专利名称:电路元件安装方法以及加压装置的利记博彩app
技术领域:
本发明涉及一种用于向基板上安装电路元件例如集成电路芯片的方法,以及一种适用于安装电路元件的加压装置。
背景技术:
作为将电路元件安装到基板上的方法,现已知有一种方法将粘结性薄膜布置在基板与电路元件之间,并将电路元件向基板挤压,然后通过加热而实现加压安装。作为粘结性薄膜,可以采用热固性各向异性导电膜,在这种情况下,元件的接合和连线可以同时进行。下面描述这一工艺。首先,各向异性导电膜被布置在基板的电路元件安装位置上,然后,电路元件被布置在导电膜上。由于各向异性导电膜的表面具有粘结性,因此通过在布置电路元件时略微挤压电路元件,电路元件可被临时固定或接合。被称作突点电极的用于电连接的电极从电路元件的后表面突出到外侧。引线在面对着突点电极的位置上安置在布置有电路元件的基板上。当电路元件在基板上被挤压时,突点电极与引线之间的各向异性导电膜被进一步挤压,并被带入导电状态,这是因为突点电极和引线是从电路元件和基板的表面上突出的。从上面的描述可以理解,各向异性导电膜具有这样的性能,即它的被加压和挤压的部分会达到导电状态。然后,施加热量,以利用各向异性导电膜将基板接合在电路元件上,从而实现实际接合。
在实际接合过程中,电路元件被一个加压杆加压,加压杆的末端区域基本上等于被加压的电路元件的表面面积,而且加热元件设在加压杆中,以同时进行加热。
如前所述,在传统装置中,加压是由硬质加压杆的末端实施的,在粘结性薄膜例如各向异性导电膜的厚度不均匀的情况下,电路元件会以倾斜状态布置。因此,不能在相等的压力下进行整个电路元件的加压,从而导致有时会出现电连接缺陷。
此外,作为加压的结果,粘结性薄膜会从侧面鼓出,因此,考虑到这一事实,需要使相邻的电路元件彼此相隔布置。结果,存在安装密度不能提高的问题。
另外,电路元件的厚度取决于其类型,而且加压杆的行程要根据所述厚度而变化。因此,电路元件必须一个接一个地被加压和加热,从而导致加工时间太长这一问题。
此外,为了在加热接合的过程中防止热量传导到相邻未被加压接合的电路元件和相应的粘结性薄膜上,需要将电路元件彼此间隔布置。因此,存在安装密度不能提高的问题。
发明内容
本发明是考虑到前述问题而研制的,本发明的第一个目的是提高电路元件的安装密度,第二个目的是减少安装所需的步骤数量。
为了解决前述技术问题,根据本发明,提供了一种用于将电路元件安装到基板上的方法,其包括以下步骤将粘结性薄膜布置在基板上,并将至少一个电路元件叠加在所述薄膜上;以及利用至少一个加压模具将所述电路元件挤压在基板上,以将电路元件接合到基板上,所述加压模具在其与电路元件相接触的表面上包括一个具有柔性的柔性层。
由于是通过柔性层来施加压力的,因此可以向电路元件上施加相等的压力,因而元件可以被更牢固地接合。即使是在具有不同厚度的多个电路元件的情况下,厚度的差异也会被柔性层吸收,因此多个元件可以同时被加压。
此外,在热固性树脂薄膜被用作粘结性薄膜的情况下,可以在利用加压模具加压的同时进行加热,以实现接合。由于多个电路元件可以如前所述同时被加压和加热,因此不会涉及到未被加热的相邻电路元件的热影响问题。这一事实可以导致更紧密地布置电路元件,从而提高安装密度。
柔性层的柔性、厚度等优选为实现各向同性挤压而设置,在各向同性挤压过程中,柔性层紧密接触叠加并整体组合着的电路元件和粘结性薄膜上的与加压模具面对着的表面以及它们的侧表面,然后从柔性层的整个外周进行挤压。通过实施各向同性挤压,可以防止各向异性导电膜从侧面鼓出。这种结构可以导致更紧密地布置电路元件,从而提高安装密度。
另外,柔性层可以包括混合有添加材料的柔性基质材料,所述添加材料被添加到基质材料中以提高柔性层的传热性能。例如,柔性层可以将一种橡胶选作基质材料,然后在基质材料中混合碳的精细颗粒或精细纤维。
由于柔性层的传热性能得到提高,因此粘结性薄膜可以被更快速地加热,从而缩短加工时间。
图1是本发明的一个实施例中的集成电路芯片安装方法的解释图,图2是一种用于安装集成电路芯片的加压装置的示意性结构图,图3是各种橡胶材料的传热特性曲线图,图4是集成电路芯片安装中的一个问题的解释图,图5是集成电路芯片安装中的另一个问题的解释图,图6是本发明的实施例中的安装方法的特性的解释图,图7是另一种用于安装集成电路芯片的加压装置的示意性结构图。
具体实施例方式
现在参照附图描述本发明的实施例。图1是根据本发明的用于安装电路元件例如集成电路芯片的方法的解释图。如图1(a)所示,引线12以预定的电路图形形成在基板10的表面上。用于实现接合并接线的热固性各向异性导电膜14以及电路元件16在预定位置布置在基板10上。被称作突点电极18的用于构成电触点的隆起部面对着基板10布置在电路元件16的表面(图中的下表面)上。引线12通过各向异性导电膜14而与突点电极18对置。换言之,引线12的设置位置取决于电路元件16的安装位置。
接下来,如图1(b)所示,设在用于与电路元件16相接触的压制模具的一部分中的柔性层22与电路元件16的表面接触。另外,压制模具在一次行程中进一步移动,以将柔性层22从侧面拉向电路元件16或各向异性导电膜14,如图中的箭头所示。
如图1(c)所示,构成压制对象的电路元件16和各向异性导电膜14在它们的周边上被从图中的上方和侧面整体挤压,以实现所谓的各向同性挤压。如前所述,连线12和突点电极18从它们布置着的表面上隆起。在被挤压时,保持在连线12和突点电极18之间的各向异性导电膜14被进一步挤压,并且所述挤压部分具有导电性,因而在连线12和突点电极18之间实现导电状态。压制模具包括加热器54、84(见图2),各向异性导电膜14被加热器加热而硬化,从而接合在电路元件16上。
图2是用于接合整体电路芯片的加压装置的示意性结构图。在该装置中,由上模30、下模32和侧模34构成了模腔36,模腔中布置着基板10、电路元件16等加压对象。上模30移向下模32,以向模腔36中的加压对象施加压力。也就是说,上模30和下模32保持并挤压基板10以及叠加/放置在基板上的各向异性导电膜14和电路元件16。
上模30包括一个连接着流体压力活塞(未示出)的上模本体46,其中一个加热板48和一个加压垫50固定在上模本体46的末端。加热板48通过穿入式螺钉52而被固定在上模本体46上。加热器54设置在加热板内侧。通过加热器54的加热,加热板48的温度升高,热量通过加压垫50传递到加压对象上。
加压垫50具有多层结构,其包括彼此结合/固定在一起的支持板56和橡胶板58。支持板56螺纹连接/结合在悬挂销62上,悬挂销62插入一个形成在上模本体46中的孔64中,并且被螺钉66从侧面固定。一个用于密封模具的O形圈63布置在支持板56的侧表面上,用于接触侧模34以降低模腔36中的压力。橡胶板58相当于图1中的柔性层22并且具有这样的柔性,即电路元件16或各向异性导电膜14可以被从周部挤压。由于具有弹性,当橡胶板58在电路元件接合之后从压力状态释放时,可以恢复原形而成为图示平板状态,而且下一次操作可以同样地进行。
橡胶板58的作用是,在平放于基板10上的电路元件16的上表面不与基板等的表面平行的情况下,吸收偏斜并以整体上均匀的方式挤压。例如,如果电路元件16的上表面不与上模30的末端表面平行,而且没有设置橡胶板58且上模30被刚性的,则具有大的压力施加在电路元件16的最高部分上。而在设有橡胶板58的情况下,电路元件16的倾斜可以被吸收。也就是说,橡胶板58在这样的程度上被用作柔性层,即能够吸收电路元件16的倾斜。因此,柔性层也可以由除橡胶之外的其它材料制成,只要该层具有所需的柔性即可。在本发明中,特别考虑到耐热性,橡胶板58由硅橡胶制成,然而也可以利用其它种类的橡胶和其它材料,如前所述。
一个支持环68布置在橡胶板58上的与支持板56相接触的那个表面的边缘上。支持板68被这样成形,即能够填装在形成于橡胶板58的边缘中的环形台肩部分中。支持环的外周表面抵靠在侧模34的内表面上。这样可以防止橡胶板58因受到压力而从各个模之间的间隙中漏出。橡胶板58的边缘的一部分被切除以形成台肩部分,支持环68被布置成填入该台肩部分中,因此,承受压力的橡胶板58将从支持环的后面向支持环施加一个压力,以将支持环68推压在侧模34上。这样可实现更牢固的密封。
侧模34通过四个流体压力缸72而被上模30悬挂/支撑着。侧模34是环形的,从而环绕着加压垫50和模腔36。在挤压/成型时间,流体压力缸72将侧模34推向下模32,以使它们紧密结合在一起。此时,流体压力缸72的反作用会将上模30向上推,但一个用于将上模30向下推压的压力充分地大于流体压力缸72的作用力,而且该压力不会明显减小。一个排孔74形成在侧模34中,用于将气体或类似物排放到模腔36之外。一个环形密封框76沿着侧模34的外周固定。密封框76构成一个密封结构,用于与一个抵靠件79一起密封住大致由各个模围绕着的空间,包括模腔36。
下模32具有用于将基板放置在其上的下模本体78,该下模本体78平放在一个固定在台座80上的加热板82上。加热器84布置在加热板82的内侧,加热器84产生的热量通过加热板82和下模本体78传到基板10和各向异性导电膜14上。抵靠在密封框76的内表面上的环形抵靠件79固定在下模本体78上。
指向下方的腿部86形成在下模本体78的四个角部。下模本体78和腿部86跨过台座80上的加热板82。腿部86上可旋转地支撑着竖直滚轮90,所述滚轮抵靠在形成于台座80上的导轨88的上表面上,并且限定了下模32在图2中的竖直位置。此外,腿部86上还可旋转地支撑着水平滚轮92,所述水平抵靠在导轨88的侧表面上,并且限定了下模32在图2中的水平位置。
如前所述,从设在上模30中的加热板48发出的热量通过橡胶板58而传递到加热对象上。橡胶通常是传热性相对较差的材料,因此存在橡胶板58这一部分阻碍热量从加热板48传出的可能性。在本实施例中,橡胶板58采用的材料是能够更好地传导热量的橡胶材料,如后文所述。
图3是普通橡胶材料和本发明的装置中使用的橡胶材料的传热特性比较图。在本图中,几种不同的橡胶材料层合在一起形成台座上的具有柔性的材料,其温度变化如图中的细实线A所示,而所述橡胶材料中的每一种的上表面的温度变化也在图中示出。粗虚线B表示普通硅橡胶材料的温度变化。粗实线C表示混合有30%重量的精细碳颗粒或精细碳纤维例如碳晶须的硅橡胶的温度变化,粗单点划线D表示混合有15%碳晶须的硅橡胶的温度变化。混合的碳晶须的直径为几十至几百nm,平均为200nm,长度与直径之比(l/d)为大约100。
如图3所示,同不含碳晶须的材料相比,含有25%或30%的碳晶须的材料的温度变化(升高)率更高。因此,含有碳晶须的材料达到预定温度所需的时间较短,具体地讲,大约为不含碳晶须的材料所需时间的一半,而且可以看出,传热特性得到改进。因此,作为示例,在安装电路元件时,各向异性导电膜的硬化所需时间可以缩短,因而生产率可以提高。
根据本发明的接合方法,整体放置的电路元件16和各向异性导电膜14被从周边挤压,因此各向异性导电膜14在周边的鼓出量可以减小。例如,如图4所示,当电路元件16被一个加压垫24仅从上表面挤压时,各向异性导电膜14会在周边鼓出。需要被安装的相邻元件例如电路元件16之间的间隔d需要考虑到鼓出量来设置,因此存在一定的限制,而且安装密度无法提高。根据本实施例,可以防止各向异性导电膜14鼓出,安装元件之间的间隔可以减小,因而安装密度可以提高。
另外,具有不同厚度的多个电路元件可以被同时挤压。如图5所示,在具有不同厚度的电路元件16-1、16-2需要被接合时,如果它们被一个硬质加压模挤压,则每个元件承受的压力不同,因此需要一个接一个地依次挤压和加热各个元件。然而,根据本实施例,如图6所示,由于加压模具有柔性层22,因此,因电路元件的不同厚度而造成的阶梯部分可以被吸收,因而可以利用基本相同的压力实现接合。因此,用于安装的加工时间可以显著缩短。
另外,在多个电路元件16被一个接一个地加热和接合时,用于接合的热量可能会传导到与被接合的电路元件相邻的尚未被挤压接合的电路元件和各向异性导电膜14上,因此各向异性导电膜14有时会在被接合之前就硬化了。为了防止这一点,需要在电路元件之间设置一定的间隔,以防止相邻电路元件或类似物受到热影响,而这又会对安装密度造成限制。在本实施例中,由于多个电路元件16可以被同时加热/接合,因此可以增加安装密度。
另外,具有良好传热特性的橡胶材料被用作加压模的柔性层,如前所述。因此,在需要在挤压过程中快速升高和降低温度的情况下,例如电路元件的接合过程,本装置的特性,也就是柔性材料的传热特性,是令人满意的,并且是有效的。
图7是根据本实施例的加压装置的另一个例子的结构示意图。该加压装置适于将电路元件102安装在基板100的前后表面上。位于基板100的上下方的结构基本上相对于基板100对称。在下面的描述中,相同的上下方构成元件以相同的附图标记表示,为了说明,A和B添加在每个附图标记后面,特别是在这些元件需要被区分开时。
该装置包括一个加压模104,其保持并挤压基板100和电路元件102,以及一个侧模106,其被设置成环绕着加压模104的侧面并且支撑着基板100的端部。加压模104包括一个加压模本体108,其连接着一个流体压力活塞(未示出),而且加热板110和加压垫112固定在加压模本体108的末端上。加热板110通过穿入式螺钉而被固定在加压模本体108上。加热器114布置在加热板内侧。通过加热器114的加热,加热板110的温度升高,热量通过加压垫112传递到加压对象上。
挤压垫112由具有柔性和弹性的橡胶板构成,并且被结合/固定在加热板110上。用于将各个模密封的O形圈116布置在加压模本体108的侧表面上,用于接触侧模106以降低由上下方加压模104和侧模106围绕/形成的模腔中的压力。
加压垫112具有这样的功能,即在平放在基板100上的电路元件102上的与加压垫相接触的表面不平行于加压垫、电路元件102的厚度不均匀等情况下,加压垫用于吸收不规则性,并且实现均匀的整体挤压。也就是说,加压垫112在这样的程度上被用作柔性层,即电路元件102的倾斜和元件的不规则厚度可以被吸收,正如图1中的柔性层22那样。该柔性层也可以由除橡胶之外的其它柔性材料制成,只要该层具有所需的柔性即可。在本实施例中,特别考虑到耐热性,挤压垫由硅橡胶制成。前面所述的混合有15%至30%重量的碳晶须的硅橡胶也可以被采用。
侧模102通过四个支撑结构118而被悬挂/支撑在加压模104上。支撑结构104带有设在它们末端的挡块120,并且具有用于将侧模106在图中的竖直方向引导的导杆122,弹簧124用于推压侧模106以使侧模抵靠在挡块上。用于将气体从由各个模围绕着的空间(模腔)中排出的排孔126设在上方加压模本体108A中。导杆128设在上方加压模本体108A中,用于被导杆128穿过的导向筒130布置在下方加压模本体108B中,以引导上/下方加压模148A、104B的运动。
为了安装电路元件102,各向异性导电膜和电路元件被叠加/布置在基板100上,其方式与前面所述只安装在基板的一个表面上时的情况相同。各向异性导电膜平放在基板100的上表面上,电路元件被叠加/布置在各向异性导电膜上。在这种情况下,电路元件被略微挤压到各向异性导电膜上,因而被临时连接。基板100被翻转,电路元件被类似地临时连接在另一表面上。由于首先放置在基板上的电路元件被临时连接,因此即使是在基板被翻转时也不会掉落。
基板100对准设在下方侧模106B的内边缘附近的台肩部分132。另外上/下方加压模104A、104B沿着彼此接近的方向移动。首先,上/下方侧模106A、106B抵靠在一起。随着加压模104A、104B进一步彼此接近,侧模106A、106B在导杆122上相对移动,因而可以防止加压模的挤压受到阻碍。另外,柔性加压垫112保持/挤压基板100和电路元件102。同时,利用加热器114进行加热,以使前述各向异性导电膜硬化,而且电路元件102被安装。
根据本装置,电路元件可以被同时安装在前后表面上,因而安装所需的人工时间可以缩短。与前面描述的只将元件安装在基板的一个表面上时的情况相同,可以防止各向异性导电膜鼓出和未被挤压接合的元件受到热影响,而且安装密度可以因此而被提高。
在前面描述的实施例中,各向异性导电膜用于将电路元件电接合到基板上,并且将电路元件接合到基板上,然而,在只需要进行接合的情况下,可以采用不具有导电性的接合膜,以取代各向异性导电膜。例如,热固性树脂膜或类似物可以被用于通过加热和挤压安装电路元件。
权利要求
1.一种用于将电路元件安装到基板上的方法,包括以下步骤将粘结性薄膜布置在基板上,并将至少一个电路元件叠加在所述薄膜上;以及利用至少一个加压模具将所述电路元件挤压在基板上,以将电路元件接合到基板上,所述加压模具在其与电路元件相接触的表面上包括一个具有柔性的柔性层。
2.如权利要求1所述的电路元件安装方法,其特征在于,所述粘结性薄膜是热固性树脂薄膜,在所述将电路元件接合到基板上的步骤中,在挤压的同时进行加热,以将电路元件接合。
3.如权利要求1所述的电路元件安装方法,其特征在于,所述粘结性薄膜是各向异性导电膜。
4.如权利要求1至3中任一所述的电路元件安装方法,其特征在于,使所述柔性层紧密接触整体组合着的电路元件和粘结性薄膜上的与加压模具面对着的表面以及它们的侧表面,在这样的状态下进行各向同性挤压操作,从而完成所述将电路元件接合到基板上的步骤。
5.如权利要求1至4中任一所述的电路元件安装方法,其特征在于,所述将电路元件接合到基板上的步骤是同时接合多个电路元件的步骤。
6.如权利要求1至5中任一所述的电路元件安装方法,其特征在于,所述布置电路元件的步骤是将电路元件布置在基板的前后表面上的步骤,所述将电路元件接合到基板上的步骤是下述步骤分别在基板的前后表面上设置具有柔性层的加压模具,并且利用所述模具将基板与电路元件保持在一起,以将电路元件接合在基板上。
7.如权利要求1至6中任一所述的电路元件安装方法,其特征在于,所述柔性层包括混合有添加材料的柔性基质材料,所述添加材料被添加到基质材料中以提高柔性层的传热性能。
8.如权利要求1至6中任一所述的电路元件安装方法,其特征在于,所述柔性层包括柔性橡胶基质材料,基质材料中混合有碳的精细颗粒或精细纤维。
9.如权利要求8所述的电路元件安装方法,其特征在于,混合在基质材料中的碳是碳晶须。
10.如权利要求9所述的电路元件安装方法,其特征在于,柔性层中的碳晶须含量在15%至30%重量的范围内。
11.如权利要求10所述的电路元件安装方法,其特征在于,碳晶须的直径为10nm至1000nm,长度与直径之比为大约100。
12.一种加压装置,其利用多个加压模具保持、挤压并同时加热需要被加压的对象,其中,至少一个所述加压模具具有加压垫,所述加压垫包括一个设在面对着对象的部位中的具有柔性的柔性层,所述柔性层包括混合有添加材料的柔性基质材料,所述添加材料被添加到基质材料中以提高柔性层的传热性能。
13.一种加压装置,其利用多个加压模具保持、挤压并同时加热需要被加压的对象,至少一个所述加压模具具有加压垫,所述加压垫包括一个设在面对着对象的部位中的由柔性橡胶构成的柔性层,所述柔性层的橡胶中混合有碳的精细颗粒或精细纤维。
14.如权利要求13所述的加压装置,其特征在于,一个被保持/布置在基板与电路元件之间的粘结性薄膜在将电路元件安装到基板上的过程中被挤压。
15.如权利要求13或14所述的加压装置,其特征在于,所述混合的碳是碳晶须。
16.如权利要求15所述的加压装置,其特征在于,所述柔性层的橡胶中的碳晶须含量在15%至30%重量的范围内。
17.如权利要求15所述的加压装置,其特征在于,碳晶须的直径为10至1000nm,长度与直径之比为大约100。
全文摘要
各向异性导电膜(14)和电路元件(16)被叠加和布置在基板(10)上。利用具有柔性层(22)的加压模具与电路元件的接触表面进行各向同性挤压操作,同时进行加热,以将电路元件接合到基板上。由于柔性层可吸收电路元件之间的厚度差异,一次可同时挤压多个电路元件。此外,由于多个电路元件被同时加热,因此不需要像在一个接一个地加热电路元件的情况中那样考虑热量对未被加热的相邻电路元件的作用。各向同性挤压可以防止各向异性导电膜从侧面鼓出。其结果是,电路元件之间的间隔可以减小。
文档编号H05K3/32GK1554115SQ02817788
公开日2004年12月8日 申请日期2002年9月12日 优先权日2001年9月12日
发明者松野久雄, 大杉健治郎, 治郎 申请人:日机装株式会社