发光元件和发光设备的利记博彩app

文档序号:8029718阅读:260来源:国知局
专利名称:发光元件和发光设备的利记博彩app
技术领域
本发明涉及一种在一对电极之间具有发光层的发光元件,更具体而言,本发明涉及该发光元件的层结构。
背景技术
利用从电致发光元件(一种发光元件)发射的光的发光设备具有广视角和低功耗。最近几年,在发光设备的开发领域已经积极进行了对能够长期提供高质量图像的发光设备的研究和开发,以便支配应用于各种信息处理设备(诸如电视接收机和汽车导航系统)的显示设备的市场。
为了获得能够长期提供高质量图像的发光设备,长寿命的发光元件和有效发光的发光元件的开发变得非常重要。
例如,专利文件1公开了一种与具有多个发光单元的发光元件相关的技术,其中各个发光单元被电荷产生层隔离。该专利文件1描述了一种具有高亮度的长寿命发光元件。但是,在专利文件1中使用的五氧化二钒具有高的吸湿特性。因此,发光元件很可能由于五氧化二钒吸收的湿气而被恶化。发光元件的恶化导致了发光设备中的图像质量的恶化。
因此,在发光设备的开发中,制造一种具有高抗湿特性以及高亮度的发光元件也是重要的。

发明内容
本发明的目的是提供一种具有卓越抗湿特性的发光元件。更具体而言,本发明的目的是提供一种能够发射白光的具有卓越抗湿特性的发光元件。
在本发明的一个方面,发光元件包括包含具有受电子特性的物质的层。由于该物质具有受电子特性,因此使用了钼氧化物。
在本发明的另一个方面,发光元件包括在第一电极和第二电极之间的n片发光层(n是自然数)。该发光元件还包括在第m发光层(m是自然数1≤m≤n)和第m+1发光层之间的第一层和第二层。该第一和第二层互相接触。该第一层包含容易传输空穴的物质和具有受电子特性的物质。该第二层包含容易传输电子的物质和具有给电子特性的物质。此外,钼氧化物用作为具有给电子特性的物质。
在本发明的另一个方面,发光元件包括n片层组(n是自然数),每一层组具有在一对电极之间的第一层、第二层和发光层。该第一层包括容易传输空穴的物质和具有受电子特性的物质。该第二层包括容易传输电子的物质和具有给电子特性的物质。在该n片层组中,第m层组(m是自然数1≤m≤n)中包括的第一层和第m+1层组中包括的第二层被层压为互相接触。
在本发明的另一个方面中,发光元件包括在第一电极和第二电极之间的n片发光层(n是自然数)。第二电极与第一电极相比更容易反射光。该发光元件还包括在第m发光层(m是自然数1=m=n)和第m+1发光层之间的第一层和第二层。此外,该第一和第二层互相接触。该第一层包括容易传输空穴的物质和具有受电子特性的物质。该第二层包括容易传输电子的物质和具有给电子特性的物质。该第m+1发光层表现出比第m发光层更短的发射光谱的峰值波长。该n片发光层被这样提供,使第m+1发光层被放置的比第m发光层更靠近第二电极。
在本发明的另一个方面中,发光元件包括在第一电极和第二电极之间的n片发光层(n是自然数)。第二电极与第一电极相比更容易反射光。该发光元件还包括在第m发光层(m是自然数1=m=n)和第m+1发光层之间的第一层和第二层。该第一和第二层互相接触。该第一层包含容易传输空穴的物质和具有受电子特性的物质。该第二层包含容易传输电子的物质和具有给电子特性的物质。该n片发光层被这样提供,使表现出更短发射光谱的峰值波长的发光层被提供的更靠近第二电极。
根据本发明,可以获得具有卓越抗湿特性的发光元件,这样该发光元件很难被侵入发光元件的湿气恶化。此外,可以提供一种能够发射白光的发光元件。此外,因为在本发明的发光元件中很难引起从发光元件发射的光和反射的光之间的干涉,因此可以容易控制从发光元件发射的光的色调。


图1是解释本发明的发光元件的图示;图2是解释本发明的发光元件的图示;图3是显示根据本发明的发光设备的顶视图;图4是解释在根据本发明的发光设备中包括的电路的图示;图5是根据本发明的发光设备的顶视图;图6是解释根据本发明的发光设备的帧操作的图示;图7A到7C是根据本发明的发光设备的横截面图示;图8A到8C是显示根据本发明的电器的图示;图9是解释根据本发明的发光元件的图示;图10是显示根据本发明的发光元件的发射光谱的图示;和图11是显示有关钼氧化物和α-NPD的混合层的传输光谱的图示。
具体实施例方式以下将参考附图等等来描述根据本发明的实施方式和实施例。此外,本发明可以以许多不同的方式执行。本领域技术人员很容易理解这里所公开的实施方式和细节可以用各种方法修改,而不背离本发明的目的和范围。本发明不应该理解为限制为以下给出的实施方式的描述。
实施方式1
在图1中,包含容易传输空穴的物质和具有受电子特性的物质的第一层103和包含容易传输电子的物质和具有给电子特性的物质的第二层104被提供在第一电极101和第二电极102之间。该第一层103和第二层104被层压互相接触。此外,空穴在包含容易传输空穴的物质和具有受电子特性的物质的第一层103中产生,而电子在包含容易传输电子的物质和具有给电子特性的物质的第二层104中产生。
此外,第一发光层111被提供在第一电极101和第一层103之间。第二发光层121被提供在第二电极102和第二层104之间。
此外,在该实施方式中,第一电极101起到阳极的作用,第二电极102起到阴极的作用。优选地,第一电极101和第二电极102的一个或两个是由容易透射可见光的物质制造的。
用于第一电极101的物质并不是特别限制的。为了形成起到与本实施方式相同的阳极作用的第一电极101,第一电极优选地是由具有高功函数的物质制造的,诸如铟锡氧化物、包含硅氧化物的铟锡氧化物、其中2到2%的锌氧化物被混合在铟氧化物中的铟锌氧化物、以及其中百分之几的镓氧化物被混合到锌氧化物中的镓锌氧化物。此外,由上述具有高功函数的物质制造的电极容易地透射可见光。
此外,用于第二电极102的物质并不是特别限制的。为了形成起到与本实施方式相同的阴极作用的第二电极102,第二电极优选地是由具有低功函数的物质制造的,诸如包含碱金属(例如,锂(Li),镁等等)、碱土等等的铝。
容易传输空穴的物质并不是特别限制的。例如,容易传输空穴的物质可以由芳族胺(即,具有苯环氮键的一种)化合物制造,诸如4,4’-bis(N-[1-naphthyl]-N-phenyl-amino)-biphenyl(缩写为α-NPD);4,4’-bis(N-[3-methylphenyl]-N-phenyl-amino)-biphenyl(缩写为TPD);4,4’,4”-tris(N,N-diphenyl-amino)-triphenylamine(缩写为TDATA);和4,4’,4”-tris(N-(3-methylphenyl)-N-phenyl-amino)-triphenylamine(缩写为MTDATA)。
具有受电子特性的物质并不是特别限制的。例如,优选地使用具有低吸湿特性的物质,诸如钼氧化物。
容易传输电子的物质并不是特别限制的。例如,容易传输电子的物质可以由具有喹啉基或苯并喹啉基的金属复合物制造,诸如tris(8-quinolinolate)alumihum(缩写为Alq3);tris(4-methyl-8-quinolinolate)aluminum(缩写为Almq3);bis(10-hydroxybenzo[h]-quinolinato)beryllium(缩写为BeBq2);和bis(2-methyl-8-quinolinolate)-4-phenylphenolate-aluminum(缩写为BAlq)。
具有给电子特性的物质并不是特别限制的。例如,可以使用诸如锂的碱金属、诸如镁的碱土金属等等。此外,可以使用诸如锂氧化物的碱金属氧化物、诸如锂氮化物的碱金属氮化物、诸如镁氧化物的碱土金属氧化物、诸如镁氮化物的碱土金属氮化物。
第一发光层111和第二发光层121分别包含发光物质。上述的发光物质指示了具有展现预定波长的发光的有利的发光效率的物质。此外,第一和第二发光层111和121可以包含互相不同的发光物质。第一和第二发光层111和121并不是特别限定的。每个层可以由包含一种物质的层或者其中混合多种物质的层制造。例如,第一和第二发光层111和121的任何一个或两个都可以由仅仅一种发光物质制造。替换地,第一和第二发光层的任何一个或两个可以由发光物质和其他物质的混合层形成。由于该物质与发光物质组合使用,优选地使用具有比发光物质更大能隙的物质。在本实施方式中,能隙指示了LUMO级别和HOMO级别之间的能隙。
该发光物质并不是特别限定的。例如,为了获得红色光发射,可以使用以下展现了在600nm到680nm具有峰值的发射光谱的物质4-dicyanomethylene-2-isopropyl-6-(2-[1,1,7,7-tetramethyl julolidine-9-yl]ethenyl)-4H-pyran(缩写为DCJTI);4-dicyanomethylene-2-methyl-6-(2-[1,1,7,7-tetramethyl julolidine-9-yl]ethenyl)-4H-pyran(缩写为DCJT);4-dicyanomethylene-2-tert-butyl-6-(2-[1,1,7,7-tetramethyl julolidine-9-yl]ethenyl)4H-pyran;periflanthene;2,5-dicyano-1,4-bis(2-[10-methoxy-1,1,7,7-tetramethyl julolidine-9-yl]ethenyl)benzene等等。为了获得绿色光发射,可以使用展现了在500nm到550nm具有峰值的发射光谱的物质,诸如N,N’-dimethyl-quinacridon(缩写为DMQd),coumarin 6,coumarin545T,和tris(8-quinolinolate)aluminum(缩写为Alq3)。为了获得蓝色光发射,可以使用以下展现了在420nm到480nm具有峰值的发射光谱的物质9,10-bis(2-naphthyl)-tert-butylanthracene(缩写为t-BuDNA);9,9’-binathryl;9,10-diphenylanthracene(缩写为DPA);9,10-bis(2-naphthyl)anthracene(缩写为DNA);bis(2-methyl-8-quinolinolate)-4-phenylphenolate-gallium(缩写为BGaq);bis(2-methyl-8-quinolinolate)-4-phenylphenolate-aluminum(缩写为BAlq)等等。
在上述发光元件中,当电压施加到第一和第二电极101和102时,空穴被从第一电极101注入到第一发光层111,并且电子被从第一层103注入到第一发光层111。同样,空穴被从第二电极102注入到第二发光层121。电子被从第二层104注入到第二发光层121。因此,空穴和电子在第一和第二发光层111和112中被重新组合,这样就激发了发光物质。该发光物质一从激发状态返回到基态就发光。
此外,当从第一发光层111发射的光的颜色和从第二发光层121发射的光的颜色互补时,人眼就将该从两个发光元件发射的光检测为白色。在该情况下,当第一电极101的反射率不同于第二电极102的反射率并且从各自发光层发射的光的发射光谱的峰值波长(即,在检查发射光谱的情况下最大发射强度的波长)互相不同时,各自的发光层优选地被这样排列具有更短峰值波长的发光层被放置的更靠近具有高反射率的电极。此外,峰值波长指示在具有多个峰值的发射光谱中展现具有最强发射强度的峰值的波长。例如,在第一电极101是由铟锡氧化物等等制造并且容易发射可见光而第二电极102是由铝等等制造并且容易反射光的情况下,第一发光层111(被放置的最靠近第一电极101)优选地是发射蓝色光的发光层,而第二发光层121(被放置的最靠近第二电极102)优选地是发射黄色光的发光层。因此,可以减小由于反射从在第二电极102的发光层发射的光而引起的光干涉。
此外,只有第一发光层111可以以与本实施方式相同的方法被提供在第一电极101和第一层103之间。可替换地,除了第一发光层111之外,还可以在它们之间提供空穴传输层等等。同时,只有第二发光层121可以以本实施方式中所示的那样被提供在第二电极102和第二层104之间。可替换地,除了第二发光层121,可以在它们之间提供电子传输层等等。
因为上述根据本发明的发光元件是通过使用具有低吸水特性(诸如钼氧化物)的物质形成的,因此发光元件很难被侵入该发光元件的湿气所恶化。此外,该实施方式的发光元件可以发射白光。此外,在本实施方式的发光元件中很难会引起从发光层发射的光和反射的光之间的干涉,从而可以容易控制从发光层发射的光的色调。
实施方式2
本实施方式将参考图2描述一种本发明的发光元件,该发光元件具有3个发光层。
在图2中,第一层203、205和207包含容易传输电子的物质和具有给电子特性的物质,而第二层204、206和208包含容易传输空穴的物质和具有受电子特性的物质,该第一层和第二层被提供在第一电极201和第二电极202之间。在该情况下,第一层203被形成为与第一电极201相接触。第二层208被形成为与第二电极202相接触。第一层205和第二层204被层压以互相接触。第一层207和第二层206被层压以互相接触。空穴是在包括容易传输空穴的物质和具有受电子特性的物质的第一层203、205和207中产生,而电子是在包括容易传输电子的物质和具有给电子特性的物质的第二层204、206和208中产生。
在该实施方式中,第一电极201起到阳极的作用,第二电极202起到阴极的作用。第一发光层211被提供在第一层203和第二层204之间。第二发光层221被提供在第一层205和第二层206之间。第三发光层231被提供在第一层207和第二层208之间。空穴传输层212被提供在第二层204和第一发光层211之间。空穴传输层222被提供在第二层206和第二发光层221之间。空穴传输层232被提供在第二层208和第三发光层231之间。在该情况下,空穴传输层表示能够将空穴传输到发光层并包含容易传输空穴的物质的层。电子传输层213被提供在第一层203和第一发光层211之间。电子传输层223被提供在第一层205和第二发光层221之间。电子传输层233被提供在第一层207和第三发光层231之间。这些电子传输层表示能够将电子传输到发光层并且包含容易传输电子的物质的层。通过提供这些空穴传输层和这些电子传输层,发光层就能够从包含金属的层中分离出来,从而避免了由金属引起的光淬灭。
容易传输空穴的物质、具有受电子特性的物质、容易传输电子的物质、和具有给电子特性的物质与实施方式1中所描述的相同。可以使用在实施方式1中描述的物质。此外,对于具有受电子特性的物质,在本实施方式中优选地使用具有低吸湿特性的物质,诸如钼氧化物。
第一电极201起到阳极的作用,第二电极202起到阴极的作用。因此,第一电极201优选地是由与实施方式1中的第一电极101相同的具有高功函数的物质制造的。此外,第二电极202优选地是由与实施方式1中的第二电极102相同的具有低功函数的物质制造的。优选地,第一电极201和第二电极202中的一个或两个是由容易透射可见光的物质制造。
空穴传输层212,222和232分别对应于包含容易传输空穴的物质的层。空穴传输层212,222和232并不是特别限定的。这些空穴传输层可以包含各种不同的容易传输空穴的物质或者包含相同的容易传输空穴的物质。此外,空穴传输层212,222和232可以分别包含一种或多种容易传输空穴的物质。空穴传输层212,222和232可以分别包括仅仅一个层或多个层。此外,容易传输空穴的物质与实施方式1中所提到的容易传输空穴的物质相同。
电子传输层213,223和233分别包含容易传输电子的物质。电子传输层213,223和233并不是特别限定的。该电子传输层可以包含各种不同的容易传输电子的物质或者包含相同的容易传输电子的物质。电子传输层213,223和233可以分别包含一种或多种容易传输电子的物质。电子传输层213,223和233可以分别包括一个层或多个层。此外,容易传输电子的物质与实施方式1中描述的容易传输电子的物质相同。
第一发光层211、第二发光层221和第三发光层231分别包含发光物质。该发光物质与实施方式1中所描述的发光物质相同,因此,这里可以利用实施方式1的发光物质。此外,在第一发光层211、第二发光层221和第三发光层231中包括的发光物质可以互相不同。此外,第一发光层211、第二发光层221和第三发光层231并不是特别限定的。每个发光层可以包含一种物质或者包含几种不同物质的混合物。例如,第一发光层211、第二发光层221和第三发光层231中的一个或多个可以由仅仅一种发光物质制造。可替换地,发光层的一个或多个可以由发光物质和另一种物质的混合物制造。对于与发光物质混合使用的物质,优选地使用具有比发光物质具有更大能隙的物质。在该情况下,能隙指示了LUMO级别和HOMO级别之间的能隙。
当第一发光层211、第二发光层221和第三发光层231的任何一个发射红色光,另一个发射绿色光,另一个发射蓝色光时,人眼将从发光元件发射的光检测为白光。在第一电极201的光反射率不同于第二电极202的光反射率并且各个发光层的发射光谱的峰值波长互相不同的情况下,各个发光层优选地被这样排列为具有更短峰值波长的发光层被放置的更靠近具有高反射率的电极。此外,峰值波长指示在具有多个峰值的发射光谱中展现具有最强发射强度的峰值的波长。例如,当第一电极201是由铟锡氧化物等等制造并且容易透射可见光而第二电极202是由铝等等制造且容易反射光的时候,被放置最靠近第一电极201的第一发光层211优选地对应于发射红色光的发光层,而被放置最靠近第二电极202的第三发光层231优选地对应于发射蓝色光的发光层。因此,可以减小由于在第二电极202反射发光层发射的光带来的光干涉。
因为上述发光元件是通过使用具有低吸湿特性的物质(诸如钼氧化物)形成的,因此发光元件很难会被侵入发光元件的湿气所恶化。此外,本实施方式的发光元件可以发射白光。此外,在本实施方式的发光元件中很难引起从发光层发射的光与被反射的光之间的干涉,因此,可以容易地控制从发光层发射的光的色调。
实施方式3
在实施方式1或2中的所描述的本发明的发光元件可以应用到具有显示功能的发光设备的象素部件或者应用到具有照明功能的发光设备的照明部件。
本实施方式将参考图3到图6描述具有显示功能的发光设备的电路配置和用于驱动它的方法。
图3是从根据本发明的发光设备的顶面看过去的示意图。在图3中,在基底6500之上提供了象素部件6511、源信号线驱动电路6512、写栅极信号线驱动电路6513和擦除栅极信号线驱动电路6514。源信号线驱动电路6512、写栅极信号线驱动电路6513和擦除栅极信号线驱动电路6514通过线路组被分别连接到FPC(软性印刷电路)6503,该FPC 6503是外部输入端。源信号线驱动电路6512、写栅极信号线驱动电路6513和擦除栅极信号线驱动电路6514分别从FPC 6503接收视频信号、时钟信号、启动信号、重置信号等等。该FPC 6503与印刷线路板(PWB)6504连接。此外,驱动电路部件并不需要提供在与上述象素部件6511相同的基底上。例如,驱动电路部件可以通过使用具有在其上安装了IC芯片(TCP)的布线图的FPC等等而提供在基底之外。
在象素部件6511中,多条在列上延伸的源信号线以行排列。电流供给线以行排列。此外,多条在行上延伸的栅极信号线在象素部件6511中以列排列。此外,多个包含发光元件的电路在象素部件6511中被排列。
图4是显示用于激活一个象素的电路的图示。如图4所示的电路包括第一晶体管901,第二晶体管902和发光元件903。
第一和第二晶体管901和902的每一个是一个3端元件,包括栅电极、漏极区和源极区。沟道区被提供在漏极区和源极区之间。起到源极区作用的区和起到漏极区作用的区根据晶体管的配置、操作条件等等而变化,因此很难确定哪个区起到源极区和漏极区的作用。因此,起到源极和漏极作用的区在本实施方式中被分别表示为第一电极和第二电极。
栅极信号线911和写栅极信号线驱动电路913被提供来通过开关918互相电连接或者断开连接。栅极信号线911和擦除栅极信号线驱动电路914被提供来通过开关919互相电连接或者断开连接。源信号线912被提供来通过开关920电连接到源信号线驱动电路915或连接到电源916。第一晶体管901的栅极电连接到栅极信号线911。第一晶体管的第一电极电连接到源信号线912,而其第二电极电连接到第二晶体管902的栅电极。第二晶体管902的第一电极电连接到电流供给线917而其第二电极电连接到发光元件903包括的一个电极。此外,开关918可以被包括在写栅极信号线驱动电路913中。开关919也可以被包括在擦除栅极信号线驱动电路914中。此外,开关920可以被包括在源信号线驱动电路915中。
在象素部件中晶体管、发光元件等等的排列并不是特别限定的。例如,可以使用如图5的顶视图所示的排列。在图5中,第一晶体管1001的第一电极连接到源信号线1004,而第一晶体管的第二电极连接到第二晶体管1002的栅电极。第二晶体管的第一电极连接到电流供给线1005,而第二晶体管的第二电极连接到发光元件的电极1006。栅极信号线1003的一部分起到第一晶体管1001的栅电极的作用。
接下来,将描述驱动发光设备的方法。图6就是随着时间解释帧的操作的图示。在图6中,水平方向表示时间过程,而纵向表示栅极信号线的扫描阶段的数量。
当在本发明的发光设备上显示图像时,重复地执行重写操作和显示操作。重写操作的数量并不是特别限定的。但是,重写操作优选地是一秒钟执行约60次,这样观看显示图像的人就不会察觉到图像中的闪动。这里,操作一幅图像(一帧)的重写操作和显示操作的周期被表示为一帧周期。
如图6所示,一帧被分割为4个子帧501,502,503和504,包括写周期501a,502a,503a和504a和保持周期501b,502b,503b和504b。向发光元件提供用于发光的信号以便在保持周期中发光。在第一子帧501、第二子帧502,第三子帧503和第四子帧504中的每个中保持周期的长度比满足23∶22∶21∶20=8∶4∶2∶1。这允许发光设备能够展现4比特灰度定标(scale)。此外,比特数量和灰度定标的数量并不限定于本实施方式中所示的那些。例如,一帧可以被分割为8个子帧以便获得8比特的灰度定标。
现在将描述在一个帧中的操作。在子帧501中,写操作首先从第1行到最后一行按顺序执行。因此,写周期的开始时间对于每一行来说是不同的。保持周期501b按顺序在其中写周期501a已经终止的行中开始。在保持周期501b中,被提供了用于发光的信号的发光元件保持发光状态。一旦终止保持周期501b,行中的子帧501就按顺序变化到下一个子帧502。在子帧502中,写操作以与子帧501一样的方式按顺序从第1行执行到最后一行。上述操作重复执行,一直到保持周期504b,然后终止。在终止子帧504的操作之后,就开始下一帧的操作。因此,在各个子帧中的发光时间的总量对应于一帧中每个发光元件的发光时间。通过为每个发光元件改变发光时间并将在一个象素中不同地组合该发光元件,可以形成具有不同亮度和不同色度的各种显示色彩。
当在一个行中保持周期预定将被强制终止时,其中在所述行中,在终止写操作到最后一行之前,写周期已经被终止并且保持周期已经开始,如子帧504所示,那么在保持周期504b之后就优选地提供擦除周期504c以便强制地停止发光。其中发光被强制停止的行在一段周期内就不再发光(该周期被称之为非发光周期504d)。一旦在最后一行终止了写周期,下一个子帧(或下一帧)的写周期就从第一行按顺序开始。这可以防止子帧504中的写周期与下一子帧的写周期重叠。
虽然在本实施方式中子帧501和504以增加保持周期的长度的顺序排列,但是它们并不必须以这种顺序排列。例如,子帧可以以保持周期的长度的上升顺序排列。可替换地,子帧可以随机顺序排列。此外,这些子帧可以进一步被分割为多个帧。也就是说,在提供相同的视频信号的周期中,栅极信号线的扫描可以执行几次。
现在将描述如图4所示的电路的写周期和擦除周期中的操作。
首先描述写周期中的操作。在写周期中,在第x行中(x是自然数)栅极信号线911通过开关918被电连接到写栅极信号线驱动电路913。在第x行中的该栅极信号线911没有连接到擦除栅极信号线驱动电路914。该源信号线912通过开关920被电连接到源信号线驱动电路915。在该情况下,信号被输入到连接到第x行(x是自然数)的栅极信号线911的第一晶体管901的栅极,从而开启第一晶体管901。此时,视频信号被同时输入到第一到最后一列的源信号线。此外,来自每一列的源信号线912的视频信号输入互相独立。来自源信号线912的视频信号输入经由连接到各自源信号线的第一晶体管901被输入进第二晶体管902的栅电极。此时,根据输入进第二晶体管902的信号确定发光元件903发光还是不发光。例如,当第二晶体管902是p沟道类型时,发光元件903通过输入低电平信号到第二晶体管902的栅电极而发光。另一方面,当第二晶体管902是n沟道类型时,发光元件903通过输入高电平信号到第二晶体管902的栅电极而发光。
接下来,将描述在擦除周期中的操作。在擦除周期中,在第x行(x是自然数)的栅极信号线911经由开关919被电连接到擦除栅极信号线驱动电路914。在第x行的栅极信号线911并不连接到写栅极信号线驱动电路913。源信号线912经由开关920被电连接到电源916。在该情况下,一旦将信号输入到连接到第x行的栅极信号线911的第一晶体管901的栅极时,第一晶体管901就被打开。此时,擦除信号被同时输入到第一到最后一列的源信号线。来自源信号线912的擦除信号输入经由连接到各自源信号线的第一晶体管901被输入到第二晶体管902的栅电极。来自电流供给线917的流过发光元件903的电流的供给被输入进第二晶体管902的信号强制停止。这使得发光元件903强制地不发光。例如,当第二晶体管902是p沟道类型时,发光元件903通过输入高电平信号到第二晶体管902的栅电极而不发光。另一方面,当第二晶体管902是n沟道类型时,发光元件903通过输入低电平信号到第二晶体管902的栅电极而不发光。
此外,在擦除周期中,通过上述操作,用于擦除的信号被输入到第x行(x是自然数)。但是,如上所述,第x行有时保持在擦除周期,而同时另一行(例如,第y行(y是自然数))保持在写周期。在该情况下,因为用于擦除的信号需要被输入到第x行而用于写的信号需要通过使用相同列的源信号线被输入到第y行,因此优选地执行以下所述的操作。
在第x行的发光元件903在擦除周期中通过上述操作变成不发光状态之后,栅极信号线和擦除栅极信号线驱动电路914立即断开互相连接,并且源信号线通过打开开关902被连接到源信号线驱动电路915。栅极信号线和写栅极信号线驱动电路913被互相连接,而源信号线和源信号线驱动电路915被互相连接。信号被选择性地从写栅极信号线驱动电路913输入到第y行的信号线,而第一晶体管被打开,而用于写的信号被从源信号线驱动电路915输入到从第一到最后一列的源信号线中。通过输入这些信号,第y行的发光元件发光或不发光。
在如上所述终止第y行的写周期之后,在第x+1行立即开始擦除周期。因此,栅极信号线和写栅极信号线驱动电路913被断开互相连接,而源信号线通过打开/关闭开关918而连接到电源916。此外,栅极信号线和写栅极信号线驱动电路913断开互相连接,而栅极信号线连接到擦除栅极信号线驱动电路914。信号被选择性地从擦除栅极信号线驱动电路914输入到第x+1行的栅极信号线,以便输入信号到第一晶体管,而擦除信号从电源916被输入到那里。一旦以这种方式终止了在第x+1行中的擦除周期,在第y行就立刻开始写周期。擦除周期和写周期可以交替重复,直到最后一行的擦除周期。
虽然在本实施方式中,第y行的写周期被提供在第x行的擦除周期和第x+1行的擦除周期之间,但是本发明并不限定于此。第y行的写周期可以被提供在第x-1行的擦除周期和第x行的擦除周期之间。
在本实施方式,当像子帧504这样的不发光周期504d被提供时,就重复执行将擦除栅极信号线驱动电路914从一个栅极信号线断开并将写栅极信号线驱动电路913连接到另一个栅极信号线的操作。该操作可以在一个帧中执行,在该帧中,不发光周期并不是特别提供的。
实施方式4
现在将参考图7A到7C描述包括本发明的发光元件的发光设备的横截面图的示例。
在图7A到7C的每一个中,被虚线包围的区域表示提供来驱动本发明的发光元件12的晶体管11。本发明的发光元件12包括在第一电极13和第二电极14之间的层15。晶体管11的漏极和第一电极13通过穿过第一夹层绝缘薄膜16(16a,16b和16c)的线路17被电互相连接。发光元件12通过隔断墙层18与邻近于该发光元件12提供的另一个发光元件绝缘。在本实施方式中,具有该结构的本发明的发光设备被提供在基底10之上。
在图7A到7C的每一个中所示的晶体管11是顶部栅极(top-gate)类型的晶体管,在该类型的晶体管中,栅电极被提供在与基底相对的半导体层的一侧。此外,晶体管11的结构并不是特别限制的。例如,可以使用底部栅极(bottom-gate)类型的晶体管。在使用底部栅极类型的晶体管的情况中,可以使用其中保护薄膜形成在沟道的半导体层的晶体管(沟道保护类型的晶体管)或使用其中沟道的半导体层的一部分被蚀刻的晶体管(沟道蚀刻型晶体管)。
晶体管11中包括的半导体层可以是晶体半导体、非晶形半导体、半非晶形半导体等等的任何一种。
具体而言,半非晶形半导体具有在非晶体结构和晶体结构(包括单晶结构和多晶结构)之间的中间结构,和在自由能方面稳定的第三条件。该半非晶形半导体还包括具有近程有序(short range order)以及晶格畸变(lattice distortion)的晶体区域。具有0.5到20nm尺寸的晶粒被包括在至少一部分半非晶形半导体薄膜中。拉曼光谱被移向低于520cm-1的波数。(111)和(220)的衍射峰值,被认为是从硅晶格中导出,在半非晶形半导体中由X射线衍射来观察。该半非晶形半导体包含至少1个原子百分比或更多的氢或卤素用于终止悬空键(danglingbond)。该半非晶形半导体也被称为微晶体半导体。该半非晶形半导体通过辉光放电分解利用硅化物气体(等离子CVD)形成。对于硅化物气体,SiH4、Si2H6、SiH2Cl2、SiHCl3、SiCl4、SiF4等等都可以使用。该硅化物气体也可以使用H2稀释,或者是用H2和一个或多个从He、Ar、Kr和Ne中选出的稀有气体元素的混合物。该稀释比例被设置在1∶2到1∶1,000范围之内。压力被设置为大约在0.1到133Pa的范围内。该功率频率被设置为1到120MHz,优选地是13到60MHz。基底加热温度可以被设置为300℃或更少,更优选地是100到250℃。对于薄膜中所包含的杂质元素,构成空气的每个杂质的浓度,诸如氧、氮和碳优选地被设置为1*1020/cm3或更少。更具体而言,氧浓度被设置为5*1019/cm3或更少,优选地是1*1019/cm3或更少。此外使用非晶形半导体的TFT(薄膜晶体管)的移动性被设置为大约1到10m2/Vsec。
作为晶体半导体层的一个特殊的实例,由单晶硅、多晶硅、硅锗等等制造的半导体层可以被引用。这些材料可以由镭射结晶化形成。例如,这些材料可以通过使用镍等等的固相增长(solid phase growth)方法由结晶化来形成。
当半导体层是由非结晶物质制造的,例如非晶硅,那么优选地就使用具有包括只有n沟道晶体管作为晶体管11和另一个晶体管(包含在用于驱动发光元件的电路中的晶体管)的电路的发光设备。替换地,可以使用具有包括n沟道晶体管或p沟道晶体管的电路的发光设备。此外,可以使用具有包括n沟道晶体管和p沟道晶体管两者的电路的发光设备。
第一夹层绝缘薄膜16可以包括如图7A和7C所示多个层(例如,第一夹层绝缘薄膜16a,16b和16c),或者包括单个层。夹层绝缘薄膜16a是由无机材料制造的,诸如硅氧化物和硅氮化物。夹层绝缘薄膜16b是由丙烯酸、硅氧烷(其是具有由硅(Si)氧(O)键形成的基结构并包括至少氢作为它的替代物的物质),或者是具有可以通过采用诸如硅氧化物的液体形成的自平面化特性的物质制造的。夹层绝缘薄膜16c是由包含氩(Ar)的硅氮化物薄膜制造的。构成各个层的物质并不特定地限制于此。因此,可以使用除上述物质之外的物质。替换地,上述物质可以与除了上述物质之外的物质结合使用。因此,第一夹层绝缘薄膜16可以通过使用无机材料和有机材料二者或者通过使用无机材料和有机材料之一来形成。
隔断墙层18的边缘部分优选地具有其曲率半径不断变化的形状。该隔断墙层18通过使用丙烯酸、硅氧烷、抗蚀剂(resist)、硅氧化物等等形成。此外,隔断墙层18可以由无机薄膜和有机薄膜中一个或两个制造。
图7A和7C显示了一种结构,其中只有第一夹层绝缘薄膜16被夹在晶体管11和发光元件12之间。替换地,如图7B所示,第一夹层绝缘薄膜16(16a和16b)和第二夹层绝缘薄膜19(19a和19b)可以被提供在晶体管11和发光元件12之间。在图7B所示的发光设备中,第一电极13穿过第二夹层绝缘薄膜19电连接到线路17。
第二夹层绝缘薄膜19可以包括多个层或单个层以及第一夹层绝缘薄膜16。夹层绝缘薄膜19a是由丙烯酸、硅氧烷(其是具有由硅(Si)氧(O)键形成的基结构并包括至少氢作为它的替代物的物质),或者是具有可以通过采用诸如硅氧化物的液体形成的自平面化特性的物质制造的。夹层绝缘薄膜19b是由包含氩(Ar)的硅氮化物薄膜制造的。构成各个第二夹层绝缘层的物质并不特定地限制于此。因此,可以使用除上述物质之外的物质。替换地,上述物质可以与除了上述物质之外的物质结合使用。因此,第二夹层绝缘薄膜19可以通过使用无机材料和有机材料二者或者通过使用无机材料和有机材料之一来形成。
当第一电极和第二电极都是通过在发光元件12中使用具有光透射特性的物质形成时,发光元件中产生的光可以如图7A所示的那样通过第一电极13和第二电极14来发射。当只有第二电极14是由具有光透射特性的物质制造的时,在发光元件12中产生的光可以如图7B所示的那样仅仅通过第二电极14发射。在该情况下,第一电极13优选地是由具有高反射率的物质制造的,或者由具有高反射率的材料制造的薄膜(反射薄膜)优选地被提供在第一电极13之下。当只有第一电极13是由具有光透射特性的物质制造的时,在发光元件12中产生的光可以如图7C所示的那样仅仅通过第一电极13发射。在该情况下,第二电极14优选地是由具有高反射率的物质制造,或者反射薄膜优选地提供在第二电极14之上。
此外,发光元件12可以具有一种结构其中第一电极13起到阳极的作用,第二电极14起到阴极的作用。该发光元件12或者还具有这样的结构,其中第一电极13起到阴极的作用,第二电极14起到阳极的作用。在前一个例子中,晶体管11是p沟道晶体管。在后一个例子中,晶体管11是n沟道晶体管。
实施方式5
因为根据本发明的发光设备具有卓越的防潮特性,因此能够显示(优选是长时间显示)图像的电器或者能够照明(优选是长时间照明)的电器可以通过使用本发明的发光设备来获得。
安装了本发明的发光设备的电器的实例如图8A到8C所示。
图8A是根据本发明制造的的膝上型个人计算机,包括机身5521、外壳5522、显示部件5523、键盘5524等等。该膝上型个人计算机可以通过在里面结合包括本发明的发光元件的发光设备而获得。
图8B是根据本发明制造的蜂窝电话,包括机身5552、显示部件5551、音频输出部件5554、音频输入部件5555、操作开关5556和5557、天线5553等等。该蜂窝电话可以通过在里面结合包括本发明发光元件的发光设备而获得。
图8C是根据本发明制造的电视机,包括显示部件5531、外壳5532、扬声器5533等等。该电视机可以通过在里面结合包括本发明发光元件的发光设备而获得。
如上所述,本发明的发光设备适合于用作各种电器的显示部件。
此外,具有本发明的发光元件的发光设备被安装在该膝上型个人计算机、蜂窝电话和电视机上。但是,具有本发明的发光元件的发光设备可以安装在个人计算机、汽车导航系统、照明电器等等上。
实施例1
现在将参考图9描述本发明的实施例。
通过喷镀在玻璃基底上形成具有110nm厚度的铟锡氧化物,以便形成包含铟锡氧化物的层301。
通过α-NPD和钼氧化物的共蒸镀在包含铟锡氧化物的层301上形成具有50nm厚度的包含α-NPD和钼氧化物的层302,使得α-NPD与钼氧化物的重量比满足1∶0.25。此外,共蒸镀指示了一种蒸镀方法,其中从多个蒸镀源同时执行蒸镀。
接下来,通过蒸镀在包含α-NPD和钼氧化物的层302上形成了α-NPD,以便形成具有10nm厚度的包含α-NPD的层303。
通过Alq3、红荧烯和DCJTI的共蒸镀在包含α-NPD的层303上形成具有37.5nm厚度的包含Alq3、红荧烯和DCJTI的层304,使得Alq3、红荧烯和DCJTI的重量比满足1∶1∶0.02。
然后,通过蒸镀在包含Alq3、红荧烯和DCJTI的层304上形成Alq3,以便形成具有27.5nm厚度的包含Alq3的层305。
通过BCP和锂(Li)的共蒸镀在包含Alq3的层305上形成了具有10nm厚度的包含BCP和锂的层306,使得BCP和锂的重量比满足1∶0.005。
通过α-NPD和钼氧化物的共蒸镀在包含BCP和锂的层306上形成了具有50nm厚度的包含α-NPD和钼氧化物的层307,使得α-NPD和钼氧化物的重量比满足1∶0.25。
接下来,通过蒸镀在包含α-NPD和钼氧化物的层307上形成了α-NPD,以便形成具有10nm厚度的包含α-NPD的层308。
通过Alq3和香豆素6的共蒸镀在包含α-NPD的层308上形成了具有37.5nm厚度的包含Alq3和香豆素6的层309,使得Alq3和香豆素6的重量比满足1∶0.005。
接下来,通过蒸镀在包含Alq3和香豆素6的层309上形成了Alq3,以便形成了具有27.5nm厚度的包含Alq3的层310。
通过BCP和锂(Li)的共蒸镀在包含Alq3的层310上形成了具有10nm厚度的包含BCP和锂的层311,使得BCP和锂的重量比满足1∶0.005。
通过α-NPD和钼氧化物的共蒸镀在包含BCP和锂的层311上形成了具有50nm厚度的包含α-NPD和钼氧化物的层312,使得α-NPD和钼氧化物的重量比满足1∶0.25。
随后,通过蒸镀在包含α-NPD和钼氧化物的层312上形成了α-NPD,以便形成了具有10nm厚度的包含α-NPD的层313。
接下来,通过蒸镀在包含α-NPD层313上形成了t-BuDNA,以便形成具有37.5nm厚度包含t-BuDNA的层314。
接下来通过蒸镀在包含t-BuDNA的层314上形成了Alq3以便形成具有27.5nm厚度的包含Alq3的层315。
通过BCP和锂(Li)的共蒸镀而在包含Alq3的层315之上形成了具有10nm厚度的包含BCP和锂的层316,使得BCP和锂(Li)的重量比满足1∶0.005。
随后,通过蒸镀在包含BCP和锂的层316之上形成了铝以便形成厚度为200nm的包含铝的层317。
在这样制造的发光元件中,包含铟锡氧化物的层301起到阳极的作用,而包含铝的层317起到了阴极的作用。
包含α-NPD和钼氧化物的层302具有注入空穴到包含α-NPD的层303的特性。此外,包含α-NPD和钼氧化物的层307具有注入空穴到包含α-NPD的层308的特性。包含α-NPD和钼氧化物的层312具有注入空穴到包含α-NPD的层313的特性。
包含α-NPD的层303具有传输被注入的空穴到包含Alq3、红荧烯和DCJTI的层304的特性。包含α-NPD的层308具有传输被注入的空穴到包含Alq3和香豆素6的层309的特性。包含α-NPD的层313起到用于传输被注入的空穴到包含t-BuDNA的层314的空穴传输层的作用。
包含BCP和锂的层306具有注入电子到包含Alq3的层305的特性。此外,包含BCP和锂的层311具有注入电子到包含Alq3的层310的特性。包含BCP和锂的层316具有注入电子到包含Alq3的层315的特性。
包含Alq3的层305具有传输被注入的电子到包含Alq3、红荧烯和DCJTI的层304的特性。包含Alq3的层310具有传输从包含BCP和锂的层311注入的电子到包含Alq3和香豆素6的层309的特性。包含Alq3的层315起到电子传输层的作用,其传输从包含BCP和锂的层316注入的电子到包含t-BuDNA的层314。
在包含α-NPD和钼氧化物的层302、307和312中,钼氧化物起到电子受体的作用。此外,在包含BCP和锂的层306、311和316中,锂起到电子施主的作用。
在该发光元件中,当向包含铟锡氧化物的层301和包含铝的层317施加电压时,电流流过包含铟锡氧化物的层301和包含铝的层317。因此,包含Alq3、红荧烯和DCJTI的层304发射在600到680nm的波长范围内具有峰值的光。包含Alq3和香豆素6的层309发射在500到550nm的波长范围内具有峰值的光。包含t-BuDNA的层314发射在420到480nm的波长范围内具有峰值的光。在这些层中产生的光经由包含铟锡氧化物的层301被发射到外面。如上所述,在本实施例的发光元件中,展现具有420到480nm的更短波长的光的层被提供为比展现具有600到680nm的更长波长的光的层更靠近具有高反射率的层(诸如包含铝的层315)。因此,可以减少这些层产生的光和由包含铝的层317反射的光之间的干涉。
在本实施例中制造的发光元件发光的情况下,发射光谱如图10所示。在图10中,水平轴指示了波长(nm),垂直轴指示了发射强度(任意单位)。根据图10,可以知道在本实施例中制造的发光元件发射了在450到620nm的波长的光。在0.979mA的CIE色度坐标是x=0.33,y=0.46。因此,就知道在本实施例中制造的发光元件发射白光。
因为本实施例的发光元件是通过使用具有低吸湿特性的物质(诸如钼氧化物)制造的,因此发光元件很难被侵入到发光元件的湿气所恶化。此外,本实施例的发光元件可以发射白光。此外,很难在本实施例中的发光元件中引起从发光元件发射的光和反射的光之间的干涉,因此,可以容易地控制从发光元件中发射的光的色调。
实施例2 本实施例将显示通过检查相对于α-NPD,钼氧化物是否起到具有受电子特性的物质的作用而获得的实验性结果。
在该试验中,三种薄膜,即具有与包含α-NPD和钼氧化物的层302相同结构的薄膜A、包含钼氧化物的薄膜B和包含α-NPD的薄膜C通过真空蒸镀分别形成在玻璃基底上。各个薄膜的传输光谱被比较。
图11显示了试验的结果。水平轴表示波长,而垂直轴表示透射比。相对于具有与包含α-NPD和钼氧化物的层302(实施例1中所述)相同结构的薄膜A,在500nm附近(图中的虚线环绕的区域)可以观察到宽的峰值,这在包含钼氧化物的薄膜B和包含α-NPD的薄膜C中观察不到,如图11所示。认为这就是由于从α-NPD传输电子到钼氧化物引起的电子传输而最近产生的能级。结果,已知的就是相对于α-NPD,钼氧化物展现了受电子特性。
本申请基于日本特许厅2004年5月21日提交的日本优先权申请NO.2004-152491,其全文这里引为参考。
权利要求
1.一种发光元件,包括在第一电极和第二电极之间的n片发光层(n是自然数);和在第m发光层(m是自然数1≤m≤n)和第m+1发光层之间的、包含容易传输空穴的物质和具有受电子特性的物质的第一层和包含容易传输电子的物质和具有给电子特性的物质的第二层,该第二层与第一层接触,其中具有受电子特性的物质是钼氧化物。
2.一种发光元件,包括在一对电极之间的n片层组(n是自然数),层组中的每一个都包括包含容易传输空穴的物质和具有受电子特性的物质的第一层;包含容易传输电子的物质和具有给电子特性的物质的第二层;和在第一层和第二层之间提供的发光层,其中在该n片层组中,第m层组(m是自然数1≤m≤n)中包括的第一层和第m+1层组中包括的第二层被层压为互相接触。
3.一种发光元件,包括在第一电极和第二电极之间的n片发光层(n是自然数),该第二电极具有比第一电极更高的反射率;和在第m发光层(m是自然数1≤m≤n)和第m+1发光层之间的、包含容易传输空穴的物质和具有受电子特性物质的第一层和包含容易传输电子的物质和具有给电子特性的物质的第二层,该第二层与第一层接触,其中第m+1发光层的发射光谱的峰值波长比第m发光层短,和其中该n片发光层被这样排列,使第m+1发光层被放置的比第m发光层更靠近第二电极。
4.一种发光元件,包括在第一电极和第二电极之间的n片发光层,该第二电极具有比第一电极更高的反射率;和在第m发光层(m是自然数1≤m≤n)和第m+1发光层之间的、包含容易传输空穴的物质和具有受电子特性物质的第一层和包含容易传输电子的物质和具有给电子特性的物质的第二层,第二层与第一层相接触,其中该n片发光层被这样排列,使展现更短的发射光谱的峰值波长的发光层被提供为更靠近第二电极。
5.如权利要求3或4的发光元件,其中具有受电子特性的物质是钼氧化物。
6.一种发光元件,包括在第一电极和第二电极之间的第一层、被形成为与第一层相接触的第二层、第三层和被形成为与第三层相接触的第四层,其中第一层和第三层包含容易传输空穴的物质和具有受电子特性的物质,第二层和第四层包含容易传输电子的物质和具有给电子特性的物质;第一发光层在第一层和第一电极之间发射红色光;第二发光层在第二层和第三层之间发射绿色光;第三发光层在第四层和第二电极之间发射蓝色光。
7.根据权利要求6的发光元件,其中具有受电子特性的物质是钼氧化物。
8.根据权利要求6或权利要求7的发光元件,其中第二电极与第一电极相比更容易反射光。
9.一种发光设备,包括如权利要求1到8所公开的任何一种发光元件。
10.一种发光元件,包括在第一电极和第二电极之间的至少两个发光层;和在第一发光层和第二发光层之间的、包含容易传输空穴的物质和具有受电子特性的物质的第一层和包含容易传输电子的物质和具有给电子特性的物质的第二层,该第二层与第一层接触,其中具有受电子特性的物质是钼氧化物。
11.一种发光元件,包括在一对电极之间的至少两个层组,该层组中的每一个包括包含容易传输空穴的物质和具有受电子特性的物质的第一层;包含容易传输电子的物质和具有给电子特性的物质的第二层;和在第一层和第二层之间提供的发光层,其中在该层组中,在第一层组中包括的第一层和在第二层组中包括的第二层被层压为互相接触。
12.一种发光元件,包括在第一电极和第二电极之间的至少两个发光层,该第二电极具有比第一电极更高的反射率;和在第一发光层和第二发光层之间的、包含容易传输空穴的物质和具有受电子特性的物质的第一层和包含容易传输电子的物质和具有给电子特性的物质的第二层,该第二层与第一层接触,其中第二发光层的发射光谱的峰值波长比第一发光层短,和其中该发光层被这样排列,使第二发光层比第一发光层放置为更靠近第二电极。
13.一种发光元件,包括在第一电极和第二电极之间的至少两个发光层,该第二电极具有比第一电极更高的反射率;和在第一发光层和第二发光层之间的、包含容易传输空穴的物质和具有受电子特性的物质的第一层和包含容易传输电子的物质和具有给电子特性的物质的第二层,该第二层与第一层接触,其中该发光层被这样排列,使展现更短的发射光谱的峰值波长的发光层被提供为更靠近第二电极。
14.如权利要求12或权利要求13的发光元件,其中具有受电子特性的物质是钼氧化物。
15.一种发光设备,包括如权利要求10到13所公开的任何一种发光元件。
全文摘要
本发明的一种发光元件包括在第一和第二电极之间的n片发光层(n是自然数)。在第m发光层(m是自然数1≤m≤n)和第m+1发光层之间的第一层和第二层被提供。该第一和第二层互相接触。该第一层包含容易传输空穴的物质和具有受电子特性的物质。该第二层包含容易传输电子的物质和具有给电子特性的物质。钼氧化物用作为具有受电子特性的物质。
文档编号H05B33/22GK101023708SQ20058002462
公开日2007年8月22日 申请日期2005年5月17日 优先权日2004年5月21日
发明者熊木大介, 池田寿雄, 安部宽子, 濑尾哲史 申请人:株式会社半导体能源研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1