造工序的制造方式的断面示意图。
附图2(a)~(e)是表示电路基板用方法2制造工序的制造方式的断面示意图。
附图3是表示本发明的一种多层布线基板实例结构的断面说明图。
附图4是表示附图3所示多层布线基板中芯布线基板的断面说明图。
附图5是表示附图4所示芯布线基板用积层材料的断面说明图。
附图6是表示在积层材料上形成通孔的状态下的断面说明图。
附图7是表示在绝缘基板上形成基板短路部分状态下的断面说明图。
附图8是表示在芯布线基板上面形成上部绝缘层状态下的断面说明图。
附图9是表示在上部绝缘层上形成层间短路部分状态下的断面说明图。
附图10是表示在上部绝缘层上形成金属层状态下的断面说明图。
附图11是表示在绝缘基板下面形成第2基板布线层后,芯布线基板形成状态下的断面说明图。
附图12是表示在芯布线基板下面形成下部绝缘层状态下的断面说明图。
附图13是表示在下部绝缘层上形成层间短路部分状态下的断面说明图。
附图14是表示在上部绝缘层表面上形成上部布线层,并在下部绝缘层下面形成下部布线层状态下的断面说明图。
具体实施例方式
以下借助于实施例和对照例对本发明作进一步具体说明。在以下说明中,若无特别说明,其中的“份”和“%”均指按照重量计。
1导电微粒分散液的制备(合成例1铜微粒的分散液a)将20份用气相蒸发法制造的铜微粒(真空冶金株式会社制造,数均初级粒径0.050微米)和80份异丙醇在均质机中混合后,加入0.6份二乙醇胺,再进行10分钟超声波分散,得到了没有凝聚物的铜微粒的醇分散液(固形成分浓度20%)。
(合成例2铜微粒的分散液b)将20份用还原法制造的铜微粒(住友金属株式会社制造,数均初级粒径0.3微米)和20份异丙醇在均质机中混合后,加入1份单乙醇胺和30份异丙醇,再加入高压匀浆器(白水化学制造)中处理后,得到了没有凝聚物的铜微粒的醇分散液(固形成分浓度20%)。
(合成例3铜微粒的分散液c)将20份用电解法制造的铜微粒(川铁矿业株式会社制造,数均初级粒径0.5微米)和30份异丙醇在均质机中混合后,加入50份异丙醇,再于高压匀浆器(白水化学制造)中处理后,得到了没有凝聚物的铜微粒的醇分散液(固形成分浓度20%)。
(合成例4镍微粒的分散液)将10份气相蒸发法制造的镍微粒(真空冶金株式会社制造,数均初级粒径0.020微米)和90份异丙醇在均质机中混合后,加入0.3份二乙醇胺,再进行10分钟超声波分散,得到了没有凝聚物的镍微粒的醇分散液(固形成分浓度10%)。
(合成例5银微粒的分散液)将20份气相蒸发法制造的银微粒(真空冶金株式会社制造,数均初级粒径0.050微米)和80份乙醇在均质机中混合后,加入0.3份二乙醇胺,再进行10分钟超声波分散,得到了没有凝聚物的银微粒的醇分散液(固形成分浓度20%)。
2有机粒子乳液的制备(合成例6丙烯酸系树脂乳液)向反应器中加入100份异丙醇,升温到80℃。在另外容器中混合85份丙烯酸乙酯、10份甲基丙烯酸、5份缩水甘油基甲基丙烯酸酯和1份偶氮异丁腈,在5小时内连续将其滴入,得到了丙烯酸树脂的醇溶液。一边将20份这种丙烯酸树脂溶液(换算成固形成分浓度为10份)和0.2份单乙醇胺加入处于强烈搅拌下的90份离子交换水中,得到了以丙烯酸系树脂为主要成分的阴离子型有机粒子乳液。
(合成例7环氧系树脂乳液A)将40份由甲代苯撑二异氰酸酯和2-乙基己醇组成的嵌段异氰酸酯,以及60份由埃皮科特828(油化壳牌环氧株式会社制造)和聚羧酸(约翰逊聚合物公司制造)反应得到的环氧聚羧酸加合物混合,加入3份单乙醇胺作为pH调节剂。将其加入搅拌下的400份离子交换水中,得到了以环氧系树脂前体为主要成分的阴离子型有机粒子乳液。
(合成例8环氧系树脂乳液B)将35份由甲代苯撑二异氰酸酯和2-乙基己醇组成的嵌段异氰酸酯,以及65份由埃皮科特828(油化壳牌环氧株式会社制造)和二乙胺反应得到的环氧胺加合物混合,加入2.5份乙酸作为pH调节剂。将其加入搅拌下的400份离子交换水中,得到了以环氧系树脂前体为主要成分的阳离子型有机粒子乳液。
(合成例9聚酰亚胺系树脂乳液)将32.29克(90毫摩尔)作为四羧酸二酐的3,3’,4,4’-二苯砜四羧酸二酐、3.00克(10毫摩尔)1,3,3a,4,5,9b-六氢-5-(四氢-2,5-二氧代-3-呋喃基)-萘并[1,2-c]-呋喃-2,5-二酮、36.95克(90毫摩尔)作为二胺化合物的2,2-双[4-(4-氨基苯氧基)苯基]丙烷和2.49克(10毫摩尔)有机硅氧烷(信越化学株式会社制造,商品名“LP7100”)溶解在450克N-甲基-2-吡咯烷酮中,使之室温下反应12小时。然后向此溶液中加入32克吡啶和71克醋酐,在100℃下进行3小时脱水闭环反应。进而减压蒸馏反应溶液精制,得到了固形成分10%的聚酰亚胺溶液。
将加入有100份γ-丁内酯的反应器在氮气气氛下保持在85℃,于5小时内一边连续向此反应器中加入65份丙烯酸正丁酯、30份丙烯酸二甲基氨基乙酯、5份缩水甘油基甲基丙烯酸酯和1份偶氮二异丁腈组成的混合液,一边搅拌以进行溶液聚合反应。滴加终止后,再于85℃下继续搅拌2小时,使溶液聚合完成,得到了固形成分浓度为50%的丙烯酸聚合物溶液。
将50份聚酰亚胺溶液、30份(固形成分)丙烯酸聚合物溶液和20份埃皮科特828(油化壳牌环氧株式会社制造)混合,使之在70℃下反应3小时后,缓缓加入3份乙酸混合,调整pH。然后一边缓缓添加1000份蒸馏水一边强烈搅拌,得到了以聚酰亚胺系树脂为主要成分的阳离子型有机粒子的乳液。
3水性分散液的制备(实施例1)混合合成例1得到的铜微粒分散液a500份(换算为固形成分为100份)和合成例6得到的丙烯酸系树脂乳液100份(换算为固形成分为10份)制成水性分散液。此水性分散液中所含的铜微粒和丙烯酸系树脂间容积比为53/47,用卡·费法测得的水份含量为13重量%。
(实施例2)混合合成例12得到的铜微粒分散液b500份(换算为固形成分为100份)和合成例6得到的丙烯酸系树脂乳液100份(换算为固形成分为10份)制成水性分散液。此水性分散液中所含的铜微粒和丙烯酸系树脂间容积比为53/47,用卡·费法测得的水份含量为13重量%。
(实施例3)混合合成例4得到的镍微粒分散液1000份(换算为固形成分为100份)和合成例6得到的丙烯酸系树脂乳液100份(换算为固形成分为10份)制成水性分散液。此水性分散液中所含的镍微粒和丙烯酸系树脂间容积比为53/47,用卡·费法测得的水份含量为7重量%。
(实施例4)混合合成例5得到的银微粒分散液500份(换算为固形成分为100份)和合成例6得到的丙烯酸系树脂乳液100份(换算为固形成分为10份)制成水性分散液。此水性分散液中所含的银微粒和丙烯酸系树脂间容积比为49/51,用卡·费法测得的水份含量为13重量%。
(实施例5)混合合成例5得到的银微粒分散液500份(换算为固形成分为100份)和合成例7得到的环氧系树脂乳液A50份(换算为固形成分为10份)制成水性分散液。此水性分散液中所含的银微粒和环氧系树脂间容积比为49/51,用卡·费法测得的水份含量为7重量%。
(实施例6)混合合成例1得到的铜微粒分散液a500份(换算为固形成分为100份)和合成例8得到的环氧系树脂乳液B100份(换算为固形成分为10份)制成水性分散液。此水性分散液中所含的铜微粒和环氧系树脂间容积比为53/47,用卡·费法测得的水份含量为6.5重量%。
(实施例7)混合合成例3得到的铜微粒分散液c500份(换算为固形成分为100份)和合成例9得到的聚酰亚胺系树脂乳液30.1份(换算为固形成分为2.0份)制成水性分散液。此水性分散液中所含的铜微粒和聚酰亚胺系树脂间容积比为85/15,用卡·费法测得的水份含量为3.7重量%。
(实施例8)混合合成例4得到的镍微粒分散液1000份(换算为固形成分为100份)和合成例8得到的环氧系树脂乳液B100份(换算为固形成分为10份)制成水性分散液。此水性分散液中所含的镍微粒和环氧系树脂间容积比为53/47,用卡·费法测得的水份含量为3.5重量%。
(实施例9)混合合成例5得到的银微粒分散液500份(换算为固形成分为100份)和合成例9得到的聚酰亚胺系树脂乳液100份(换算为固形成分为6.5份)制成水性分散液。此水性分散液中所含的银微粒和聚酰亚胺系树脂间容积比为59/41,用费歇尔法测得的水份含量为11重量%。
(对照例1)在合成例1得到的铜微粒分散液a500份(换算成固形成分为100份)中,加入100份离子交换水代替实施例1的丙烯酸系树脂乳液100份,制成了水性分散液。
(对照例2)直接使用(即不加水性分散液)合成例1得到的铜微粒分散液a500份(换算成固形成分为100份)。
(对照例3)在合成例1得到的铜微粒分散液a500份(换算成固形成分为100份)中,加入500份离子交换水代替实施例6的环氧系树脂乳液100份,制成了水性分散液。
4导电层的形成和性能评价(4-1)阳极上的电沉积在上述实施例1~5以及对照例1和2的分散液中,分别设置作阳极使用的铜溅射晶片和作为对电极(阴极)使用的SUS板,在70V电压下使粒子电沉积(电沉积时间2分钟)在阳极上。然后在100℃下加热10分钟,再于混合有3%氢的氮气气氛下250℃加热1小时,得到了厚度15微米的导电层。其中在对照例1的水性分散液中因成膜性不良而没有得到膜。而且在对照例2的醇分散液中即使施加电压也不能形成膜。
按照以下方法评价了实施例1~5以及对照例1和2中分散液的储存稳定性。并用以下方法评价了电沉积得到的导电层的性能。其结果示于表1之中。
〖贮存稳定性〗将分散液放入塑料瓶中,用目视观察了20℃下保存10日时的分散状态和粘度。评价结果用以下两级表示。
○粘度无变化,分散状态良好×分成两层〖容积电阻系数〗按照JIS K6481测定。
〖粘着性〗用赛璐玢胶带进行剥离试验,导电层的剥离情况用以下两两级价。
○完全无变化△有少许变化×剥离表1
1)容积电阻系数的单位是(10-4Ω·cm)。
2)体积比用导电性粒子/有机粒子表示。
表2
1)容积电阻系数的单位是(10-4Ω·cm)。
2)体积比用导电性粒子/有机粒子表示。
表1和表2的数据说明,实施例1~5的水性分散液都具有优良的贮存稳定性,而且用这种水性分散液电沉积形成的导电层都有低的容积电阻系数,与基板的粘着性也良好。
另一方面,对照例1的不含有机粒子的水性分散液成膜性不足,对照例2中的不含有机粒子的醇分散液不能电沉积。而且对照例1和2中分散液的贮存稳定性均欠佳。
(4-2)阴极上的电沉积在上述实施例6~9以及对照例2和3的分散液中,分别设置作阴极使用的铜溅射晶片和作为对电极(阳极)使用的SUS板,在200V恒电压下使粒子电沉积(电沉积时间2分钟)在阴极上。然后在100℃下加热10分钟,再于混合有3%氢的氮气气氛下250℃加热1小时,得到了厚度15微米的导电层。其中使用对照例2、3的分散液的场合下即使电沉积也不能形成膜。
用上述方法就实施例6~9以及对照例2和3的分散液评价了其贮存稳定性。而且用上述方法评价了电沉积得到的导电层的性能。其结果示于表3和表4之中。
表3
表4
表3和表4的数据说明,实施例6~9的水性分散液都具有优良的贮存稳定性,而且用这种水性分散液电沉积形成的导电层,其电学特性和粘着性也良好。而不含有机粒子的对照例2、3的的分散液无成膜性,对照例2的分散液储存稳定性也不良。
5电路基板的制造及性能评价使用制备的水性分散液制造了电路基板,并评价了其性能。
(实施例10用方法1制造电路基板)使用将玻璃纤维含浸BT树脂(三菱瓦斯化学株式会社制的商品名)后半固化的100微米厚的基板作为芯板绝缘层41。采用二氧化碳气体激光器加工法,在此芯板绝缘层41的预定处形成直径80微米的通孔411(参见附图1(a))。然后使由18微米厚铜箔制成的导电箔42热压粘接在此芯板绝缘层41的一个表面上(参见附图1(b))。
其次将带有导电箔42的芯绝缘层41浸渍在实施例6的分散液中,以导电箔42作阴极,以对电极作阳极,于20℃搅拌下,电极间距离15厘米,在200V电压下进行2分钟电沉积。然后在100℃下将电沉积通孔411内的环氧系树脂预干燥15分钟,以形成贯通导电部分431(参见附图1(c))。
将导电箔放置并层叠在此带有导电箔的半固化基板上,进行真空热压,并于混有3%氢的氮气气氛下于200℃加热1小时使之完全固化,得到了用贯通导电部分431将层间电路粘接在一起的基板(参见附图1(d))。接着用干片保护层在导电膜42上形成图形后,浸渍在三氯化铁腐蚀液中进行侵蚀,得到了带电路的固化基板(参见附图1(e))。
(实施例11用方法2制造电路基板)以实施例10制造的电路基板作为芯布线基板48(参见附图2(a)),在此芯布线基板48的两表面上各涂布100微米厚感光性环氧树脂,形成绝缘层45(参见附图2(b))。然后在此绝缘层45上形成图形状直径80微米的通孔451,制成绝缘层图形46(参见附图2(c))。对其进行非电解淀积后(参见附图2(d)),浸渍在实施例7的分散液中,以非电解淀积层47为阴极,以对电极为阳极,在搅拌下和20℃温度下,电极间距离为15厘米,用200V电压进行2分钟电沉积。接着在100℃对电沉积的聚酰亚胺树脂进行15分钟预干燥,在非电解淀积层47的整个表面上形成导电层43(参见附图2(e))。此导电层43的一部分将变成在通孔451内形成的贯通导电部分432。进而在热干燥炉内,于混有3氢气的氮气气氛下,在230℃加热1小时,使导电层43完全固化,得到了层间电路被贯通导电部分432连接在一起的电路基板。
(实施例12)在实施例10中,形成贯通导电部分431时,用实施例7的分散液进行电沉积,于100℃预干燥15分钟。然后浸渍在铜电解液(日本电镀株式会社制造,商品名为“Microfab Cu 200”)中,以导电箔42为阴极,在1V电压、一个循环中100毫秒(0V时500毫秒)通电时间下,电沉积处理5分钟。其他条件与实施例10相同,得到了带有电路的固化基板。
(对照例4)与利用电沉积法在通孔411内形成贯通导电部分的实施例10不同,用丝网印刷机通过金属版(厚度100微米,孔径90微米),将铜导电糊(粘度100Pa·s)充填在通孔411内,其余与实施例10同样处理,得到了对照例4的电路基板。
对得到的电路基板进行了以下评价,结果示于表5之中。
〖绝缘层的电阻系数〗按照JIS K6911进行了测定。
〖贯通导电部分的电阻系数〗测定上下层间的电阻系数,求出容积电阻系数。
〖贯通导电部分的连接可靠性试验〗在-55℃下将电路基板放置30分钟后,再于125℃放置30分钟,这种循环重复500次,测定连接500个凸点电极的电路的电阻变化量。试验结果以电阻低于250mΩ为合格(○),在该数值以上为不合格(×)。
〖焊锡的蘸涂试验〗将电路基板浸渍在被加热到260℃熔化的焊锡槽中10秒钟前后,测定连接50个凸点电极的电路中电阻的变化量。试验结果以电阻低于250mΩ,即相当于每个凸点电极0.5mΩ为合格(○),在该数值以上为不合格(×)。
表5
表5中数据说明,具有由本发明的水性分散液形成导电层的电路基板,经贯通导电部分连接层间电路的电阻系数低,而且连接可靠性高。另一方面,在使用已有导电糊用印刷法形成贯通导电部分的对照例4中,不能将粘度到的导电糊确实地填充到直径80微米的通孔内,因而贯通导电部分的电阻系数高,连接可靠性不充分。
6多层布线板的制造和性能评价
(实施例13)(1)芯布线基板的制造首先准备一种在500微米厚玻璃纤维增强型环氧树脂制成的绝缘基板上,形成了18微米厚铜层的积层材料,然后用二氧化碳气体激光器在此积层材料的绝缘基板上形成直径100微米的通孔(参见附图5和附图6)。
将此积层材料在其金属层的一面得到保护的状态下浸渍在实施例6的分散液中,以该金属层作析出阴极,电沉积液温度为20℃,电极间距离为25厘米,外加电压200V等条件下,用恒电压法进行60分钟的电沉积处理,以此方法在绝缘基板的通孔内形成导电微粒和有机粒子的堆积体,经过100℃15分钟预干燥处理后,于还原气体气氛(含有3%氢气的氮气)下,在170℃热处理30分钟,利用这种方法形成基板短路部分(参见附图7)。
接着对积层材料中的绝缘基板表面作研磨处理后,在该绝缘基板表面进行非电解淀积铜和电镀铜,形成厚度20微米的金属层,进而对此金属层进行光蚀处理,形成第1基板布线层,从而制成了具有第1基板布线层,同时下面有通过基板短路部分与第1基板布线层电连接金属层的芯布线基板(参见附图4)。
(2)上部绝缘层、层间短路部分及芯布线基板的形成在165℃温度和30千克/平方厘米压力条件下,将60微米厚的环氧树脂预浸片热压在上工序(1)得到的芯布线基板的上表面上,形成上部绝缘层,用二氧化碳气体激光器在此上部绝缘层上形成直径100微米的通孔(参见附图8)。
其次在芯布线基板的金属层的下表面被保护的状态下,于实施例6的水性分散液中,以第一基板布线层为析出用阴极,在电沉积液温度20℃、电极间距离25厘米、外加电压200V和处理时间15分钟的条件下进行恒电压电沉积处理,使上部绝缘层通孔内形成导电微粒和有机粒子的堆积体,在100℃预干燥处理15分钟后,于170℃在还原性气体(含有3%氢气的氮气)气氛下热处理30分钟,形成了层间短路部分(参见附图9)。
接着在对上部绝缘层的表面研磨处理后,在该上部绝缘层的表面上,施加非电解沉积铜和电镀铜,形成厚度20微米的金属层(参见附图10)。然后对芯布线基板进行光蚀处理,形成第2基板布线层,制成芯布线基板(参见附图11)。
(3)下部绝缘层、层间短路部分以及上部布线层和下部布线层的形成在165℃温度、30千克/平方厘米压力等条件下,将厚度60微米的环氧树脂预浸片热压在上述工序(2)得到的、上表面形成了上部绝缘层和层间短路部分的芯布线基板的下表面上,形成下部绝缘层,用二氧化碳气体激光器在此下部绝缘层上形成直径100微米的通孔(参见附图12)。
其次,在芯布线基板的金属层的上表面被保护的状态下,于实施例6的水性分散液中,以第2基板布线层为析出用阴极,在电沉积液温度20℃、电极间距离25厘米、外加电压200V和处理时间8分钟等条件下进行恒电压电沉积处理,在上部绝缘层通孔内形成导电微粒和有机粒子的堆积体,在100℃预干燥处理15分钟后,于170℃在还原性气体(含有3%氢气的氮气)气氛下热处理30分钟,形成了层间短路部分(参见附图13)。
接着在对下部绝缘层的表面作研磨处理后,在该下部绝缘层表面上,施加非电解镀铜和电镀铜,形成了厚度20微米的金属层。然后对在上部绝缘层和下部绝缘层的各表面上形成的金属层进行光蚀处理,形成了上部布线层和下部布线层(参见附图14)。
之后,在包含上部布线层的上部绝缘层和包含下部布线层的下部绝缘层的表面上,形成焊锡阻挡层,制成了本发明的多层布线板。
以上在基板短路部分以及上部绝缘层和下部绝缘层各层上形成的层间短路部分中导电微粒的所含比例,按照容积%计约53%。
(实施例14)形成基板短路部分和层间短路部分时,用实施例7的分散液代替实施例6的分散液,用电沉积处理法形成的堆积体经干燥后,将其浸渍在铜电解液(日本电镀株式会社制造,商品名为“Microfab Cu 200”)中,以导电箔42作阴极,以1V电压、每个循环的通电时间为100毫秒(0V下为300毫秒)等条件下进行5分钟电沉积处理。其他条件与实施例13相同,制成了本发明的多层布线板。
以上在基板短路部分以及上部绝缘层和下部绝缘层各层上形成的层间短路部分中导电微粒的所含比例,按照容积%计约85%。
(对照例5)为了代替用电沉积液形成基板短路部分和层间短路部分,除了利用丝网印刷机借助于金属版(厚度100微米,孔径90微米)向通孔内充填铜导电糊,在170℃和还原性气体(含有3%氢气的氮气)气氛下热处理30分钟,用这种方法形成基板短路部分和层间短路部分以外,其他与实施例12同样处理,得到了对照用多层布线板。
〖多层布线板的评价〗(1)布线的初期电阻测定多层布线板中上部布线层连接区和下部布线层连接区之间的电阻,求出其平均值。
(2)加热循环试验后的布线电阻将多层布线板于-55℃下放置30分钟后,再于125℃下放置30分钟,以此作为一个操作循环,合计进行500个循环后,测定该多层布线板中上部布线层连接区和下部布线层连接区之间的电阻,求出与一个连接区相当的平均值。
以上结果示于表6之中。
表6
表6中结果说明,属于实施例13和实施例14的多层布线板,布线的电阻低,而且即使经过加热循环试验后布线的电阻变化也小,证明具有很高的连接可靠性。
本发明并不限于上述的实施方式,可以作出各种变化。例如,在芯布线基板上形成的绝缘层,也可以仅仅是该芯布线基板的一面或另一面,而且在绝缘层上还可以积层绝缘层。此外,芯布线基板若由两面互相电连接的基板布线层组成,则也有多层结构。
权利要求
1.一种导电层形成用水性分散液,其特征在于预先将数均粒径1微米以下的导电微粒和,由聚合性化合物和聚合物中至少一种物质组成的有机粒子分散在水性介质中,用电沉积法可以使之形成导电层。
2.按照权利要求1所述的导电层形成用水性分散液,其中所说的导电微粒和所说的有机粒子间体积比为99∶1~40∶60。
3.按照权利要求1或2中所述的导电层形成用水性分散液,是由所说的导电微粒分散在有机溶剂中得到的导电微粒分散液和,将所说的有机粒子分散在水性介质中得到的有机粒子分散液二者混合而成的。
4.一种导电层,其特征在于是用权利要求1~3中任何一项所述的导电层形成用水性分散液电沉积而成的,其容积电阻系数在10-4Ω·cm以下。
5.一种电子器件,其特征在于其中有用权利要求1~3中任何一项所述的导电层形成用水性分散液电沉积而成的导电层。
6.一种电路基板,其特征在于其中有绝缘层和导电层,所说的导电层包含贯通绝缘层的贯通导电部分,所说的导电层是用权利要求1~3中任何一项所述的导电层形成用水性分散液作为电沉积液电沉积而成的。
7.一种电路基板的制造方法,其特征在于是用权利要求1~3中任何一项所述的导电层形成用水性分散液的电路基板的制造方法,其中包括(a)在绝缘层上形成通孔的工序,(b)在该绝缘层的一表面上包含该通孔的部位设置导电箔的工序,以及(c)用所说的导电层形成用水性分散液作电沉积液,以所说的导电箔为一个电极,利用电沉积法在所说的通孔内形成贯通导电部分的工序。
8.一种电路基板的制造方法,其特征在于是使用权利要求1~3中任何一项所述导电层形成用水性分散液的电路基板的制造方法,其中包括(a)在形成了导体图形的芯布线基板上形成绝缘层的工序,(b)在该绝缘层上制作图形,形成有通孔的绝缘层图形的工序,所说的通孔使上述导体图形的一部分露出。(c)以该绝缘层图形为掩模材料作非电解淀积,以此在包括上述通孔内的部分形成非电解淀积层的工序,以及(d)用上述导电层形成用水性分散液作电沉积液,以上述导体图形和上述非电解淀积层为一个电极,用电沉积法在包括上述通孔内的贯通导电部分形成导电层的工序。
9.一种电路基板的制造方法,其为将数个由权利要求7或8所述的方法得到的电路基板进行积层。
10.一种多层布线基板,其特征在于其中有由绝缘基板两面互相电连接的基板布线层形成的芯布线基板,至少层叠在此芯布线基板一面上的绝缘层,在此绝缘层上形成的布线层、以及将此布线层电连接到上述基板布线层上的、沿其厚度方向将上述绝缘层贯通延伸的层间短路部分,其特征在于,上述层间短路部分由高分子物质中所含导电微粒形成的导体构成,该导体是由导电微粒以及聚合性化合物和聚合物中至少一种物质组成的有机粒子在水性介质中分散形成的电沉积液中电沉积处理而成的。
11.按照权利要求10所述的多层布线基板,其特征在于其中有将绝缘基板两面形成的基板布线层互相电连接的、沿其厚度方向将该绝缘基板贯通延伸的基板短路部分,该基板短路部分由高分子物质中所含导电微粒形成的导体构成,该导体是由导电微粒以及聚合性化合物和聚合物中至少一种物质组成的有机粒子在水性介质中分散而成的电沉积液中电沉积处理形成的。
12.按照权利要求10或11所述的多层布线基板,其特征在于在构成层间短路部分和/或基板短路部分的导体中所含导电微粒占导电微粒和有机粒子的总体积的40~99%。
13.一种多层布线板的制造方法,是权利要求10~12中任何一项所述的多层布线板的制造方法,其特征在于包括以下工序准备芯布线基板板材的工序,所说的板材由绝缘基板,以及在此绝缘基板一面上形成了基板布线层,和在此绝缘基板另一面形成了与该基板布线层电连接的金属层构成,在此芯布线基板板材一面上形成具有与应当在该基板布线层上形成的层间短路部分对应形成通孔的绝缘层的工序,以在其上形成此绝缘层的、处于芯布线基板板材上的基板布线层作为析出电极,在由导电微粒以及聚合性化合物和聚合物中至少一种物质组成的有机粒子在水性介质中分散而成的电沉积液中进行电沉积处理,以此在该绝缘层通孔内形成构成层间短路部分的导体的工序。
14.按照权利要求13所述的多层布线板的制造方法,其特征在于准备具有绝缘基板,以及在此绝缘基板的至少一面形成了金属层的基板形成材料,在此基板形成材料的绝缘基板上,形成沿其厚度方向贯通的通孔,以此基板形成材料的金属层作析出电极,在由导电微粒以及聚合性化合物和聚合物中至少一种物质组成的有机粒子于水性介质中分散而成的电沉积液中电沉积处理,以此在该绝缘基板的通孔内形成构成基板短路部分的导体,然后在绝缘基板的另一面上形成基板布线部分,以此制成芯布线基板板材。
15.按照权利要求13或14所述的多层布线板的制造方法,其特征在于导电微粒和有机粒子在电沉积液中的体积比为99∶1~40∶60。
全文摘要
本发明的水性分散液,在水性介质中分散有导电微粒和有机粒子,能够用电沉积形成例如容积电阻系数为10
文档编号H05K3/42GK1933701SQ20061012120
公开日2007年3月21日 申请日期2000年11月1日 优先权日1999年11月1日
发明者伊藤信幸, 小山宪一 申请人:Jsr株式会社