专利名称:用于集成电路应用的镧系分层超晶格材料的利记博彩app
技术领域:
本发明涉及用于在集成电路(IC)中使用的铁电和高介电常数材料,特别是涉及分层超晶格材料,如分层钙钛矿。
2.背景技术人们已经设想了至少50年的时间,认为可能会设计出这样一种存储器,其中存储元件是铁电场效应晶体管(FET)。参看OrlandoAuciello、James F.Scott和Ramamoorthy Ramesh的“The Physics ofFerroelectric Memories”,Physics Today,1998年7月,第51卷第7期,第22-27页。在大约十年前发现分层超晶格材料的低疲劳特性之前,人们一直认为生产可工作的铁电存储器是很难的。参看1996年5月21日授予Paz de Araujo等人的美国专利No.5,519,234。分层超晶格材料的两种普通的细类是公知的。一种众所周知的细类是在其多层中的一层是类钙钛矿,它们通常被称作“分层钙钛矿”。另一种众所周知的细类是包括所有的分层超晶格材料,这些材料包含铋,它们通常被称作“铋分层材料”或“Bi-分层材料”。分层超晶格材料也已被证实了在集成电路中用作高介电常数材料方面是很有用的。参看上面参考的专利No.5,519,234和Paz de Araujo等人2001年10月11日提交的美国专利申请序列号No.09/686,552。
尽管在上述专利和其后的其它文献中公开的分层超晶格材料已经使铁电存储器在商业上变得可行,并且已经证实其在例如FET和DRAMS中用作高介电常数材料是有用的,但是这些材料通常需要与阻挡层和其它的防止其中的材料向半导体和传统集成电路装置如MOSFET中的其它材料迁移的结构一起使用,上述装置通常与分层材料组合使用。此外,在现有技术的参考文献中描述的分层超晶格材料通常只能在600℃到850℃范围内的相对较高的温度下形成,而可以在该范围的较低部分内制成的材料通常在关键的电特性,如介电常数和极化率方面是很差的。此外,尽管现有技术中分层超晶格材料的电子性能足够生产优良的商用设备,但这些性能使得制造过程必须非常仔细地进行控制以得到优良的产品。例如,尽管在实验室中,现有技术的分层超晶格材料可以生产出极化率高达2Pr,30微库仑/平方厘米(μC/cm2),但由于商业化生产过程的局限性导致极化率只有大约12μC/cm2到18μC/cm2。由于对于可行的存储器需要至少7μC/cm2的极化率,并且优选的是具有大约12μC/cm2的极化率,所以在生产过程中没有多少允许出现偏差的余量。因此,还是需要与传统集成电路的材料和结构更兼容的分层超晶格材料,其能够在更低的温度下形成,并具有更好的电子性能。
发明内容
本发明通过提供分层超晶格材料解决了上述问题,该材料包含以下元素铈(Ce)、镨(Pr)、钕(Nd)、钷(PM)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(TM)、镱(Yb)和镥(Lu)。这些元素可以是分层超晶格材料中的A位(A-site)元素或超晶格发生器(superlattice generator)元素,但优选的是,它们占用了A位晶格点或部分地替换了铋分层材料中的铋。在后一种情况下,也可以使用镧。优选地,它们还用于与下列元素中一种或多种组合锶、钙、钡、铋、镉、铅、钛、钽、铪、钨、铌、锆、铋、钪、钇、镧、锑、铬、铊、氧、氯和氟。
根据本发明的新的材料可以是铁电体或顺电体,即,正常的电介体。优选地,它们用在存储器、电容器和包括FET、铁电FET、MOSFET的晶体管中,但也可以用在其它的集成电路器件中,如异质结双极晶体管、BiCMOS器件、红外感应单元和其它的IC器件。
本发明提供了一种集成电路,包括衬底;和形成在衬底上的分层超晶格材料的薄膜,该薄膜包括从下面的组中选出的元素,该组元素包括铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥。优选地,该分层超晶格材料的薄膜还包括铋。优选地,该分层超晶格材料的薄膜还包括钛。优选地,该元素包括铈、钕、镝或钆。优选地,薄膜是铁电体。优选地,薄膜形成存储器的一部分。
根据另一个方面,本发明提供了一种集成电路,包括衬底;和形成在衬底上的分层超晶格材料的薄膜,该分层超晶格材料包括A位元素、B位元素、超晶格发生器元素和阴离子,A位元素包括从下面的组中选出的元素,该组元素包括镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥。
根据进一步的方面,本发明提供了一种集成电路,包括衬底;和形成在衬底上的分层超晶格材料的薄膜,该薄膜具有通式Am-1(Bi1-xLanx)2MmO3m+3,其中A是A位元素,M是B位元素,O是氧,m是整数或分数,Lan表示从下面的组中选出的一种或多种材料,该组材料包括镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥,并且0<x<1。优选地,该分层超晶格材料具有通式(Bi1-xLanx)4Ti3O12。优选地,0.1≤x≤0.9。最优选地,0.1≤x≤0.5。优选地,该通式包括A(Bi1-xLanx)2Ta1-yNbyO9,其中A=Sr、Ca、Ba或Pb,并且1≤y≤0。可选择地,该通式包括(Bi1-xLanx)2Bi4Ti3O15。在进一步的实施例中,该通式包括A(Bi1-xLanx)4Ti4O15,其中A=Sr、Ca、Ba或Pb。在另一个实施例中,该通式优选地包括A2(Bi1-xLanx)4Ti5O18,其中A=Sr、Ca、Ba或Pb。在又一个实施例中,该通式包括(Az-1Lan[2/3]z)m-1Bi2MmO3m+3,其中,A是除了镧系元素的A位元素,M是B位元素,Lan是镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥中的一个或多个,0<z≤1,并且m是整数或分数;在这个实施例中,优选地,0.1≤z≤0.9,最优选地,0.1≤z≤0.5。在这个实施例中,通式优选地包括Lan2/3Bi2TayNb1-yO9,其中0≤y≤1。在另一个实施例中,通式包括(A1-zLan[2/3]z)m-1(Bi1-xLanx)2MmO3m+3,其中0<z≤1;在这个实施例中,通式优选地包括(Bi1-zLanz)2/3(Bi1-xLanx)2B2O9,其中B是B位元素。在所有的前述实施例中,优选地,分层超晶格材料的薄膜包括钛。优选地,在上述实施例中,Lan优选地表示镧、钕、镝、铈或钆。而且,薄膜优选地是铁电体,并且薄膜形成了存储器的一部分。
根据另一方面,本发明提供了一种集成电路,包括衬底;和形成在衬底上的铋分层材料的薄膜,其中镧系元素部分地替换了铋分层材料中的铋。
根据又一个方面,本发明提供了一种制造存储器件的方法,该方法包括提供衬底;在衬底上形成存储单元,在衬底上形成存储单元的过程包括自发地形成薄膜形式的分层超晶格材料结构,该分层超晶格材料包括从下面的组中选出的元素,该组元素包括铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥;以及在衬底上完成存储器。优选地,分层超晶格材料还包括铋。优选地,分层超晶格材料还包括钛。优选地,元素包括镧、钕、铈、镝或钆。优选地,分层超晶格材料是铁电体。
根据另一方面,本发明还提供了一种制造集成电路的方法,所述方法包括提供衬底;在衬底上形成分层超晶格材料的薄膜,该分层超晶格材料包括从下面的组中选出的元素,该组元素包括铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥;以及在衬底上完成集成电路。
根据另一个方面,本发明提供了一种制造铁电存储器的方法,该方法包括在衬底上形成第一电极;在第一电极上形成铁电分层超晶格材料的薄膜,该分层超晶格材料包括从下面的组中选出的元素,该组元素包括铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥;以及在铁电分层超晶格材料上形成第二电极。
根据另一个方面,本发明提供了一种制造铁电分层超晶格材料的方法,该方法包括下列步骤提供衬底;提供液态前体(precursor),该液态前体包括多种适合于形成分层超晶格材料的金属,这些金属包括从下面的组中选出的元素,该组元素包括铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥;将前体液体施加至衬底;在衬底上处理前体,以在第一衬底上形成包含金属的分层超晶格材料。优选地,前体液体包括从由金属醇盐(metal alkoxide)和金属羧酸盐(metalcarboxylate)组成的组中选出的金属化合物。优选地,前体液体包括金属化合物,该金属化合物包括在所述组中的所述金属中的一种的醇盐。优选地,液态前体包括辛烷。优选地,施加和处理过程包括有机金属化学气相沉积(MOCVD)。优选地,在从500℃到850℃的温度下执行MOCVD,最优选地是在从500℃到700℃的温度下进行。优选地,处理过程包括从下面的组中选出的处理置于真空中、置于紫外线辐射下、电还原(electrical poling)、烘干、加热、烘烤、快速热处理(RTP)和退火。优选地,处理过程包括在300℃或更低的温度下烘干。优选地,处理过程包括在从500℃到750℃的温度下进行炉内退火。优选地,处理过程包括在从500℃到750℃的温度下的RTP。可选择地,施加过程包括旋压处理或雾化沉积(misteddeposition)处理。优选地,分层超晶格材料还包括铋。优选地,前体包含超过形成分层超晶格材料所需的化学计量的铋。优选地,分层超晶格材料还包括钛。优选地,元素包括镧、钕、铈、镝或钆。
本发明不仅提供了与传统集成电路元件更兼容的铁电存储器,还提供了一种更可制造且与环境更兼容的器件。由下文接合附图所给出的详细说明中将使本发明的其它特征、目的和优点变得更明显。
图1示出了根据本发明的铁电FET存储单元的一个优选实施例的横截面图;图2说明了根据本发明的FET的栅极结构的一个替换实施例;图3是具有根据本发明的场效应晶体管和电容器的DRAM或FERAM存储单元的横截面图;图4是根据本发明的MFM-MIS FET的一个替换实施例的横截面图;图5示出了铁电存储器的一个替换实施例的一部分,其中存储单元的组串联连接;图6是根据本发明的集成电路存储器的电路框图,其应用了诸如图1-4中所示的存储单元或如图5中所示的单元组;和图7是根据本发明制造铁电存储器的方法310的制造步骤的流程图。
具体实施例方式
1.综述如上面提到的,并如下面详细讨论的,本文中称作“分层超晶格材料”的材料特别适合在集成电路装置,特别是集成电路存储器中使用。在下面的第2部分中,我们将给出对分层超晶格材料和用在本发明的材料中的特别新颖的化学元素的概括性的讨论。第2部分还包括对使用了本发明的材料的示例性装置的讨论。在第3部分中,将公开包括上述新颖元素的分层超晶格材料的示例性的模式。这些示例性模式提供的电子性能优于现有技术中分层超晶格材料的电子性能,特别是远远地优于任何现有技术中的铁电材料。在第4部分中,将提供包含有本发明的材料的集成电路装置的制造实例。
2.本发明的示例性结构和材料直接参照图1,其示出了根据本发明的铁电FET 40的横截面图。FET 40包括一个相对较复杂的FET结构,这样设计是为了能在一个图中说明出可以与典型的铁电FET(FeFET)相关的所有层。但是,应该理解的是,除了栅电极58和铁电层57以外,其它所有的层都是可以任选的。FET 40包括衬底41,其优选的是P型硅,但是也可以是其它任意一种合适的半导体,如砷化镓、硅锗等等。优选为n型阱的深阱43形成在衬底41内,优选为p型阱的较小深度的阱45形成在阱43内。优选为n型的掺杂有效区域42和44形成在阱45内。由于根据施加到有效区域42和44上的相对电压,42和44可以或者是源极或者是漏极,所以我们通常称本文中的这些有效区域42和44为源极/漏极。优选的也是n型的沟道区域46没有源极/漏极42和44的掺杂程度大,其形成在源极/漏极42和44之间。栅极结构61形成在衬底41上在沟道区域46的上方。在优选的实施例中,栅极结构61是多层结构,尽管通常它不包括如图1所示的从51到58的所有的层。也就是说,图1中所示的栅极结构61意在说明可能包括在该结构中的所有的层。所包含的基本的层是绝缘层50、浮动栅极层59、铁电分层超晶格材料层57和栅电极层58。通常被称为“栅氧化物(gateoxide)”的绝缘层50被示出是一种多层结构,其包括层51、52和53,每层都是不同的绝缘体。优选地,层51是与衬底41的材料紧密相关的绝缘体。优选地,层52是缓冲或分界层,其可以执行下述两种功能中的一种或两种都执行一是帮助把位于其上面的层粘合到位于其下面的层上;二是防止位于其上面的层中的元素迁移到位于其下面的层中。绝缘层53被看作是栅极的主要绝缘层,其优选的是具有适合于FET的有效工作的介电特性的材料。应该理解的是,单一的一种材料可以执行层52和53的功能,或者甚至可以执行所有这三个层51、52和53的功能。浮动导电栅极59形成在绝缘层50上。同样,该浮动栅极显示为三个层54、55和56。在一个实施例中,层54是多晶硅层,层55是粘合层,层56是诸如铂的金属层。在另一个实施例中,层54是粘合层,其帮助把浮动栅极59粘合到位于其下面的层上。在这个实施例中,层55被看作是主要的浮动栅极层,层56是导电阻挡层,其用途是防止位于其上面的层中的元素迁移到位于其下面的层中。铁电分层超晶格材料层57形成在浮动栅极59上。栅电极58形成在铁电分层超晶格材料层57上。应该理解的是,铁电层57和栅电极58也可以是多层结构,尽管通常它们不采用多层结构。布线层分别形成到源极/漏极42、源极/漏极44和衬底41的电触点62、64和66。优选地,触点66位于在深阱43和阱45之间的接合处的浅的p阱47的上方。优选地,栅极58与它自己的布线层集成在一起,所以没有示出触点。如将在下面更详细讨论的,在铁电FET 40中,电荷存储元件是铁电分层超晶格材料层57。
优选地,当半导体41是硅时,绝缘层51是二氧化硅。优选地,绝缘层52是缓冲或分界层,其用途是防止位于其上面的层中的元素迁移到位于其下面的半导体层中。它还可以帮助将位于其上面的层粘合到位于其下面的层上。优选地,缓冲层52包括Ta2O5,但也可以是CeO2或者其它任何能防止元素迁移和/或帮助将位于其上面的层粘合到位于其下面的硅层上的适合的材料。层53是栅极绝缘体,优选地,其包括从下面选出的一种或多种材料Ta2O5、SiO2、CeO2、ZrO2、Y2O3、YMnO2和SrTa2O6。优选地,它的厚度是4纳米(nm)到50nm。在一个优选的实施例中,栅极绝缘体50包括二氧化硅层51和Ta2O5层53。这样,Ta2O5层作为主要的栅极绝缘体,并且也作为缓冲层。在其它的实施例中,栅极绝缘体53是高介电常数的绝缘体,其包括一种或多种根据本发明的分层超晶格材料。
1996年5月21日授予Paz de Araujo等人的美国专利No.5,519,234;1995年7月18日授予Watanabe等人的美国专利No.5,434,102;1998年7月22日授予Cuchiaro等人的美国专利No.5,784,310;1998年11月24日授予Azuma等人的美国专利No.5,840,110和Azuma等人在1995年3月17日提交的美国专利申请序列号No.08/405,885中都描述了铁电分层超晶格材料。
分层超晶格材料已经被G.A.Smolenskii和其它人进行了分类。参看G.A.Smolenskii编辑的书籍,ISSN0275-9608,“Ferroelectricsand Related Materials”(铁电及相关材料)的第15章(“Ferroelectricsand Related Phenomena”(铁电及相关现象)系列的第3卷,1984),特别是15.3-15.7部分;G.A.Smolenskii,A.I.Agranovskaya,“DielectricPolarization of a Number of Complex Compounds”(多种络合物的电介质极化),Fizika Tverdogo Tela,第1卷,第10期,1562-1572页(1959年10月);G.A.Smolenskii,A.I.Agranovskaya,V.A.Isupov,“New Ferroelectrics of Complex Composition”(新的络合物的铁电体),Soviet Physics-Technical Physics,第907-908页(1959年);G.A.Smolenskii,V.A.Isupov,A.I.Agranovskaya,“Ferroelectrics of theOxygen-Octahedral Type With Layered Structure”(具有分层结构的氧化八面体类型的铁电体),Soviet Physics-Solid State,第3卷,第3期,第651-655页(1961年9月);E.C.Subbarao,“Ferroelectricity inMixed Bismuth Oxides With Layer-Type Structure”(具有分层类型结构的混合氧化铋中的铁电现象),J.Chem.Physics,第34卷,第695页(1961年);E.C.Subbarao,“A Family of ferroelectric BismuthCompounds”(铁电铋化合物族),J.Phys.Chem.Solids,第23卷,第665-676页(1962年);和M.E.Lines及A.M.Glass的Principlesand Applications of Ferroelectrics and Related Materials(铁电体及相关材料的远离与应用)的第8章第241-292和附录F的第624-625页,Clarendon Press,Oxford,1977年,第620-632页。这些材料可以用Smolenskii概括的通式来表示
(I)具有通式Am-1Bi2MmO3m+3的化合物,其中A=Bi3+、Ba2+、Sr2+、Ca2+、Pb2+、K+、Na+和其它类似大小的离子,M=Ti4+、Nb5+、Ta5+、Mo6+、W6+、Fe3+和其它占用氧八面体的离子;这一组中包括钛酸铋、Bi4Ti3O12;这些在本文中将被称作Smolenskii I型化合物;(II)具有通式Am+1MmO3m+1的化合物,其包括诸如钛酸锶Sr2TiO4、Sr3Ti2O7和Sr4Ti3O10的化合物;这些在本文中将被称作Smolenskii II型化合物;和(III)具有通式AmMmO3m+2的化合物,其包括诸如Sr2Nb2O7、La2Ti2O7、Sr5TiNb4O17和Sr6Ti2Nb4O20的化合物。注意,在Sr2Nb2O7和La2Ti2O7的情况下,该通式需要加倍以使它们符合一般的通式;这些在本文中将被称作Smolenskii III型化合物。
本发明的材料包括所有上述材料再加上这些材料的组合和固溶体,其包括包含特定的镧族元素的A位元素或超晶格发生器元素。分层超晶格材料大体上可以用以下通式进行概括(1)A1w1+a1A2w2+a2…Ajwj+ajS1x1+s1S2x2+s2…Skxk+skB1y1+b1B2y2+b2…Bly1+b1Qz-2,其中A1、A2…Aj表示结构中的A位元素,其可以是如锶、钙、钡、铋、铅、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥的元素以及其它的元素;S1、S2…Sk表示超晶格发生器元素,其通常是铋,但也可以是如钇、钪、镧、锑、铬、铊、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥的元素以及其它+3价元素;B1、B2…B1表示结构中的B位元素,其可以是如钛、钽、铪、钨、铌、锆的元素和其它元素;并且Q表示阴离子,其通常是氧,但也可以是其它元素,如氟、氯和这些元素的混合物,如氟氧化物、氯氧化物等。通式(1)中的上标表示对应元素的化合价;例如,如果Q是氧,则q=2。下标表示在一摩尔的化合物中该材料的摩尔数量,或者从单位晶格(unit cell)方面考虑表示单位晶格中该元素的平均的原子数量。下标可以是整数或分数。也就是说,通式(1)包括单位晶格可能会在整个材料中均匀变化的情况;例如,在Dy2/3Bi2(Ta0.75Nb0.25)2O9中,钽原子占用了75%的B位,铌原子占用了25%的B位。如果在化合物中仅有一种A位元素,则用“A1”元素来表示,并且w2…wj都等于零。如果在化合物中仅有一种B位元素,则用“B1”元素来表示,并且y2…yl都等于零,对于超晶格发生器元素情况相似。通常的情况是,会有一种A位元素,一种超晶格发生器元素和一种或两种B位元素,尽管由于本发明意在包括A位、B位和超晶格发生器可以具有多种元素的情况而将通式(1)写成更普遍的形式。从下面的等式中得到z的值(2)(a1w1+a2w2…+ajwj)+(s1x1+s2x2…skxk)+(b1y1+b2y2…+blyl)=qz。
通式(1)包括上面参考的1996年5月21日授予的美国专利No.5,519,234中讨论的所有三种Smolenskii型化合物。分层超晶格材料不包括可能适合通式(1)的每一种材料,而是仅包括形成带有明显交替层的晶体结构的那些材料。根据本发明的分层超晶格材料是这样的材料,其包括下面的元素铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥。
通式(1)包括所有三种Smolenskii型化合物对于I型材料,w1=m-1,x1=2,y1=m,z=3m+3,并且其它的下标等于零;对于II型材料,w1=m+1,y1=m,z=3m+1,并且其它的下标等于零;对于III型材料,w1=m,y=m,z=3m+2,并且其它的下标等于零。注意,Smolenskii I型通式不用于M=Ti且m=2的情况,而通式(1)却可适用。这是因为Smolenskii通式不考虑化合价。分层超晶格材料不包括可能适合通式(1)的每一种材料,而是仅包括在结晶过程中形成带有明显交替层的晶体结构的那些材料。典型地,结晶要在对前体成分的混合物进行热处理或退火处理的帮助下进行。提高的温度有助于超晶格形成的部分(moiety)排序成热力学上有利的结构,如类似钙钛矿的八面体。应用于S1、S2…Sk的术语“超晶格发生器元素”指的是,与整个混合的分层超晶格材料中超晶格发生器金属的均匀随机分布形成对比,这些金属在采用集中金属氧化层的形式时是特别稳定的,其中该金属氧化层插入在两个类钙钛矿层之间。特别是,铋的离子半径允许它起到A位材料或超晶格发生器的功能,但是,如果铋在量的方面出现的比例低于临界的化学计量比,则铋将自发地集中作为非类钙钛矿的氧化铋层。还应该理解的是,本文中的术语“分层超晶格材料”还包括掺杂的分层超晶格材料。也就是说,包括在通式(1)中的任意一种材料都可以用各种各样的材料来掺杂,如硅、锗、铀、锆、锡或铪。概括地说,本发明的材料包括所有用Smolenskii通式和通式(1)描述的材料,其包括元素铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥,再加上所有前述材料的固溶体。通常,优选的分层超晶格材料包括这些分层超晶格材料的多晶薄膜。下面将更详细地给出用于本发明的材料的优选模式。
本文中的词语“超晶格”可以表示与它在某些物理文章上下文,如超导性中所表示的意思稍微有所不同的含义。有时,词语“超晶格”仅表示单个的晶体结构的含义。但是优选的是,根据本发明的材料不是单个的晶体。事实上,到目前为止,人们生产出来的材料中没有任何一种是单个的晶体,但是人们仍认为,可以制成这些材料的单个晶体的形式。优选地,本发明的材料是多晶体的。在多晶体的状态下,材料的结构包括晶粒边界、点缺陷、位错环和其它的微结构缺陷。但是,对于由Smolenskii和其他人进行了分类的类钙钛矿材料来说,在每个晶粒内,主要的结构都是可重复单元,其包含一个或多个类钙钛矿层以及一个或多个中间非类钙钛矿层,它们自发地以相互依赖的形式连接在一起。对于本领域的技术人员能认识到的是,术语“分层超晶格材料”意在包括所有将其自身形成为包括第一层和第二层的晶体结构的材料,其中该第一和第二层具有明显不同的晶体结构。这些材料中形成类钙钛矿晶体结构的材料有时被称为分层钙钛矿,而那些包括铋的材料有时被称为Bi分层材料。异质结构,如合成超晶格不包括在内。
本文中的术语“化学计量”可以应用于材料的固态膜,如分层超晶格材料,或者也可以应用于用于形成材料的前体。当它应用于固态薄膜时,它指的是示出了在最终的固态薄膜中每种元素的实际相对量的化学式。当应用于前体时,它表示前体中金属的摩尔比例。“平衡的”化学计量化学式表示其中每种元素刚好足够形成材料的完整晶体结构,其晶格的所有位都被占用的那些化学式,尽管在实际应用中,在室温下在晶体内总是存在一些缺陷。例如,Nd2/3Bi2(TaNb)O9和Nd2/3Bi2(Ta1.5Nb0.5)O9都是平衡的化学计量化学式。相反,本文中用不平衡的“化学计量”化学式Nd0.6Bi2.18(Ta1.5Nb0.5)O9来表示其中镝、铋、钽和铌的摩尔比例分别为0.6、2.18、1.5和0.5的用于镝铋钽铌的前体,这是因为相对于B位元素钽和铌,它包含了过多的铋和不足的镝。在本领域中,经常写出一个金属氧化物的不平衡的化学计量化学式,其中氧符号的下标没有经过校正,以完全平衡金属的下标值。
本文中用到的词语“前体”可以表示包含一种金属有机溶质的溶液,该金属有机溶质与其它前体混合以形成中间前体或最终前体,或者它可以指最终的液体前体溶液,也就是说,要在制造过程中应用于特定的表面的溶液。被应用于衬底的前体通常被称为“最终前体”、“前体混合物”或简单地称为“前体”。在任一种情况下,根据上下文该含义都是很清楚的。
本文中用到的术语“薄膜”所表示的含义与其用在集成电路领域中的含义相同。总体上,它表示厚度小于1微米的膜。本文中公开的薄膜的厚度在大多数情况下为0.5微米或更小。集成电路领域中的这些薄膜不应该与宏观的电容器领域中的分层电容器中所谓的“薄膜”相混淆,这些薄膜是通过完全不同的不适合于集成电路领域的过程形成的。
优选地,浮动栅极59和58是由铂制成的,尽管它们也可以是任何其它的适合的导体。如图1中所示,在本领域中有时被称作底电极的浮动栅极59可以是多层结构,根据实施例,这种多层结构可以包括粘合层54或55。典型地,粘合层是钛,优选地,其厚度大约为20nm。优选地,在粘合层上面的层是厚度大约为100nm到200nm的铂层。浮动栅极59也可以包括阻挡层56,其优选地是Ta2O5,但也可以是IrO2或其它材料,优选地大约为4nm到40nm厚。FET 40中最根本的部分是半导体41、铁电分层超晶格材料层57和栅极58。其它层是任选的。在任意一个特定的实施例中可以省略其中的一个或多个层。此外,可以改变层51-58的顺序,并且可以增加额外的层。
应该理解的是,示出了集成电路器件的图1-4并不表示实际集成电路器件中任何特定部分的实际平面图或横截面图。在实际的器件中,各层不会是这样规则的,并且通常各层的厚度具有不同的比例。相反这些图只是示出了理想的示意图,与实际中可能会存在的情况相比,用它们可以更清楚并完整地表示出本发明的结构和处理过程。例如,如果相对于其它层调整了各层的各种厚度,则FET的视图要么就将包括厚度太小而无法使人们清楚地看到的层,要么就不适合表示在纸上。
本文中用到的各种方位术语,如“上面”、“上方”、“顶部”、“上部”、“下面”、“底部”和“下方”,都表示是相对于半导体衬底41来说的。也就是说,如果第二元件在第一元件“上面”,则表示该第二元件更加远离衬底41,如果第二元件在另一个元件“下面”,则表示第二元件比其它的元件更接近衬底41。衬底41的长度尺度限定出了一个衬底平面,该平面是由水平方向和垂直进出图1中纸的方向限定出的。本文中平行于这个平面的平面称为“水平”平面,垂直于这个平面的方向称为“垂直的”。典型地,存储单元包括相对扁平的薄膜层。术语“横向的”或“横向地”指的是薄膜层扁平平面的方向。在图1中,横向方向就是水平方向。术语“位于下面”和“位于上面”也是根据衬底41定义出的。也就是说,如果第一元件“位于”“位于上面”的第二元件的“下面”,则表示垂直于衬底平面并通过第一元件的一条线也通过第二元件。
本说明书涉及位于半导体和铁电或电介材料的薄膜之间的缓冲和/或阻挡层。术语“之间”并不表示该缓冲和/或阻挡层直接接触该铁电材料的薄膜或半导体。该缓冲和/或阻挡层可以接触该铁电体或半导体,但典型地是其并不与它们接触。在涉及集成电路层沉积或形成到位于下面的衬底或层上时,在本说明书中使用的术语“在上面”有时也有类似的用法。与“之间”或“在上面”相反的是,术语“直接在上面”表示直接接触,如可以在用到它们的各种文章中清楚地看到的。
在这个说明中,术语“行”和“列”是用来方便进行说明的相对的术语。也就是说,按照惯例,行是水平线或水平排列成的,列是垂直线或垂直排列成的。但是,本发明打算在任何阵列中,可以简单地通过将视图旋转90度、270度等来观察该阵列而使行变成列以及使列变成行。因此,由于存储器体系结构被旋转了90度、270度等,所以根据在本发明的发明内容部分、说明书或者权利要求书中所述的本发明,除了别的方面相同外,都不会脱离本发明所设想的体系结构。
术语“高介电常数”表示十或者更大的介电常数。集成电路电容器和晶体管中传统电介质的介电常数大约为4或5。因此,高介电常数材料的介电常数至少是用在集成电路中的传统电介材料的介电常数的两倍。
返回到图1,在工作过程中,电压Vs提供给源极42,电压Vb提供给衬底41,电压Vd提供给漏极44,并且栅极电压Vg提供给栅极58。这些电压可以是在本文中通常表示为“Z”的高或逻辑“1”电压、低或逻辑“0”电压、开路或高电阻状态,或者是在逻辑“0”和逻辑“1”状态之间的较小的正或负电压。在读出过程的优选实施例中,漏极电压Vd采用较小的正值,其通常明显地小于高电压。
例如,如果正写入偏压Vg提供给栅极58,则所产生的施加在铁电薄膜57上的电场会使铁电薄膜57被极化,即使是不再提供电压和电场之后。铁电薄膜57中剩余的极化强度通过分界绝缘层50将电场施加到沟道区46中,以把电子吸引到沟道区46内,从而引起可用于电流传导的自由电子的增加。结果,当在读出工作过程中漏极电压Vd提供给漏极区44时,电流传感器感应到流过沟道区46的大电流,读出一个二进制的“1”状态。当在写入工作过程中负电压Vg提供给栅极58时,铁电薄膜57中形成的剩余极化强度阻挡住来自沟道46的载流电子,或吸引正的空穴到沟道区46内,并且在读出工作过程中当Vd提供给漏极42时,感应到形成的小电流以作为二进制的“0”状态。典型地,写入偏压Vg和读出偏压Vd在1伏到15伏的范围内,最优选的是在大约2伏到5伏的范围内。优选地,低或逻辑“0”电压是零或接地状态。如果铁电体57上的电压等于或大于矫顽电压,则基本上材料57内所有铁电畴都将被极化;但即使是较小的电压,如1.0伏的电压也将使一些铁电畴切换。
从上面的讨论中可以看到,存储在铁电FET 40中的数据被作为极化电荷存储在铁电分层超晶格材料层57中。因此,铁电层57是FeFET的电荷存储元件。
如本领域中所公知的,如果要提供铁电FET作为可使用的存储器,则栅极电压对漏极电流的曲线必须遵循磁滞曲线。在零栅极电压处开始,基本上是没有漏极电流的,这是因为沟道46内的电阻非常高。随着栅极电压增加,始终保持没有漏极电流,直到栅极电压达到正的阈值电压+Vth时为止。在该电压处,铁电体57切换至ON状态,并将载流子吸引到沟道46内产生漏极电流。然后,随着栅极电压继续增加,漏极电流呈线性增加,直到接近饱和电流Isat为止。饱和后,随着栅极电压增加,电流不会增加,并且曲线将保持为平的。随着栅极电压下降,漏极电流保持不变,直到接近负的阈值电压-Vth为止。然后漏极电流呈线性减小,直到其接近铁电体切换至OFF状态的点为止,在该点处,漏极电流变为零。不管提供的负电压有多大,漏极电流始终保持为零,并且,随着电压增加,漏极电流都不会超过零,直到达到正的阈值电压为止。磁滞曲线的范围称为“存储窗”。为了得到可使用的存储器件,存储窗的宽度,即从+Vth到-Vth必须大于栅电极58中的噪声,并且存储窗的高度,即Isat必须大于漏极和与其相关的传感电路中的噪声。对于非易失性存储器,理想的是,零伏电压线应该在存储窗的中间,或者至少适当地位于噪声容限内,这是由于该器件应该在没有外部电力的情况下保持住数据。ON状态下的Isat和OFF状态下的Isat之间的高比率也是理想的,以允许通过传感电路容易地识别出两种状态。
已经在约4.3伏的条件下,测量了用于包括根据本发明的分层超晶格材料的示例性铁电FET的存储窗,其中从-10伏到+10伏往返扫描了其直流栅极偏压,该窗的中间位置大约为1伏。ON电流和OFF电流之间的差别大约为一百倍;因此,很容易识别极化。
本发明设想本发明的材料可以与任何FET结构使用。图1-4说明了各种FET栅极和电容器结构以及相关的结构,其中可以使用根据本发明的材料。为了更容易地理解,在这些附图中没有示出衬底结构的细节。但是,应该理解的是,在优选的实施例中,它们将包括如图1中所示的深阱和/或p阱。在替换实施例中,它们也可以与其它的衬底结构进行组合。
图2示出了MFSFET 370,它也可以作为FET以实现本发明。该FET同样形成在半导体371上,并包括源极/漏极373和374、沟道375、铁电体377和电极379。触点、布线层和其它结构可以采用上文或下文所示或所讨论的任意一种形式。
图3示出了电荷存储器件,即存储单元500,其中根据本发明的材料被用作栅极绝缘体511、电容器电介体524,并且在某些实施例中也可以用在ILD 536中。存储单元500包括晶体管514和形成在晶片501上的电容器528,晶片501包括半导体衬底502。半导体衬底502可以包括硅、砷化镓、硅锗、或其它的半导体,并也可以包括其它的衬底材料,如红宝石、玻璃或氧化镁。在优选的实施例中采用硅。场氧化区504形成在半导体衬底502的表面上。半导体衬底502包括高掺杂源极区506和高掺杂漏极区508,它们形成在掺杂沟道区509的周围。掺杂源极区506、漏极区508和沟道区509优选地是n型掺杂区,但也可以是p型。缓冲/扩散阻挡层510包括根据本发明的非导电材料的薄膜,位于半导体衬底502上,沟道区509的上面。缓冲/扩散阻挡层510的厚度在1nm到30nm的范围内,优选的是从1nm到5nm。栅极绝缘体511包括根据本发明的高介电常数绝缘体薄膜,位于缓冲/扩散阻挡层510上。此外,栅电极512位于栅极绝缘体511上。栅极绝缘体511的厚度在1nm到50nm的范围内,优选的是从5nm到20nm。这些源极区506、漏极区508、沟道区509、缓冲/扩散阻挡层510、栅极绝缘体511和栅电极512一起形成了MOSFET514。
第一中间层电介体(“ILD”)层516优选地由BPSG(掺杂硼的硅酸磷玻璃)制成,位于半导体衬底502和场氧化区504上。在ILD516上形成图案以形成分别到源极区506和漏极区508的通路517、518。填充通路517、518以分别形成插塞519、520。插塞519、520是可导电的,并典型地包括多晶硅、钨、或钽,但也可以是其它任何适合的导体。根据本发明的可导电的缓冲/扩散阻挡层521位于ILD516上,并与插塞520电接触。典型地,导电的扩散阻挡层521是由IrO2制成的,但也可以由其它的材料制成,并且典型地,它的厚度是从1nm到30nm,优选地是从1nm到5nm。
如图3中所示,底电极层522位于扩散阻挡层521上。优选的是,底电极包含非氧化的贵金属,如铂、钯、银和金。除了贵金属,还可以用诸如铝、铝合金、铝硅合金、铝镍合金、镍合金、铜合金和铝铜合金的金属来用作电介体或铁电存储器的电极。在优选的实施例中,底电极522是由铂制成的,其厚度为100nm。优选地,它还包括至少一个粘合层(未示出),如钛,以帮助将电极粘合到电路中相邻的位于下面或位于上面的层上。电容器电介体524包括根据本发明的高介电常数的绝缘体的薄膜,位于底电极层522上。电容器电介体524的厚度在5nm到500nm的范围内,优选地是从30nm到100nm。顶电极层526由铂制成,厚度为100nm,形成在电容器电介体524上。底电极层522、薄膜电容器电介体524和顶电极层526一起形成了存储电容器528。扩散阻挡层521抑制了来自于电容器电介体524和底电极522的金属原子和氧扩散到半导体衬底内。第二中间层电介体层(ILD)536优选地是由NSG(非掺杂硅酸盐玻璃)制成的,沉积该层以覆盖住ILD 516、缓冲/扩散阻挡层521和电介体存储电容器528。PSG(硅酸磷玻璃)薄膜或BPSG(硼硅酸磷玻璃)薄膜或其它的绝缘体也可以用在该层536中。ILD 516,特别是ILD 536也可以是由根据本发明的分层超晶格材料制成的;但是,由于具有高介电常数,所以应该注意设置金属化层以避免形成电容性结构。如果注意到了这点,则用作ILD的本发明的材料可以具有许多优点,如起到保护重要的分层超晶格元件511和524不受氢和其它生产气体的影响而退化的作用。在ILD 536上形成图案以形成到插塞519的通路537。沉积金属化的布线膜以覆盖住ILD 536,并填充通路537,然后在上面形成图案以形成源电极布线538和顶电极布线539。优选地,布线538、539包括Al-Si-Cu标准互连金属,其厚度大约为200nm到300nm,但也可以包括上面提到的其它金属。
图3中所示的其中电容器528堆叠在ILD 536的顶部上并因此与晶体管514隔开的结构按照惯例被称为“叠层式电容器”结构,诸如该过程的制造这种结构的过程在本领域中是众所周知的。如果层524是一种高介电常数材料,则集成电路的电荷存储器件500是DRAM单元;如果层524是铁电体,则器件500是FERAM单元。本发明的非铁电高介电常数材料可以被用作栅极电介体511、电容器电介体材料524或中间层电介体516或536。
如本领域中所公知的,晶体管514是处于“on”状态还是“off”状态是由足够的电荷是存储在栅极绝缘体511中还是存储在具有其对应的栅极和沟道的绝缘体的分界面处决定的;这样,绝缘体511也可以作为FET的电荷存储元件。
图4示出了根据本发明的优选实施例的MFM-MIS FET存储单元550的一部分的横截面图。MFM-MIS FET存储单元550包括场效应晶体管(“FET”)551、金属-铁电体-金属(“MFM”)电容器552和金属-绝缘体-半导体(“MIS”)电容器553,该电容器553通过互连554与MFM电容器552串联连接。在MFM-MIS存储器中,MIS电容器553是FET 551的一部分。MFM-MIS FET存储单元550形成在半导体衬底561上,其包括高掺杂的源极区562、高掺杂的漏极区564和沟道区566。FET 551包括源极区562、漏极区564、沟道区566、栅极氧化层31和栅电极570。MIS电容器553包括栅电极570、栅极氧化层568和半导体衬底561。FET 551和MIS553被标准的中间层电介体(“ILD”)572所覆盖,572包括氧化物玻璃(glasseousoxide),优选地是掺杂硼的硅酸磷玻璃(“BPSG”)。从ILD 572的顶部向下到栅电极570表面的通路574被通常称为导电插塞的互连554填充。底电极580位于ILD 572上,覆盖住互连554。铁电薄膜582位于底电极580上,顶电极584位于铁电分层超晶格材料薄膜582上。底电极580、铁电薄膜582和顶电极584一起形成铁电MFM电容器552。第二中间层电介体,ILD 586覆盖住ILD 572和MFM 552。布线孔590通过ILD 586延伸到顶电极584。局部互连592填充了布线孔590。
图5示出了铁电FET存储器700的一个替换实施例。存储器700包括串联连接的存储单元703和707组成的组720、读出晶体管715、设置晶体管(set transistor)718和复位晶体管719。存储单元703包括铁电电容器704和晶体管705,其中晶体管705的一个源极-漏极701连接到电容器704的一个电极706A,晶体管705的另一个源极-漏极702连接到电容器704的另一个电极706B。存储单元707包括同样连接到晶体管709的铁电电容器708。串联组720的一端712连接到晶体管715的栅极713,另一端730通过晶体管718连接到设置信号线722。节点712通过复位晶体管719也连接到复位信号线724。晶体管715的一个源极-漏极733连接到复位线724,而另一个源极-漏极734连接到位线726。
存储器700实质上是MFM-MIS FET存储器,如图4中所示的,但其具有两个连接到FET 715的MFM部分704和707。当该单元没有被选中进行写入或读出时,晶体管705和709短路掉它们对应的MFM部分。尽管图5的实施例中示出了两个单元704和707,但是组720可以包括五个、十个甚至二十个或更多个单元。2000年9月25日提交的美国临时专利申请序列号No.60/235,241中提供了对存储器700的功能的完整的描述。此外,如果电容器704、706等以一个放在另一个的上面的方式堆叠成多层,则可以最容易地实现该存储器的结构。这种结构是非常实用的,并且因电子品质的铁电薄膜而是很密集的,该铁电薄膜可以具有分层的超晶格材料。
同样,根据本发明的分层超晶格材料本身可应用于这种存储器。因为与现有技术中的铁电材料相比,可以制成分层超晶格材料的非常薄的功能铁电薄膜,所以该铁电FET仅需占用与传统的FET大概相同的空间。而且,根据本发明的材料的较低的结晶温度允许该结构被做得更密集,这是因为在IC元件之间的扩散很少并且其它的退化也很少。
上面的FET 40、370、514和550以及电容器528和552仅说明了许多种电荷存储结构中的少数几种,在这些结构中可以使用本发明的材料。也可以利用使用了在上述任意一个实施例中示出的各种层和特征的任意组合的电荷存储结构。
图1-5仅示出了可以利用本发明的方法进行制造的存储单元的许多不同变型中的少数几种。根据本发明的材料实际上用于其中可以使用电介体或铁电材料的任何存储单元的任何容量。
在上述任何实施例中,导电阻挡层优选的是IrO2。栅极绝缘体层和或电介缓冲层优选的是五氧化钽(Ta2O5),但也可以是从下面材料中选出的SiO2、CeO2、ZrO2、Y2O3、YMnO2、SrTa2O6以及根据本发明的分层超晶格材料。如果绝缘体是SiO2,则它的厚度优选为4nm到20nm;对于其它的材料优选为4nm到50nm。
图6是说明了示例性的集成电路存储器636的框图,其中利用了使用本发明的材料制成的图1-5的存储单元。为了简便起见,所示的实施例是用于16K×1的DRAM;但是,该材料也可以应用在各种尺寸和类型的存储器中,包括易失性的和非易失性的。在所示的16K实施例中,有七个地址输入线638,它们连接到行地址寄存器639和列地址寄存器640。行地址寄存器639通过七条线642连接到行解码器641,列地址寄存器640通过七条线644连接到列解码器/数据输入输出多路复用器643。行解码器641通过128条线646连接到128×128存储单元阵列645,列解码器/数据输入输出多路复用器643通过128条线647连接到读出放大器79和存储单元阵列645。RAS*信号线648连接到行地址寄存器639、行解码器641和列解码器/数据输入/输出多路复用器643,而CAS*信号线649连接到列地址寄存器640和列解码器/数据输入输出多路复用器643(在本文中的讨论中,“*”表示信号的反转。)。输入/输出数据线645连接到列解码器/数据输入输出多路复用器643。
存储单元阵列645包含128×128=16,384个存储单元,其按照惯例表示为16K。这些单元可以是如图1、2和4中所示的铁电FET单元,如图3中所示的FeRAMS或DRAM单元,如图3-4中所示的叠层式单元,如图5中所示的单元组,或其它任何在集成电路存储器中有用的存储单元。在1999年8月30日提交的美国专利申请序列号No.09/385,308和2000年3月10日提交的美国专利申请序列号No.09/523,492中示出了这些单元的详细存储器结构。它们也可以是基于铁电开关电容器的单元、基于电介电容器的单元或其它任何利用了本发明的材料的存储单元。
图6中存储器的工作过程如下所述。在线638上的行地址信号A0到A6以及列地址信号A7到A13通过地址寄存器639、640以及RAS*和CAS*信号被分别多路传输到行解码器641和列解码器/数据输入/输出多路复用器643。行解码器641把高电平信号放在一个被寻址的字线636上。列解码器/数据输入输出多路复用器643根据是写入功能还是读出功能,或者把在线645上的数据信号放在一个对应于列地址的位线647上,或者把在对应于列地址的一个位线647上的信号输出到一个数据线645上。如本领域中公知的,当RAS*信号先于CAS*信号时读出功能被触发,而当CAS*信号在RAS*信号之前到来时触发写入功能。如本领域中众所周知的,读出放大器79沿线647进行设置,用以放大在线上的信号。其它对于执行上述提到的功能所需的或有用的逻辑以及其它公知的存储器功能也包括在存储器636内,但由于它们不直接应用于本发明所以没有示出或对其进行讨论。如上文所概述的,RAS*和CAS*线638和639、寄存器639、640和解码器641、642包括用于设置存储单元的信息写入装置680,如40(图1),其根据在数据线645上的输入到存储器中的信息而处于第一存储状态或第二存储状态,该第一存储单元状态对应于铁电材料层57处于第一极化状态,而该第二存储单元状态对应于层57处于第二极化状态;加上读出放大器679的这些元件包括用于读出存储单元状态的信息读出装置682,如40,并提供对应于该状态的电信号。
应该理解的是,上述存储器436仅是一个这种存储器的例子。也可以使用其它的结构,如数据被输入到连接到行的线上,并且数据被输出到连接到列的线上,或者存在与每个单元相联系的几条不同的列线和/或几条不同的行线的结构。
应该理解的是,本发明设想上面所述的各种存储单元实施例中任意一个和所有的特征都可以彼此相互组合。也就是说,所示的这些实施例是示例性的,选择它们只是用来说明对应的特征,而不是要限定到所示的特定组合中。
用于FET中电荷存储元件的分层超晶格材料的另一个重要的优点是,通常它们的介电常数在60到200的范围内。现有的铁电材料,如PZT的介电常数远远大于300。当利用金属氧化物在硅衬底上制成FET时,二氧化硅薄膜形成在铁电材料和硅衬底之间。这个薄膜形成了与铁电电容器串联的寄生电容器,其介电常数相对较小,即大约为4。在其它的情况下,如图1中所示,缓冲或粘合绝缘材料52、53有意地形成在铁电材料和衬底之间。这种缓冲材料的介电常数通常大于4,但小于200。如本领域中公知的,当电压施加到多个串联的电容器上时,在每个电容器上的电压降反比于其电容值,其电容值通常正比于介电常数。这样,当电压施加到利用了现有技术中的材料如PZT的FET的栅电极58(图1)上时,大部分的电压降产生在寄生电容或缓冲或粘合层上。由于本发明的分层超晶格材料的介电常数通常大约为用在FET中的现有技术中铁电材料的介电常数的三分之一或更小,所以分层超晶格材料上的电压降超过现有技术中铁电FET上电压降的三倍。同样,分层超晶格材料本身作为了DRAM中的电荷存储元件,这是因为它的介电常数比传统DRAM存储元件材料如二氧化硅的介电常数高得多,但不是这样高使得由于串联的寄生电容而变得无效。
3.优选模式的说明本发明的一个重要的方面是通过用镧系元素代替分层超晶格材料的公知模式中的A位元素和超晶格发生器元素而形成的一类材料。
例子1-涂抹(smeared)铋化合物一种特别有效的替换是用镧系元素部分地代替铋分层材料中的铋,本文中我们称其为涂抹铋化合物。“部分地代替”的意思是,与通常我们所采用的术语“掺杂”时所表示的含义相比要替换大量的材料,但也并不是完全取代铋。通常,如果1%或更少的元素被另一种元素替换了,那么我们就把这种替换看作为掺杂。在根据本发明的材料中,替换是发生了5%或更多,优选地是10%到80%。最优选的是,从10%到30%的铋位都被镧系元素替换了。
该涂抹铋化合物典型地是Smolenskii所称的“I型”化合物。根据本发明的材料典型地具有通式Am-1Bi2MmO3m+3,其中A是A位元素,M是B位元素,m通常是整数,但也可以是分数。根据本发明的这类材料具有通式Am-1(Bi1-xLanx)2MmO3m+3,其中A、M和m与Smolenskii I型通式中的相同,Lan表示镧系元素,即,镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥中的一种或多种。
基本的涂抹铋/镧系元素化合物是(Bi1-xLanx)4Ti3O12,其中0<x<1。优选地,0.1≤x≤0.9,最优选地,0.1≤x≤0.5。这种化合物其自身已被发现具有极好的电特性。这种涂抹铋/镧系元素化合物的例子是(Bi1-xNdx)4Ti3O12,(Bi1-xYbx)4Ti3O12,(Bi1-xPrx)4Ti3O12,(Bi1-xGdx)4Ti3O12,和(Bi1-xLax)4Ti3O12,其中x是上面给定的值。(Bi1-xLax)4Ti3O12有时指的是本领域中的BLT。所有这些化合物的薄膜都可以很容易地制成,如下面详细描述的,可利用市场上可买到的可用的前体,在Alpha Aesar,30 Bond Street,Ward Hill,MA 01835 USA,电话1-978-521-6300;传真1-978-521-6350;e-mailinfo@slfa.com;网址www.alfa.com。异丙氧基盐前体是优选的。在下面的表1中给出了用于(Bi1-xDyx)4Ti3O12,(Bi1-xCex)4Ti3O12,(Bi1-xPmx)4Ti3O12,(Bi1-xSmx)4Ti3O12,(Bi1-xEux)4Ti3O12,(Bi1-xTbx)4Ti3O12,(Bi1-xHox)4Ti3O12,(Bi1-xErx)4Ti3O12,(Bi1-xTmx)4Ti3O12,和(Bi1-xLux)4Ti3O12的典型前体。
另一种基本的涂抹铋/镧系元素化合物是(Bi1-xLanx)2O3,其中Lan表示镧系元素,即镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥中的一种或多种,并且0<x<1。优选地,0.1≤x≤0.9,最优选地,0.1≤x≤0.5。这些化合物本身通常不是分层超晶格材料。但是,如下面所讨论的,通过将用于这些化合物的前体与其它金属氧化物前体组合,可以制成具有极好电特性的分层超晶格材料。
上面列出的基本的涂抹铋/镧系元素化合物可以与用于简单的金属氧化物的前体组合,以制成其它的涂抹铋/镧系元素分层超晶格材料。例如,用于氧化锶、SrO和氧化钽、Ta2O5的前体当与用于涂抹铋/镧系元素(Bi1-xLanx)2O3的前体混合时,形成了用于分层超晶格材料Sr(Bi1-xLanx)2Ta2O9的前体。这种材料的一个例子是Sr(Bi1-xDyx)2Ta2O9,其中0<x<1。优选地,0.1≤x≤0.9,最优选地,0.1≤x≤0.5。这种材料的其它例子是Pb(Bi1-xLanx)2Ta2O9、Ca(Bi1-xLanx)2Ta2O9、Ba(Bi1-xLanx)2Ta2O9和A(Bi1-xLanx)2Ta1-yNbyO9,通常其中A=Sr、Ca、Ba或Pb,并且1#y #0,并且如上述给出了x和Lan。这些都是是m=2的Smolenskii I型化合物。
作为另一个例子,基本的(Bi1-xLanx)2O3前体可以与用于Bi4Ti3O12的前体相混合,以形成具有通式(Bi1-xLanx)2Bi4Ti3O15的一种普遍类型的材料,其中Lan是一种上面列出的镧系元素,并且0<x≤1。优选地,0.1≤x≤0.9,最优选地,0.1≤x≤0.5。当x=0.5时,它减小为Bi5LanTi3O15,其中Lan可以是任意一种镧系元素。这些都是m=4时的Smolenskii I型化合物。
用于ABO3金属氧化物的前体通常称为钙钛矿,其可以与基本的涂抹铋镧系元素化合物相混合,以形成具有较好电特性的分层超晶格材料。这种材料的一种细类是通过将ABO3型金属氧化物前体的一部分与(Bi1-xLanx)4Ti3O12涂抹金属氧化物前体的一部分相混合而制成的。这种材料的基本模式是A(Bi1-xLanx)4Ti4O15。这种化合物的具体例子是Sr(Bi1-xLanx)4Ti4O15,其是由SrTiO3前体与(Bi1-xLanx)4Ti3O12前体相组合而制成的;Ca(Bi1-xLanx)4Ti4O15,其是由CaTiO3前体与(Bi1-xLanx)4Ti3O12前体相组合而制成的;以及Pb(Bi1-xLanx)4Ti4O15,其是由PbTiO3前体与(Bi1-xLanx)4Ti3O12前体相组合而制成的。同样,A可以是钡。这些都是m=4时的Smolenskii I型化合物。
这种材料的另一种细类是通过将两部分的ABO3型金属氧化物前体与一部分(Bi1-xLanx)4Ti3O12涂抹金属氧化物前体相混合而制成的。这种材料的基本模式是A2(Bi1-xLanx)4Ti5O18。这种化合物的具体例子是Sr2(Bi1-xLanx)4Ti5O15,其是由两部分的SrTiO3前体与一部分的(Bi1-xLanx)4Ti3O12前体相组合而制成的;Ba2(Bi1-xLanx)4Ti5O18,其是由两部分的BaTiO3前体与一部分的(Bi1-xLanx)4Ti3O12前体相组合而制成的;以及Pb2(Bi1-xLanx)4Ti5O15,其是由两部分的PbTiO3前体与一部分的(Bi1-xLanx)4Ti3O12前体相组合而制成的。同样,A也可以是钙。这些都是m=5时的Smolenskii I型化合物。对于其它的ABO3型化合物,参见Franco Jona和G.Shirane的“Ferroelectric Crystals”(铁电晶体),Dover Publications,Inc.,纽约,N.Y.,第V章,第216-261页。
例子2-镧系元素A位材料另一类材料是在分层超晶格化合物的A位中具有镧系元素的材料。根据本发明的材料典型地具有通式(Az-1Lan[2/3]z)m-1Bi2MmO3m+3,其中,A是除了镧系元素的A位元素,M是B位元素,Lan是镧系元素,即镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥中的一种或多种,0<z≤1,并且m通常是整数,但也可以是分数。优选地,0.1≤z≤0.9,最优选地,0.1≤z≤0.5。这些化合物的一些例子是Lan2/3Bi2Ta2O9,Lan2/3Bi2Nb2O9,和Lan2/3Bi2TayNb1-yO9,其中Lan是上面提到的镧系元素,并且0≤y≤1。
例子3-组合材料由A位中的镧系元素和涂抹铋组合的材料也具有很好的电特性。这些材料通常可以写为(A1-zLan[2/3]z)m-1(Bi1-xLanx)2MmO3m+3,其中0<z≤1,0<x<1,m通常是整数,但可以是分数。这些材料的细类是A位在铋和镧系元素之间共用(share)的材料。这些材料可以写为(Bi1-zLanz)2/3(Bi1-xLanx)2B2O9,其中0<z<1,0<x<1,Lan是镧系元素,B是B位元素。
根据上面的说明可以很清楚的是,也可以写出本发明材料的其它模式。其它的可以增加掺杂物、m为分数的模式和其它元素。本发明关键的方面是使用了镧系元素与分层超晶格材料中的铋相组合。本发明的另一个方面是使用镧系元素作为分层超晶格材料中的A位元素。
4.优选制造方法的说明通常,在升高的温度下在氧气中对沉积的包含金属的薄膜进行某些形式的加热或退火对于想要得到的分层超晶格材料的形成和结晶来说是必要的。本发明实施例的一个重要的特征是,相比于现有技术,在升高的温度下的最高温度和总的加热次数被减到了最小。在本说明书中详细描述的实施例中,是在含有氧的气体中进行RTP和退火处理。但是,本发明也包括这样的实施例,其中在含有氧的气体中退火处理持续了整个时间的一部分后紧接着在惰性气体中进行退火处理。
用于制造分层超晶格材料薄膜的前体溶液的单独的前体化合物可以从下面的组中进行选择,该组包括金属醇盐、金属聚烷氧化物(metal polyalkoxide)、金属β-二酮(metal beta-diketonate)、金属二叔戊酰甲烷基盐(metal dipivaloylmethanate)、金属环戊二烯基盐(metal cyclopentadienyl)、金属烷氧基羧酸盐(metalalkoxycarboxylate)、金属羧酸盐、金属己酸乙酯(metalethylhexanoate)、辛酸盐(octanoate)和新癸酸盐(neodecanoate)。本发明关键的方面是使用过渡金属元素的醇盐作为前体,特别是作为最终的前体。可以使用的醇包括异丙醇、n-丙醇、2-甲氧基乙醇(2-methoxyethanol)、1-丁醇、1-戊醇和2-戊醇以及2,4-戊醇。金属前体化合物也可以包括金属2-己酸乙酯,其非常适合用在液态源极雾化化学沉积(“LSMCD”)技术中。单独的金属有机分解(“MOD”)前体化合物例如是通过将想要得到的化合物中的每种金属例如镝、钕、镧、锶、铋、钽或铌、或金属醇盐,与羧酸或者与羧酸以及醇相互作用,并在溶剂中溶解反应产物而形成的。上面提到的醇也可以用在该处理过程中。可以使用的羧酸包括2-己酸乙酯(2-ethylhexanoicacid)、辛酸、和新癸酸,优选的是2-己酸乙酯。可以使用的溶剂包括二甲苯、n-辛烷、乙酸正丁酯(n-butyl acetate)、n-二甲基甲酰胺(n-dimethylformamide)、2-甲氧基乙酸酯(2-methoxyethyl acetate)、甲基·异丁基甲酮(methylisobutyl ketone)和甲基·异戊基甲酮(methylisoamyl ketone)、以及许多其它的溶剂。金属、金属醇盐、酸和醇进行反应以形成金属-alkoxycarboxylate(metal-alkoxycarboxylate)、金属-羧酸盐和/或金属-醇盐的混合物,该混合物被加热并根据需要进行搅动,以形成金属-氧-金属键,并煮去任意一种通过反应而产生的具有低沸点的有机物。最初的MOD前体通常是在使用前成批地制成或产生的;而最终的前体混合物通常是在即将将其应用到衬底之前产生的。最终的准备步骤典型地包括混合、溶剂交换和稀释。当被溶解在二甲苯或n-辛烷中时,金属有机前体化合物可以储存几个月的时间。表1总结出了已被用于制造根据本发明的集成电路薄膜的用于各种镧系元素的前体。
表1金属 一个或多个化学名称镧 异丙氧基镧(Lanthanum isopropoxide)乙醇镧2-己酸乙酯镧2,4-戊二酮镧钕 异丙氧基钕六氟-2,4-戊二酮钕1,1,1-三氟-2,4-戊二酮钕镨 异丙氧基镨六氟-2,4-戊二酮镨镝 异丙氧基镝辛酸镝镱 异丙氧基镱六氟-2,4-戊二酮镱DPM镱钆 异丙氧基钆2,4-戊二酮钆铈 异丙氧基铈钷 异丙氧基钷钐 异丙氧基钐铕 异丙氧基铕铽 异丙氧基铽钬 异丙氧基钬铒 异丙氧基铒铥 异丙氧基铥镥 异丙氧基镥铋 三苯基铋三异丙氧基铋(Triisopropoxy bismuth)二叔戊酰甲烷基铋钛 异丙氧基钛二异丙氧基二叔戊酰甲烷基钛四异丙氧基钛锶 异丙氧基锶二叔戊酰甲烷基锶或二(2,2,6,6-四甲基-3,5-庚二酮)-锶或二叔戊酰甲烷基锶二(五甲基-环戊二烯基)-二(四氢呋喃)锶二(2,2,6,6,-四甲基-3,5-庚二酮)-二(1,10-菲咯啉)锶钽 异丙氧基钽五甲氧基钽五乙氧基钽五丙氧基钽铌 异丙氧基铌五氯代铌二叔戊酰甲烷基三氯铌五乙氧基铌在表1中,DPM是C11H19O2,通常称为2,2,6,6,-四甲基-3,5-庚二酮。
根据本发明,前体可以利用传统的液体沉积技术应用到衬底上,如1997年7月15日授予Paz de Araujo等人的美国专利No.5,648,114中描述的有机金属化学气相沉积(MOCVD),或者1999年1月21日出版的国际公开No.99/02756,1999年12月7日授予Solayappan等人的美国专利No.5,997,642中描述的雾化沉积法,或者1996年5月21日授予Paz de Araujo等人的美国专利No.5,519,234中描述的旋涂法,或者2000年5月2日授予Paz de Araujo等人的美国专利No.6,056,994中描述的处理过程中任意一种。在下面的例子4中,利用MOCVD技术施加了液态前体。在下面的例子5中,利用旋压处理施加了液体前体。在下面的例子6中,使用了利用雾化沉积的液体沉积处理。
图7的图表是根据本发明制造如图3中所示的铁电存储器的制造方法步骤的流程图。图7中优选的方法310利用了MOCVD技术,但是该图也包括其它的实施例。也可以使用其它的方法。尽管在本文中参考图3讨论了方法310,但清楚的是,可以使用图7中的方法和根据本发明的多种不同的方法,来制造采用集成电路领域的各种铁电结构形式中的根据本发明的其它合成物的多晶分层超晶格材料的薄膜。
在图7的步骤312中,提供半导体衬底,在步骤314中,在该半导体衬底上形成了开关。该开关典型地是MOSFET。在步骤316中,通过传统的技术形成绝缘层,以将开关元件与要形成的铁电元件间隔开。利用传统的处理过程,在绝缘层上形成图案以形成通路,在该通路中填充有导电插塞,以将开关电连接到存储电容器和集成电路的剩余部分上。在步骤318中,扩散阻挡层沉积在绝缘层上,并在其上形成图案。优选地,扩散阻挡层包括氮化钛,并且其厚度大约为10nm到20nm。优选地,该扩散阻挡层是利用氮化钛靶,通过传统的喷涂法进行沉积的,尽管也可以使用具有含氮的喷涂气体的钛靶。在步骤320中,形成底电极。优选地,该电极是由铂制成的,并被喷涂-沉积以形成厚度大约为200nm的层。在步骤322中,准备将形成想要得到的铁电薄膜的分层超晶格材料的化学前体。通常,前体溶液由市场上可以买到的含有化学前体化合物的溶液准备。这种商用溶液可以从上面提到的Alfa Aesar、日本东京Kojundo Chemical和其它地方买到。必要时,在步骤322中调整在商用溶液中提供的各种前体的浓度,以满足特定的制造或操作条件。本发明中方法的优选实施例利用最终的液态前体溶液,其含有具有相对摩尔比例的镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥元素中一种或多种。在步骤324中施加该前体薄膜。
在优选的实施例中,前体是通过MOCVD来施加的,其中该MOCVD为例如,1997年7月15日授予Paz de Araujo等人的美国专利No.5,648,114中所述的,或者1999年1月21日出版的国际公开No.99/02756中所述的。如果使用MOCVD技术,则该处理过程直接进行到图7中的第二列。在MOCVD处理后,可以任选地执行RTP处理。该RTP步骤在从400℃到750℃的固定温度范围内进行,优选的是,在600℃和700℃之间进行十秒至五分钟之间的时间,优选的是从大约三十秒到两分钟。可以使用几个RTP脉冲。紧接着该RTP处理可以任选地执行炉内退火步骤,或直接在施加处理324之后执行。如果执行炉内退火步骤,则优选的是在650℃到750℃的温度范围内执行该步骤30分钟到90分钟,更优选的是在大约650℃的温度下执行大约60分钟。
在MOCVD处理中重要的是在前体中使用过量的铋。在形成雾以及在汽化和沉积处理过程中,铋趋向于形成比通过前体中其它金属形成的化合物更容易汽化的化合物。高挥发性的铋化合物可以在雾化、汽化和沉积处理过程中泄漏出。这样,为了在最终的薄膜中得到合适的化学计量,必须在前体中添加过量的铋。
在替换处理过程中,处理过程324在衬底上形成了液体涂层,如雾化沉积或旋压,然后优选地,该处理过程进行到烘干步骤326,并从该步直接进行到RTP处理过程336、退火处理过程338,或者两个处理过程一起进行。优选地,该烘干步骤是在不超过300℃的温度下发生的,在基本上为纯氧气的加热板上,或至少在含有氧的气体中,持续不超过15分钟。优选地,RTP处理和炉内退火处理是在如上所述的温度和时间下进行的。
在第二种替换处理过程中,前体溶液的液体涂层是在步骤324中施加到衬底上的,紧接着该步骤324的是烘干处理326和氧化处理328。在这种情况下,在烘干步骤326中,将带有液态前体涂层的衬底在较低的温度下进行烘烤并烘干,优选地,该温度不超过300℃,更优选地,是100℃或更高。优选地,烘干步骤在基本上为纯氧气的加热板中,或者在至少为含有氧的气体中执行,持续进行不超过15分钟。例如,在用到的实际处理过程中,在利用完旋涂技术后,利用保持在160℃的加热板对液态前体薄膜持续烘干1分钟,形成了固态前体薄膜。在步骤328中,根据本发明的液态强氧化剂被施加到固态前体薄膜上。在优选的旋压方法中,通过旋涂施加水中的5%的H2O2过氧化氢溶液。在烘干和烘烤步骤330中,包括固态前体薄膜和强氧化剂的衬底在不超过300℃的低温下烘干并烘烤,优选地在160℃的加热板中持续1分钟,形成了固态金属氧化物薄膜。将前体薄膜暴露给强氧化剂的步骤包括步骤328和330的组合。在步骤332中,进行任选的UV处理。优选地,固态金属氧化物薄膜用波长为从150nm到350nm的紫外线辐射(“UV”)持续处理5分钟,优选地,其波长为约260nm。在加热步骤334中,固态金属氧化物薄膜在低温下在含有氧的气体中进行烘烤。如果进行任选的UV步骤332,则加热步骤334优选地包括在160℃下持续1分钟的加热板烘烤,紧接着是在260℃下持续4分钟的加热板烘烤。如果不执行任选的步骤332,则优选地,在步骤334中不进行160℃的烘烤,而是仅执行持续4分钟的260℃烘烤。优选地,进行RTP步骤336。该RTP处理可以在传统的RTP装置中进行。在从500℃到700℃的温度范围内,在从5秒钟到5分钟的时间范围内持续进行RTP。优选地,以每秒钟10℃到100℃的实际斜率,更优选地是每秒钟大约50℃,在650℃的温度下持续进行RTP处理30秒钟。来自卤素灯、红外线灯或紫外线灯的辐射提供用于RTP步骤的加热源。在下面的例子中,使用了在环境大气压力下利用卤素源的AG Associates 410型加热脉冲发生器。该RTP是在含有氧的气体,优选地是在基本上为纯氧气中执行的。在RTP处理过程中,任何残留的有机物都被烧掉并汽化了。同时,RTP中温度的快速升高促进了晶核形成;也就是说,在从步骤326到334中形成的固态薄膜中产生了分层超晶格材料的大量晶粒。这些晶粒作为核,在这些核的基础上可进行进一步的结晶。在RTP处理过程中存在的氧气帮助形成了这些晶粒。
退火步骤338典型地包括在升高的温度下,优选地在650℃下对固态金属氧化物薄膜进行炉内退火。在步骤338中的炉内退火是在含有氧的气体,通常是氧气中执行的。优选地,步骤338在氧气中的退火时间不超过90分钟。步骤336的RTP和步骤338的氧气退火可以在空气、氧含量高于空气中氧含量的富氧气体、或“缺氧”气体中进行,其中在缺氧气体中,其氧的相对量小于空气中氧的相对量。优选地,它们在氧气中执行。
无论用什么处理过程来形成分层超晶格材料薄膜,都是在步骤340中形成顶电极。优选地,通过RF喷涂铂单层来形成该电极,但也可以通过直流喷涂、离子束喷涂、真空沉积或其它适合的传统沉积处理来形成。如果希望进行电子器件设计,则在金属沉积之前,可以利用传统的光刻法和蚀刻法在铁电分层超晶格材料上形成图案,然后在沉积后的第二处理过程中形成图案以形成顶电极。在下面所述的例子中,利用传统的光刻技术和离子束蚀刻一起形成图案以形成顶电极和分层超晶格材料。
由于是沉积的,顶电极与分层超晶格材料的薄膜的粘合通常是很差的。通过在步骤342中的后期退火改善了该粘合。该后期退火可以在500℃到700℃之间的温度下在电炉内执行。低于500℃的后期退火不会改善电极的粘合,由此产生的电容器器件将趋向于非常的漏,并在更差的情况下会短路。优选地,步骤342中的后期退火是在650℃下执行的。
或者是持续了30分钟到60分钟的传统的炉内后期退火,或者是可供选择的持续了5秒钟到5分钟的RTP后期退火,或者两种方式都采用的后期退火释放了顶电极中以及在电极和铁电薄膜之间的分界面中的内部应力。同时,后期退火步骤342在由顶电极的喷涂而得到的分层超晶格材料中重建了微结构,结果改善了材料的性能。无论后期退火是在形成图案步骤之前还是之后执行的,最后的影响都是相同的,形成图案步骤是在下文中结合步骤344提到的。对于大部分的电特性,可以使用惰性气体,如氦、氩和氮,其具有与氧气所产生的结果基本相同的结果,从而减小了在升高的温度下集成电路暴露在氧气中的程度。
通常在步骤344中完成该电路,步骤344可以包括多个子步骤例如,沉积ILD、形成图案以及铣削、以及沉积布线层。
在进一步的实施例中,可以改进传统的MOCVD装置和MOCVD薄膜沉积技术以制造根据本发明的薄膜。在一种变型中,在前体薄膜的沉积过程中可以将浓的氧化气体添加到CVD反应室中。优选地,大约有容积百分比为20的臭氧被保持在CVD反应室中,同时在升高的温度,优选为大约650℃下加热衬底。在另一种变型中,在反应室中不是利用浓的氧化气体,而是可以通过如上所述在前体薄膜的CVD沉积之后,利用液态或气态的强氧化剂,来氧化前体薄膜。
在另一种实施例中,薄膜在高于大气压力的压力下暴露在含有氧的气体中。暴露在压力下可以在沉积、烘干、烘烤或退火过程中进行。优选地,压力在两个和十个大气压之间,更优选的是,在两个和五个大气压之间。
例子4在这个例子中,(Bi1-xLanx)4Ti3O12电容器是由含有铋、镧系元素和钛的前体溶液制成的。使用了包括钕、钆、镱、镨和镧的各种镧系元素,其具有各种镧系元素浓度,其中0.1≤x≤0.9。在所有的例子中,镧系元素和钛前体是异丙氧基盐,铋前体是三苯基铋,溶剂是辛烷。沉积处理为在650℃下进行MOCVD,紧接着在675℃下进行RTP处理,并在650℃下在氧中进行炉内退火。在这个例子中形成的电容器与图4中的相似,但是没有FET 551、互连554和592、以及ILD 586。一系列p型硅片衬底561被氧化,以形成二氧化硅层572。厚度大约为200nm的铂的底电极580被喷涂沉积到氧化层572上。这些在650℃下在O2中退火30分钟,并在低真空中在180℃下脱水30分钟。如上所述形成了(Bi1-xLanx)4Ti3O12薄膜,喷涂沉积铂以制成厚度大约为200nm的顶电极层584。铂和镧系元素铋钛层被铣削以形成电容器,然后执行灰化处理,紧接着在O2气体中在650℃下进行30分钟的后期退火。该电容器的厚度为大约110纳米,表面积恰好在8000μm2以下。初步结果表明,在大多数情况下都可以制成有用的电容器,尽管必须调节沉积和退火的温度以得到理想的结果。结果最好的是用钕,其显示出,所形成的电容器的极化率高达40μC/cm2,高于任何一种现有的分层超晶格材料。
例子5在这个例子中,通过雾化沉积制造出铋镧钛(BLT)集成电路薄膜电容器。如上文所表明的,用于BLT的通式优选的是(Bi1-xLanx)4Ti3O12,尽管有时在本领域中有时也使用其它等效的通式。在这个例子中,前体是异丙氧基镧、三苯基铋和异丙氧基钛的混合物,它们具有这样的比例,使得可以生产出具有通式(Bi3.25La0.75)4Ti3O12的BLT材料。在这个例子中形成的电容器与图4的相似,只是没有FET 551、互连554和592、以及ILD 586。一系列p型硅片衬底561被氧化,以形成二氧化硅层572。厚度大约为200nm的铂的底电极580被喷涂沉积到氧化层572上。这些在650℃下在O2中退火30分钟,并在低真空中在180℃下脱水30分钟。利用如上所述的前体通过旋压沉积形成BLT薄膜,紧接着在300℃下在加热板上烘干5分钟,在675℃下快速加温退火(RTA)三十秒钟,并且在650℃下在氧中进行60分钟炉内退火。喷涂沉积铂以制成厚度大约为200nm的顶电极层584。铣削铂和铋镧钛层以形成电容器,然后执行灰化处理,紧接着在O2气体中在650℃下进行30分钟的焊后退火。该电容器的厚度为大约110纳米,表面积为7850μm2。在三伏电压下的极化率,2Pr,为12.65μC/cm2,在10伏电压下升高到18.10μC/cm2。在3伏电压下的矫顽电压是175.4,在10伏电压下升高到235.12。接近5伏时的泄漏电流是10-6安培每平方厘米或更小。
执行相同的处理,只是炉内退火温度升高到700℃。这样,在3伏电压下的极化率,2Pr,此时为17.60μC/cm2,在10伏电压下升高到22.32μC/cm2。在3伏电压下的矫顽电压是177.95,在10伏电压下升高到216.79。4伏时的泄漏电流是10-6安培每平方厘米或更小。
例子6在这个例子中,由镝铋钛(DBT)液态前体溶液制造集成电路薄膜电容器,表2中示出了它的成分。
表2
溶液中含有对应于化学计量通式Dy2/3Bi2.2Ta2O9的化学前体的量。前体溶液中含有下面的初始前体二甲苯中的辛酸镝、二甲苯中的铋钛溶液和2-己酸乙酯铋。这些化学制品被组合在烧瓶中,加热并搅动,同时允许其体积从大约10ml减小到大约5ml。然后用二甲苯稀释该溶液至6ml以制成大约0.155mol/l的最终的前体。利用相应的加热步骤,使用施加前体涂层和强氧化剂的一个顺序形成电容器,并且铁电薄膜的厚度大约为100nm。
在这个例子中形成的电容器与图4的相似,只是没有FET 551、互连554和592、以及ILD 586。一系列p型硅片衬底561被氧化,以形成二氧化硅层572。厚度大约为200nm的铂的底电极580被喷涂沉积到氧化层572上。这些在650℃下在O2中退火30分钟,并在低真空中在180℃下脱水30分钟。以1800rpm在底电极580上沉积DBT前体溶液的0.12克分子的旋涂层30秒钟。通过在160℃下在O2气体中在加热板上加热1分钟来对其进行烘干,形成固态前体薄膜。通过旋涂将液态强氧化剂施加到晶片上的前体薄膜上。大约20ml的在水中的5%的H2O2被施加到晶片的中央,以500rpm旋转5秒钟,然后以1500rpm旋转30秒钟。在160℃下在O2气体中在加热板上烘干并烘烤强氧化剂的旋涂层1分钟,然后在260℃下进行4分钟。然后在O2气体中在650℃下以100℃每秒的斜率利用快速加热处理(RTP)处理晶片上形成的金属氧化物薄膜30秒钟。在“湿”O2气体的大气中在625℃下对晶片和涂层退火90分钟。该“湿”氧气体是通过在将O2注入到退火炉内之前使其作泡状经过95℃的水而制成的。这些步骤形成了厚度为大约90nm并包含镝铋钛分层超晶格材料的铁电薄膜582。喷涂沉积铂以制成厚度为大约200nm的顶电极层584。铣削铂和镝铋钛层以形成电容器,然后执行灰化处理,紧接着在O2气体中在650℃下进行30分钟后期退火处理。电容器的表面积大约为8000μm2。通过测量磁滞曲线、极化率、泄漏电流和矫顽磁场研究了根据本发明制成的镝铋钛电容器的铁电特性和电特性。用2Pr值表示的测得的剩余极化强度,Pr,在5伏时大约为16μC/cm2。其它的参数在现有技术中分层超晶格材料的范围内。
本发明关键的特征是,可以使用异丙醇盐用于所有镧系元素的前体。所有的镧系元素形成如在上面提到的化合物中有用的其它元素形成的异丙醇盐,如钛。这使得可以形成这样的前体,其中除了铋的所有金属都是异丙醇盐。这也使得在商业制造过程中可以更容易地储存、混合和广泛处理前体。
本发明的另一个特征是,在包括羧酸盐的旋压和雾化沉积处理中使用辛烷作为溶剂。镧系元素前体在辛烷中都是可溶解的,由于辛烷没有毒,所以与许多更传统的溶剂相比,它是更容易使用的溶剂。
已经描述了本发明目前认为是优选的实施例。应该理解的是,本发明可以修改为其它具体的方式,而不会脱离它的精神或主要特征。例如,尽管本发明描述的是采用的是硅衬底,但也可以使用其它的衬底,如砷化镓、锗、硅锗和其它衬底。可以使用许多其它的铁电结构和电介体结构。此外,既然已经论证了由利用镧系元素的分层超晶格材料制成的铁电体或电介体的优点和可使用性,那么就可以设计出许多其它的利用镧系元素的分层超晶格材料。因此,这些实施例应被看作是说明性的而不是限制性的。本发明的范围由所附的权利要求来表明。
权利要求
1.一种集成电路(40),包括衬底(41),和形成在所述衬底上的分层超晶格材料的薄膜(57),其特征在于,所述薄膜包括从下面的组中选出的元素,该组包括铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥。
2.一种集成电路(40),包括衬底(41)和形成在所述衬底上的分层超晶格材料的薄膜(57),所述分层超晶格材料包括A位元素、B位元素、超晶格发生器元素和阴离子,其特征在于,所述A位元素包括从下面的组中选出的元素,该组包括镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥。
3.如权利要求1或2的集成电路,其特征在于,所述分层超晶格材料的薄膜还包括从由铋和钛组成的组中选出的一种或多种材料。
4.如权利要求1的集成电路,其特征在于,所述薄膜是铁电体。
5.如权利要求2的集成电路,其特征在于,所述薄膜是铁电体。
6.如权利要求1、2、4或5的集成电路,其特征在于,所述薄膜形成存储器(500)的一部分。
7.一种集成电路(40),包括衬底(41),和形成在所述衬底上的分层超晶格材料的薄膜(57),其特征在于,所述薄膜具有通式Am-1(Bi1-xLanx)2MmO3m+3,其中A是A位元素,M是B位元素,O是氧,m是整数或分数,Lan表示从下面的组中选出的一种或多种材料,该组包括镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥,并且0<x<1。
8.如权利要求7的集成电路,其特征在于,所述通式包括(Az-1Lan[2/3]z)m-1Bi2MmO3m+3,其中,A是除了镧系元素的A位元素,M是B位元素,Lan是镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥中的一种或多种,0<z≤1,并且m是整数或分数。
9.一种集成电路(40),包括衬底(41),其特征在于,铋分层材料的薄膜形成在所述衬底(41)上,其中镧系元素部分地替换了所述铋分层材料中的所述铋。
10.如权利要求7的集成电路,其特征在于,所述分层超晶格材料具有通式(Bi1-xLanx)4Ti3O12。
11.如权利要求7的集成电路,其特征在于,0.1≤x≤0.9。
12.如权利要求11的集成电路,其特征在于,0.1≤x≤0.5。
13.如权利要求7的集成电路,其特征在于,所述通式包括A(Bi1-xLanx)2Ta1-yNbyO9,其中A=Sr、Ca、Ba或Pb,并且1≤y≤0。
14.如权利要求7的集成电路,其特征在于,所述通式包括(Bi1-xLanx)2Bi4Ti3O15。
15.如权利要求7的集成电路,其特征在于,所述通式包括A(Bi1-xLanx)4Ti4O15,其中A=Sr、Ca、Ba或Pb。
16.如权利要求7的集成电路,其特征在于,所述通式包括A2(Bi1-xLanx)4Ti5O18,其中A=Sr、Ca、Ba或Pb。
17.如权利要求8的集成电路,其特征在于,0.1≤z≤0.9。
18.如权利要求8的集成电路,其特征在于,0.1≤z≤0.5。
19.如权利要求8的集成电路,其特征在于,所述通式包括Lan2/3Bi2TayNb1-yO9,其中0≤y≤1。
20.如权利要求7的集成电路,其特征在于,所述通式包括(A1-zLan[2/3]z)m-1(Bi1-xLanx)2MmO3m+3,其中0<z≤1。
21.如权利要求20的集成电路,其特征在于,所述通式包括(Bi1-zLanz)2/3(Bi1-xLanx)2B2O9,其中B是B位元素。
22.如权利要求7或9的集成电路,其特征在于,所述薄膜是铁电体。
23.如权利要求22的集成电路,其特征在于,所述薄膜形成存储器(500)的一部分。
24.如权利要求7的集成电路,其特征在于,所述薄膜形成存储器(500)的一部分。
25.一种制造存储器件的方法,所述方法包括提供衬底(41);在所述衬底上形成存储单元(500),所述方法的特征在于,在所述衬底上形成所述存储单元的所述过程包括以薄膜(57)的形式自发地形成分层超晶格材料结构,所述分层超晶格材料包括从下面的组中选出的元素,该组包括铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥;所述方法进一步包括在所述衬底上完成所述存储器。
26.一种制造集成电路(40)的方法,所述方法包括提供衬底(41);在所述衬底上形成分层超晶格材料(57)的薄膜,所述方法的特征在于,所述分层超晶格材料包括从下面的组中选出的元素,该组包括铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥;所述方法进一步包括在所述衬底上完成所述集成电路。
27.如权利要求25或26的方法,其特征在于,所述分层超晶格材料还包括铋。
28.如权利要求25或26的方法,其特征在于,所述分层超晶格材料还包括钛。
29.如权利要求25或26的方法,其特征在于,所述元素包括镧。
30.如权利要求25或26的一种制造存储器件的方法,其特征在于,所述元素包括钕。
31.如权利要求25或26的一种制造存储器件的方法,其特征在于,所述元素包括镝。
32.如权利要求25或26的一种制造存储器件的方法,其特征在于,所述元素包括钆。
33.如权利要求25的一种制造存储器件的方法,其特征在于,所述分层超晶格材料是铁电体。
34.如权利要求26的一种制造集成电路的方法,其特征在于,所述薄膜是铁电体。
35.一种制造铁电分层超晶格材料(57)的方法,所述方法包括提供衬底(312);提供液态前体(322),该液态前体包括多种适合于形成分层超晶格材料(57)的金属,所述方法的特征在于,所述金属包括从下面的组中选出的元素,该组包括铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥;将所述前体液体施加至所述衬底(324);所述方法进一步包括在所述衬底上处理所述前体,以在所述第一衬底上形成包含所述金属的分层超晶格材料。
36.如权利要求35的方法,其特征在于,所述前体液体包括从由金属醇盐和金属羧酸盐组成的组中选出的金属化合物。
37.如权利要求35的方法,其特征在于,所述前体液体包括金属化合物,该金属化合物包括在所述组中的所述金属中的一种的醇盐。
38.如权利要求36的方法,其特征在于,所述液态前体包括辛烷。
39.如权利要求36的方法,其特征在于,所述施加和处理过程包括有机金属化学气相沉积(MOCVD)。
40.如权利要求35的方法,其特征在于,所述处理过程包括在从500℃到750℃的温度下的RTP。
41.如权利要求35的方法,其特征在于,所述前体包含超过形成所述分层超晶格材料所需化学计量的铋。
全文摘要
集成电路(40)包括分层超晶格材料(57),该分层超晶格材料包括元素铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱和镥中的一种或多种。这些元素可以是A位元素,或者是分层超晶格材料中的超晶格发生器元素。在一个实施例中,这些元素中的一种或多种代替了铋分层材料中的铋。优选地,它们也用于与下面这些元素中的一种或多种组合使用锶、钙、钡、铋、镉、铅、钛、钽、铪、钨、铌、锆、铋、钪、钇、镧、锑、铬、铊、氧、氯和氟。这些材料中的一些材料是铁电体,它们在相对较低的温度下结晶。其它材料是高介电常数材料,它们经过长时间的使用也不会退化或用坏。
文档编号C30B7/00GK1618123SQ02827688
公开日2005年5月18日 申请日期2002年9月17日 优先权日2001年11月29日
发明者卡洛斯·A·帕斯·德阿劳约, 拉里·D·麦克米伦, 纳拉杨·索拉亚鹏 申请人:塞姆特里克斯公司