专利名称:铜镀液及用其镀覆基板的方法
技术领域:
本发明涉及铜镀液和使用铜镀液镀覆基板的方法。更具体地说,本发明涉及能够在诸如具有微小电路图形和小孔如盲通路孔、贯通孔等的硅晶片半导体基板或印刷电路板上提供高度可靠的铜镀层的铜镀液,以及使用这种铜镀液来镀覆铜的方法。
背景技术:
最近,堆叠法(build-up method)已经用于电子设备的电路贴装,例如蜂窝电话、个人电脑、视频设备、游戏机等等。在堆叠法中,诸如贯通孔和通路孔的小孔穿过层压板,并且在这些小孔中沉积金属使几个不同的电路层相互连接,从而构筑多层电路。在这些小孔中,金属在通路孔中的沉积通过通路孔镀覆或通路填充(via-filling)的方法来实施,通路孔指微小的盲孔(下文称作通路孔)。
对于通路孔镀覆,金属薄膜在通路孔内的侧面或底部形成,这就很难在孔上形成导电层。另外,为了保证不同电路层间具有足够的导电性,必须增加金属薄膜沉积的面积。
另一方面,金属填充入通路孔中的通路填充方法能够让金属完全填满孔洞,并且如果在填充后通路孔的表面是平坦的,那么还允许在这些孔洞上形成其它的通路孔。因此,该方法对于降低器件的尺寸是非常有利的。由于这种原因,需要从绝缘材料(绝缘层)仅能被有限变平的通路孔镀覆方法转移到可以填充层间连接孔的通路填充方法上。
常规地,通路填充通过下面的方法进行在绝缘层和处于绝缘层下面的导电层之间形成孔洞、由电解镀铜形成小柱,以及通过研磨除去沉积的铜而使表面变平。另一种方法包括通过化学镀铜只活化孔底的导电层并且通过化学镀铜选择性地堆积。再一种方法是用铜胶等填充孔洞。
在这些方法中,第一种方法需要研磨相当厚的沉积的镀铜层,而第二种方法具有需要很长时间来获得想要厚度镀铜层的缺点。第三种方法是简单的,但却具有严重的可靠性问题。因为该方法使用金属用溶剂等来分散的铜胶,因此会带来许多问题,例如有限的导电性、由于填充后体积的减小而形成空隙或收缩,以及镀层从孔内壁的剥离。
由于这些原因,在最近几年中已经建议了一种通过镀覆来完全填充通路孔的方法,并且为此发展了镀液和镀覆方法。
但是,迄今所提出的镀液和镀覆方法在实际实例中具有下面的缺点。特别地,许多建议的镀液使用填充通路孔的机理,它们使用含有强的均化组分(leveling component),例如染料型均化组分的液体。这种均化组分对扩散表现出强烈的限制并且被大量吸附在具有薄扩散层的表面上,因此金属沉积被控制在该表面上,但是在具有厚扩散层的凹陷区(如通路孔内部)相对加速。通路填充能够以这种方式实现。
尽管这种镀液适用于镀覆基板整个表面的镀板法,但是当其应用于电路事先已由抗蚀剂等图案化的基板或者具有图案和贯通孔的基板时,均化组分很容易受扩散层的厚度和镀液流速的影响。结果,金属的厚度在通路或线的中央或端部明显不同,或者在贯通孔的入口拐角或贯通孔内壁的一边上金属可能变厚,从而损害了层压层的可靠性和导电性。
尽管已经建议了使用脉冲波形的镀覆方法,但是该方法不仅需要会导致高生产成本的高成本设施,而且会引起复杂的电流控制问题。
此外,由于包含了三种或多种的添加剂组分,传统的镀液会给分析和控制带来困难。分析和控制的困难损害致密的填充性质、图案化镀覆中薄膜厚度的均匀性和保持一致性的性质,因此明显影响产品的产率和成本。
因此,发展一种高度可靠的镀覆基板,特别是那些带有小孔和用于线路的微小沟槽的基板的技术是必要的。
发明内容
作为为了解决上述问题而长时间对镀液广泛研究的结果,本发明的发明人已经发现包含特定组分的铜镀液表现出极好的通路填充特性和镀覆均匀性,能够镀覆共存的贯通孔而具有优越的镀覆均匀性,并且能够在具有带微小线路沟槽的电路图案的半导体晶片、印刷电路板等电子电路板上产生具有高导电可靠性的铜镀层,同时具有容易分析镀液中大多数组分的附加优点。
具体地说,本发明提供了包含胺类化合物和缩水甘油醚的反应聚合物和/或该反应聚合物季铵衍生物的铜镀液。
本发明进一步提供了一种镀覆基板的方法,该方法包括提供具有导电性的图案化基板并且使用铜镀液镀覆基板。
本发明还提供用于铜镀液的添加剂。
图1是表示使用本发明铜镀液的基板加工装置一个实施例的平面布置图。
图2是表示图1基板加工装置中空气流动图。
图3是表示图1基板加工装置中区域间的空气流动图。
图4是图1基板加工装置被放在清洁室中的实例的外视图。
图5是表示基板加工装置另一个实例的平面布置图。
图6是表示基板加工装置再另一个实例的平面布置图。
图7是表示基板加工装置进一步实例的平面布置图。
图8是表示基板加工装置再进一步实例的平面布置图。
图9是表示基板加工装置仍再进一步实例的平面布置图。
图10是表示使用本发明镀覆方法的基板加工装置流程的流程图。
图11是表示斜面/背面洗涤装置的轮廓图。
图12是表示退火装置实例的纵向截面前视图。
图13是图12的平面截面图。
图14表示由镀覆铜形成铜线路的过程的实例。
图15表示基板加工装置仍进一步实施例的全部横断面视图。
图16是表示图15基板加工装置中镀液流动的镀液流动图。
图17是非镀覆操作期间(基板接收-传送操作)图15整个基板加工装置的横断面视图。
图18是维护期间图15整个基板加工装置的横断面视图。
图19是阐明在图15基板加工装置的基板接收-传送操作期间外壳(housing)、压环(press ring)和基板间关系的横断面视图。
图20是图19的部分放大图。
图21是阐明在图15基板加工装置的镀覆和非镀覆操作期间镀液流动的图。
图22表示图15基板加工装置的拉绳-牵拉结构(wick-drawingmechanism)的放大横断面视图。
图23是图15基板加工装置的电源接触点(探针)的横断面视图。
图24是表示使用本发明镀液的基板加工装置仍进一步实例的平面图。
图25是图24沿A-A线的横断面视图。
图26是图24基板加工装置的基板保持部分和阴极部分的横断面视图。
图27是图24基板加工装置电极臂部分的横断面视图。
图28是图24基板加工装置除去外壳的电极臂部分的横断面视图。
图29是表示图24基板加工装置的阳极和镀液浸渗材料的示意图。
图30示意性地表示实例1中使用的印刷电路板中盲通路孔部分的结构。
图31表示用于在图案镀覆后测量实例1中使用的印刷电路板横断面厚度的测量点图。
图32示意性地表示实例2中使用的插件板中线路部分的结构。
图33表示用于在镀覆后测量实例2中使用的插件板横断面厚度的测量点图。
图34表示实例3中使用的贯通孔板的贯通孔横断面结构图和镀覆后膜厚测量点图。
图35是表示实例5中使用的硅晶片通路孔内壁的横断面视图。
图36是表示在使用实例5中本发明镀液5镀铜后通路孔内壁的横断面视图。
图37是表示在使用实例5中本发明镀液6镀铜后通路孔内壁的横断面视图。
图38是表示在使用实例5中本发明镀液7镀铜后通路孔内壁的横断面视图。
图39是表示在使用实例5中比较镀液1和2镀铜后通路孔内壁的横断面视图。
图40是表示在使用实例5中比较镀液3镀铜后通路孔内壁的横断面视图。
具体实施例方式
本发明铜镀液的特征在于包含胺类化合物和缩水甘油醚的反应聚合物和/或该反应聚合物季铵衍生物作为必要的组分。该组分抑制铜沉积到表面上或者突出表面,并且优选地镀覆基板的凹陷处。具体地说,该组分对用铜填充凹陷处起着添加剂的作用。
因为反应聚合物仅轻微地受镀液流速和搅拌速率的影响,而且在镀液中是稳定的,所以可以获得具有高度层积可靠性和导电性的优良铜镀层。另外,因为反应聚合物可以以比传统添加剂更多的量添加而得到更高的浓度,所以铜镀液的分析和控制变得容易。
尽管其细节还并不清晰,但反应聚合物的这种特性被认为是由于反应聚合物的结构引起的。即使氮基团在聚合物分子中并没有被阳离子化,但认为反应聚合物在镀液中微弱地荷正电。聚合物的季铵衍生物也认为被阳离子化了,因此表现出与反应聚合物相似的作用。
用作反应聚合物原材料之一的胺的实例包括乙二胺、三甲基二胺、丙二胺、己二胺、N-苯乙二胺、二甲胺、二乙醇胺、二乙氨基丙胺等等。
用作反应聚合物原材料之一的缩水甘油醚的实例包括苯基缩水甘油醚、烯丙基缩水甘油醚、o-苯基苯缩水甘油醚、丁基缩水甘油醚、缩水甘油基甲醚、缩水甘油基p-硝基苯醚、缩水甘油基异丙苯醚、缩水甘油基甲氧苯醚、缩水甘油基2-乙苯醚、乙二醇二缩水甘油醚、聚乙二醇二缩水甘油醚、甘油缩水甘油醚、聚甘油多缩水甘油醚等等。
作为胺化合物和缩水甘油醚的反应聚合物或其季铵衍生物的具体实例(下文有时称作“反应聚合物等”),给出了如下面结构式(I)-(IV)所示的化合物 式中n表示1-10的整数,并且R1和R2独立地表示氢原子、取代或未取代的具有1~10个碳原子的烷基或者取代或未取代的烯基。
式中n表示1-10的整数,R3到R5独立地表示氢原子、取代或未取代的具有1~10个碳原子的烷基或者取代或未取代的烯基,并且X-表示卤素离子。
式中n表示1-10的整数,并且R6到R9独立地表示氢原子、取代或未取代的具有1~10个碳原子的烷基或者取代或未取代的烯基。
式中n表示1-10的整数,R10到R15独立地表示氢原子、取代或未取代的具有1~10个碳原子的烷基或者取代或未取代的烯基,并且X-表示卤素离子。
给出下面结构式(V)到(XX)所示的化合物作为反应聚合物等具体的优选实例
这些反应聚合物等可以从上面描述的胺和缩水甘油醚通过传统的反应-缩合反应,或者可选地通过将反应聚合物转化成季铵盐来制备。例如,可以使用下面的缩合方法。
具体地说,结构式(V)的化合物可以通过在水中溶解乙二醇二缩水甘油醚、向该溶液中加入50%的二甲胺水溶液、室温搅拌混合物约30分钟并且在减压下缩合且干燥所得反应混合物。
结构式(IX)的化合物(季铵衍生物)可以通过在丙酮和水中溶解上面得到的结构式(V)化合物、加入烯丙基氯、加热混合物至回流并且在减压下缩合且干燥所得反应混合物。其它结构式的反应聚合物等也可以根据相似的方法获得。这些反应聚合物等可以商购,例如商标为KB-12(Goo Chemical Co.,Ltd.)。也可以使用这些商购的产品。
这些胺类化合物和缩水甘油醚的反应聚合物或该反应聚合物的季铵衍生物可以单独使用或者两种或多种组合使用。组分的浓度为铜镀液的10~1,000mg/L,并且优选地为50~500mg/L。
任何在传统铜镀液中使用的铜化合物可以用作本发明铜镀液中的铜源而不用任何特定的限定。具体实例包括硫酸铜、氧化铜、氯化铜、碳酸铜、焦磷酸铜、例如甲磺酸铜和丙磺酸铜的烷基磺酸铜、例如羟乙基磺酸铜和羟丙基磺酸铜的链烷醇磺酸铜、例如醋酸铜、柠檬酸铜和酒石酸铜的有机酸铜盐,以及铜化合物的盐。这些铜化合物可以单独使用或者两种或多种组合使用。
铜离子的浓度是铜镀液的25~75g/L,并且优选地为35~60g/L。
尽管金属铜是本发明铜镀液的主要组分,但是镀液可以包含其它金属,例如Ge、Fe、In、Mn、Mo、Ni、Co、Pb、Pd、Pt、Re、S、Ti、W、Cd、Cr、Zn、Sn、Ag、As、Au、Bi、Rh、Ru和Ir。
在本发明的铜镀液中可以使用任何有机酸和无机酸,而没有任何特定的限制,只要这种有机或无机酸可以溶解铜就行。具体的优选实例包括硫酸、链烷磺酸,例如甲磺酸和丙磺酸、链烷醇磺酸,例如羟乙基磺酸和羟丙基磺酸,以及有机酸,例如柠檬酸、酒石酸和甲酸。这些有机酸和无机酸可以单独使用或者两种或多种组合使用。维持本发明铜镀液为酸性是可取的。
有机酸或无机酸的浓度优选地为铜镀液的10~200g/L,并且更优选地为20~100g/L。
本发明的铜镀液可以进一步包含磺烷基磺酸或其盐、双硫有机酸和二硫代氨基甲酸衍生物。这些化合物是通常称作载体组分或增亮剂的添加剂。具体的实例包括下面的化合物。
(1)下面结构式(XXI)的磺烷基磺酸或其盐HS-L1-SO3M1(XXI)式中,L1表示具有1~18个碳原子的饱和或不饱和的亚烷基并且M1表示氢原子或碱金属。
(2)下面结构式(XXII)的双硫有机酸X1-L2-S-S-L3-Y1(XXII)式中,X1和Y1表示硫酸酯或磷酸酯残余,并且L2和L3表示具有1~18个碳原子的饱和或不饱和的亚烷基。
(3)下面结构式(XXIII)的二硫代氨基甲酸衍生物 式中,R3和R4表示氢原子或具有1~3个碳原子的低级烷基,L4表示具有3~6个碳原子的的亚烷基,并且X2表示硫酸酯或磷酸酯残余。
这些组分可以单独使用或者两种或多种组合使用。这些组分的浓度优选地为铜镀液的0.1~200mg/L,并且更优选地为0.3~20mg/L。
除了上述组分外,在本发明的铜镀液中优选地可以含有氯离子,其浓度以氯计算优选地为0.01~100mg/L,并且更优选地为10~60mg/L。
除了上述组分外,本发明的铜镀液可以包含通常在铜镀液中使用的聚醚,具体的聚合物例如聚乙二醇、聚丙二醇、普卢兰尼克(pluronic)型表面活性剂、季酮酸(tetronic)型表面活性剂、聚乙二醇-甘油醚、聚乙二醇-二烃基醚,以及用于减少表面张力的润湿剂、通常称作匀染剂的聚亚烷基亚胺和烷基咪唑啉化合物、烷基咪唑啉化合物、金胺及其衍生物、酞菁化合物、例如贾纳斯(Janus)绿的有机染料等等。
本发明的铜镀液可以根据传统方法来制备。方法的细节可以考虑组合物中的组分及其量来适当地确定。
现在描述使用上述铜镀液来实施本发明镀覆方法的优选过程。
本发明铜镀液施用的对象是带有导电薄膜图案的基板。基板可以带有直径约30~200μm且深度(树脂层的厚度)约20~100μm的盲通路孔。除了通路孔外,基板可以包含用于微线路的沟(或槽)或者伸入基板内的贯通孔。
本发明的镀覆方法能够确保例如硅晶片的半导体基板和表面上带有微小电路图的印刷电路板上的铜镀层具有高的导电性。基板上的微小电路图从非常小的沟和孔中形成,沟和孔用金属铜填充来提供电路线。作为本发明镀覆方法中使用的电路板的一个实例,给出了带有宽约0.05~10μm,深约0.4~1μm沟的基板。
这种基板的具体实例是印刷板,例如用于直接安装IC承载芯片的封装基板、直接安装LSI等的硅晶片和用于生产半导体芯片的硅晶片基板等。
如果需要,基板可以通过传统的方法预处理。当基板是例如硅晶片等的硅基底时,预处理过程优选地形成Ta、TaN、TiN、WN、SiTiN、CoWP、CoWB等的阻挡层。
在本发明的镀覆方法中,在镀铜前实施导电性处理,它是形成用于给基板提供电荷的金属籽层。导电性处理可以通过任何传统的导电性处理方法来实施,例如通过化学镀、使用碳或钯的直接镀覆方法、溅射、气相沉积,或者化学气相沉积(CVD)进行的金属(包括碳)涂覆处理。导电性处理通常在图案化后在基板上进行,但是图案化也可以在导电性处理后在基板上进行。
然后,导电性处理后的基板用铜镀液来镀覆铜。本发明的铜镀液通过传统方法制备。使用铜镀液的镀覆也可以在与传统硫酸盐镀覆相同的条件下实施。具体的条件可以是浴温在23~27℃之间并且阴极电流密度约为1~3A/dm2。优选地用泵通过通气或环流来搅拌。
镀覆带有盲通路孔的图案化基板和用上述本发明方法来完全填充通路孔所需的时间根据通路孔的直径和深度而变化。例如,直径100μm且深度50μm的通路孔在约2A/dm2的阴极电流密度下可能需要约60分钟的镀覆。通过镀覆操作在表面上(除了通路孔区域外)产生厚度约20μm的镀层。
在例如用于制造半导体的硅晶片的基板情况下,在约2A/dm2的阴极电流密度下镀覆约150秒足以完全填充例如直径约0.1~0.5μm,深度约0.5~1μm的通路孔或微小的线路沟槽。在此情况下,通过镀覆操作在表面上(除了通路孔区域外)产生厚度约1μm的镀层。
除了大范围可控的添加剂浓度外,本发明的一个突出特征是使用商购的普通电化学仪器利用循环伏安解吸(CVS)方法能够容易地分析所有的添加剂组分。该特征允许以稳定的方式控制添加剂的浓度并且确保高质量和高产率,导致显著的成本下降。
上述的本发明镀覆方法适用于使用许多镀覆过程和装置。作为有利地实施本发明方法的装置实例,几种带有镀覆加工部分的基板加工装置将在下面描述。
图1表示用于实施本发明镀覆方法的带有镀覆加工部分的基板加工装置一个实施例的平面布置图。如图所示,基板加工装置带有用于传送内含半导体基板的基板盒的传入-传出区520、实施加工,包括镀覆加工的加工区530,以及用于在加工后洗涤并干燥半导体基板的洗涤-干燥区540。洗涤-干燥区540安置在传入-传出区520和加工区530之间。在传入-传出区520和洗涤-干燥区540上提供分区521,并且在洗涤-干燥区540和加工区530上提供分区523。
分区521为在传入-传出区520和洗涤-干燥区540间传送半导体基板提供了一个通道(没有显示)。还提供了一个用于关闭并打开通道的挡板522。分区523也为在洗涤-干燥区540和加工区530间传送半导体基板提供了一个通道(没有显示),并且提供了一个用于关闭并打开通道的挡板522。单独设计洗涤-干燥区540和加工区530来供气和排气。
具有这种配置的半导体板线路基板加工装置被安装在清洁室中。设定每个区的压力使之满足下面的关系(传入-传出区520的压力)>(洗涤-干燥区540的压力)>(加工区530的压力)。
另外,设置传入-传出区520的压力低于清洁室的压力。在此方式下,空气从加工区530流向洗涤-干燥区540,从洗涤-干燥区540流向传入-传出区520,而阻止其从传入-传出区520流向清洁室。
在传入-传出区520中提供装载装置520a和卸载装置520b,用于容纳装有半导体基板的基板盒。在洗涤-干燥区540中提供洗涤部分541和干燥部分542,每个一对,用于镀覆过程后的后处理。在洗涤-干燥区540中还提供一个运输部分(输运机械手)543来传送半导体基板。尖部带有海绵的铅笔型洗涤器或者带有海绵的辊式洗涤器可以用作洗涤部分541。半导体基板通过高速旋转被脱水并干燥类型的干燥器可以用作干燥部分542。
在加工区530中,装备有用于半导体基板镀覆操作预处理的预处理容器531和用于铜镀覆操作的镀覆容器532(即本发明的镀覆装置,可应用在下面基板加工装置中镀覆的装置),以及用于传送半导体基板的运输部分(输运机械手)533。
图2表示空气在基板加工装置中的流动。在洗涤-干燥区540中,新鲜空气借助管道546从外面进入,通过风扇被迫经过高性能的过滤器544进入装置中并且作为从顶棚540a向下流动的清洁空气供应给洗涤部分541和干燥部分542。大部分供应的清洁空气经过一个循环管道545从地板540b返回顶棚540a,再通过风扇被迫经过高性能的过滤器544进入装置中,并且再循环入洗涤-干燥区540。部分空气通过导管552从洗涤部分541和干燥部分542中排出。
尽管加工区530是湿润带,但是不允许颗粒附着到半导体基板的表面上。因此,在空气已经通过风扇被迫经过高性能的过滤器进入后,通过从顶棚530a向加工区530中引入向下流动的清洁空气可以阻止颗粒附着到半导体基板上。
但是,如果全部的清洁空气都取自外部来源,则必须提供并放出巨大量的空气。为此,仅通过导管533排出用于维持室内压力低于大气压力的少量空气,而大部分向下流动的空气经管道534、535循环供应。
因为循环的空气在通过加工区530后会包含液态化学药品的湿气和气体,所以将空气通过涤气器536和湿气分离器537、538,从而除去湿气和气体。在此方式下,不含液态化学药品湿气和气体的空气被返回顶棚530a边上的再循环导管534。接着,经风扇再迫使空气通过高性能的过滤器并作为清洁空气循环进入加工区530。
部分从地板530b进入加工区530的空气通过导管553排到外界。在此方式下,含有液态化学药品湿气和气体的空气通过导管553排到外界。从顶棚530a的导管539供应其量等价于排出气体的新鲜空气来维持加工区530内的压力低于大气压力。
设定传入-传出区520、洗涤-干燥区540和加工区530内的压力使之满足下面的关系(传入-传出区520的压力)>(洗涤-干燥区540的压力)>(加工区530的压力)。
因此,当挡板522、524(见图6)开着时,空气在如图7所示的方向上流动,即从传入-传出区520到洗涤-干燥区540,再到加工区530。如图4所示,废气通过导管552、553收集入废气管554中。
图3是表示安置在清洁室中的基板加工装置的外貌图。传入-传出区520安装有盒输送口555和控制板556的一面暴露于高度清洁的工作区558,并由清洁室中的分隔墙557分隔。另一面安置有高度清洁的使用区559。
因为洗涤-干燥区540安装在传入-传出区520和加工区530之间,并且分隔墙安装在传入-传出区520和洗涤-干燥区540间,以及洗涤-干燥区540和加工区530间,所以通过盒输送口555半导体基板从工作区558输送入制造线路的基板加工装置,并在基板加工装置中加工,而且在镀覆、洗涤和干燥后输出到工作区558。因此,没有颗粒附着到半导体的表面上,并且清洁室中高度清洁的工作区558不会被颗粒、液态化学药品和洗涤的湿气所污染。
尽管图1和图2表示带有传入-传出区520、洗涤-干燥区540和加工区530的基板加工装置的实施例,但是可以在加工区530或加工区530附近提供一个带CMP装置的区,并且使洗涤-干燥区540位于这种带有CMP装置区的加工区530和传入-传出区520之间。唯一必须的是制造线路的基板加工装置可以在干燥条件中接受半导体基板并且在洗涤和干燥条件下输送镀覆的半导体基板。
尽管制造线路半导体基板的基板加工装置在上面的实施例中已经被阐明,但是基板并政治局限于半导体基板并且由镀覆操作加工的部分并不局限于在基板表面上形成的线路部分。
图5表示制造线路半导体基板的另一个基板加工装置的平面布置图。如图所示,制造线路半导体基板的基板加工装置具有用于传入半导体基板的传入部分601、用于镀铜操作的镀铜容器602、用于用水洗涤操作的洗涤容器603,604、用于化学机械抛光(CMP)的CMP部分605、洗涤容器606,607、干燥容器608和用于传送已经形成线路层的半导体基板的传出部分609。用来传送半导体基板至这些部分和容器的基板传送装置(未显示)被安排为形成制造线路半导体基板的基板加工装置的一个装置。
在上面配置的基板加工装置中,上面未形成线路层的半导体基板从位于传入部分601的基板盒601-1中送出并传入镀铜容器602中。在镀铜容器602中,在包含由线路沟槽和线路孔(接触孔)组成的线路部分的半导体基板W的表面上形成铜镀层。
在上述镀铜容器602中已经形成铜镀层的半导体基板W被通过基板传送装置传送入水洗容器603和水洗容器604中,用水洗涤。水洗后,半导体基板W通过基板传送装置传入CMP部分605,在那里除去半导体基板W表面上除了已经形成线路沟槽和线路孔的部分外的镀覆铜层。
接下来,除了形成由线路沟槽和线路孔组成的线路部分的铜层外,已经除去不需要镀覆铜层的半导体基板W被使用半导体基板传送装置送到水洗容器606和水洗容器607中,在那里用水洗涤半导体基板W。然后在干燥容器608中干燥用水洗涤后的半导体基板W。干燥的半导体基板W作为已经完成线路层形成的半导体基板储存在传出部分609的基板盒609-1中。
图6表示制造线路半导体基板的再另一个基板加工装置的平面布置图。图6所示的基板加工装置不同于图5所示的装置,因为图6的装置附加包含镀铜容器602、用于在镀覆的铜膜上形成保护层的覆盖镀覆容器612、CMP部分615,以及水洗容器613,614,形成了包括这些附加部分和容器的装置。
在上述配置的基板加工装置中,铜镀层在包含由线路沟槽和线路孔(接触孔)组成的线路部分的半导体基板W的表面上形成。接着,在CMP部分605除了已经形成线路沟槽和线路孔的部分外,除去半导体基板W表面上的镀覆铜层。
然后,除了形成线路沟槽和线路孔的部分外,已经除去镀覆铜层的半导体基板W被送到水洗容器610中,在那里用水洗涤半导体基板W。为了进行下述的覆盖层镀覆,基板然后在用于预处理的预处理容器611中处理。预处理后的半导体基板W被送到镀铜容器612中,在那里在形成线路部分的镀覆铜层的表面上形成保护膜。举例来说,Ni-B化学镀容器可以用于形成保护膜。在形成了保护膜后,在水洗容器606和水洗容器607中水洗半导体基板W,并在干燥容器608中干燥。
然后,在铜镀层上形成的保护膜的表面被在CMP部分615中研磨并磨平。在水洗容器613中水洗并在干燥容器608中干燥后,半导体基板W储存在传出部分609的基板盒609-1中。
图7是表示仍另一个基板加工装置的平面布置图。该半导体基板加工装置具有装载-卸载部分701、镀铜装置702、第一个机械手703、第三个洗涤器704、倒转器705、倒转器706、第二个洗涤器707、第二个机械手708、第一个洗涤器709、第一个抛光机710和第二个抛光机711。用于在镀覆前后测量厚度的镀层厚度测量装置712和用于测量抛光后干燥半导体基板W厚度的厚度测量装置713被安装在第一个机械手703附近。
第一个抛光机710(研磨装置)装备有抛光台710-1、顶圈710-2、项圈盖710-3、膜厚测量装置710-4和推料机710-5。第二个抛光机711(研磨装置)装备有抛光台711-1、顶圈711-2、顶圈盖711-3、膜厚测量装置711-4和推料机711-5。
包含已经形成接触孔和线路沟槽的半导体基板W的盒701-1被放在装卸部分701的装载部分。第一个机械手从盒701-1中取出半导体基板W并送入用于形成铜镀层薄膜的镀铜装置702中。在这种情况下,籽层的厚度由用于在镀覆前后测量厚度的镀层厚度测量装置712测量。镀铜操作包括半导体基板W表面的亲水性处理和随后的形成铜膜。在形成铜镀层薄膜后,在镀铜装置702中漂洗或洗涤基板。如果有时间的话,半导体基板W可以被干燥。
当用第一个机械手从装置702中取出半导体基板W时,镀覆的铜膜厚度由用于在镀覆前后测量厚度的镀层厚度测量装置712测量。在记录装置(未显示)中记录测量的结果作为半导体基板W的记录数据,并且用于判断镀铜装置702的反常情况。在测量厚度后,第一个机械手将半导体基板W送入倒转器705中,通过倒转器半导体基板W被倒转,使镀有铜的表面向下。串联或并联模式可以应用于第一个抛光机710和第二个抛光机711的抛光操作。串联模式的研磨操作如下描述。
串联模式的研磨操作包括第一个抛光机710的初级抛光和第二人抛光机711的二级抛光。第二个机械手708从倒转器中取出半导体基板W并放入抛光机710的推料机710-5中。顶圈710-2吸住推料机710-5上的半导体基板W并且使半导体基板W镀有铜的表面与研磨台710-1的抛光表面接触并压到其上面,由此进行第一次抛光。在第一次抛光中镀覆的铜膜基本上被磨光。研磨台710-1的抛光表面由例如IC1000的发泡聚氨酯垫片,或者其中固定或填充有抛光颗粒的材料构成。镀覆的铜膜通过抛光表面和半导体基板W的相对运动被研磨。
在研磨镀覆的铜膜后,半导体基板W用顶圈710-2返回到推料机710-5上。第二个机械手708取出半导体基板W并放入第一个洗涤器709中。在这种情况下,液态化学试剂可以喷洒到推料机710-5上的半导体基板W的表面或背面上,从而除去颗粒或使颗粒更加不可附着。
在用第一个洗涤器709洗涤后,第二个机械手708取出半导体基板W并放到第二个抛光机711的推料机711-5上。顶圈711-2吸住推料机711-5上的半导体基板W并且使半导体基板W具有形成的阻挡层的表面与抛光台711-1的抛光表面接触并压到其上面,由此进行第二次抛光。阻挡层在第二次抛光被磨光。在某些情况下,在初级抛光中没有被磨光的铜膜和氧化物膜也被磨光。
研磨台711-1的研磨表面由例如IC1000的发泡聚氨酯垫片,或者其中固定或填充有抛光颗粒的材料构成。镀覆的铜膜通过抛光表面和半导体基板W的相对运动被磨光。在这种情况下,二氧化硅、氧化铝、二氧化铈等可以用作抛光颗粒或浆料。根据薄膜的类型调节液态化学试剂。
第二次抛光操作的结束通过使用光学型膜厚测量装置测量阻挡层的膜厚来检测(当厚度变成0时结束操作),或者通过表面检测包含SiO2的绝缘层来确定。为了测量氧化物薄膜的厚度,在抛光台711-1的附近安装具有图像处理功能的膜厚测量装置711-4。结果作为半导体基板W的加工记录储存,或者用于判断半导体基板W在二次抛光后是否需要传送入下一步骤。当发现半导体基板W没有达到二次抛光的终点时,基板可以被再次抛光。如果发现半导体基板W已经被抛光超过任何反常情况的预定值时,中止基板加工装置的抛光操作,防止次品数量的增加。
在二次抛光操作后,半导体基板W用项圈711-2被传送到推料机711-5上。使用第二个机械手708取出推料机711-5上的半导体基板W。在这种情况下,液态化学试剂可以喷洒到推料机711-5上的半导体基板W的表面或背面上,从而除去颗粒或使颗粒更加不可附着。
第二个机械手将半导体基板W送到第二个洗涤器707中,在那里洗涤半导体基板W。第二个洗涤器707与第一个洗涤器709具有相同的配置。在洗涤溶液中用PVA海绵擦洗半导体基板W的表面,洗涤溶液通过向纯水中加入表面活性剂、螯合剂和pH调节剂,从而除去颗粒的方法来制备。半导体基板W的背面用从喷嘴中注入的例如DHF的强化学溶液处理来蚀刻散开的铜。如果没有铜散开的问题,背面可以用PVA海绵卷使用相同的化学溶液擦洗来清洗表面。
在洗涤操作后,第二个机械手708取出半导体基板W并放入倒转器706中,倒转半导体基板W。然后第一个机械手703取出倒转的半导体基板W并放入第三个洗涤器704中。在第三个洗涤器中,由超声波振动激发的强声波(mega-sonic)水被投射到半导体基板W的表面上洗涤半导体基板W。两者选一地,半导体基板W的表面可以用公知的铅笔型海绵使用洗涤溶液来洗涤,洗涤溶液通过向纯水中加入表面活性剂、螯合剂和pH调节剂,从而除去颗粒的方法来制备。然后半导体基板W通过旋转干燥的方法干燥。
当使用安装在抛光台711-1附近的厚度测量装置711-4测量膜厚时,半导体基板W被放入放在装卸701部分的卸载口上的盒中。
图8表示仍另一个基板加工装置的平面装置图。该基板加工装置不同于图7所示的基板加工装置,因为它装备有覆盖层镀覆装置750来代替图7所示的镀铜装置702。
包含带有镀覆铜膜的半导体基板W的盒701-1被放在装卸部分701上。从盒701-1中取出半导体基板W并送到第一个抛光机710或第二个抛光机711上,在那里研磨铜膜的表面。研磨后,半导体基板W被送到第一洗涤器709中洗涤。
在第一个洗涤器709中洗涤过的半导体基板W被送到覆盖层镀覆装置750中,在镀覆铜膜的表面上形成保护膜,从而阻止后者在大气中氧化。覆盖有保护膜的半导体基板W通过第二个机械手708从覆盖层镀覆装置750中送到第二个洗涤器707中,在那里用纯水或去离子水洗涤半导体基板W。洗涤后,半导体基板W返回到放在装卸部分701上的盒701-1中。
图9表示仍另一个基板加工装置的平面装置图。该基板加工装置不同于图8所示的基板加工装置,因为它装备有退火镀覆装置751来代替图8所示的第一个洗涤器709。
由第一个抛光机710或第二个抛光机711研磨并在第二个洗涤器707中洗涤过的半导体基板W被送到覆盖层镀覆装置750中,在镀覆铜膜的表面上形成保护膜。覆盖有保护膜的半导体基板W通过第一个机械手703从覆盖层镀覆装置750中送到第三个洗涤器704中,在那里洗涤半导体基板W。
在第一个洗涤器709中洗涤过的半导体基板W被送到退火装置751中退火。退火将镀覆的铜转化成合金并增加电子迁移的电阻。退火后的半导体基板W从退火装置751中送到第二个洗涤器707中,在那里用纯水或去离子水洗涤。洗涤后,半导体基板W返回到放在装卸部分701上的盒701-1中。
图10是表示基板加工装置中加工流程的流程图。装置中每个步骤将根据流程图来描述。用第一个机械手831从放在装卸装置820上的盒820a中取出的半导体基板W被放入第一个校准器-厚度测量仪(aligner-thickness measurer)841中,要镀覆的表面向上。在这种情况下,为了确定膜厚测量的位置标准点,在获得镀覆铜膜前半导体基板的膜厚数据之前校准膜厚测量的刻痕。
然后通过第一个机械手831将半导体基板W送到阻挡层形成装置811中。阻挡层形成装置811是化学镀Ru在半导体基板上形成阻挡层的装置。形成Ru薄膜作为阻止铜膜扩散入半导体装置层间绝缘材料(例如由SiO2形成的薄膜)中的薄膜。通过第一个机械手831将从洗涤和干燥步骤前进的半导体基板W送到第一个校准器-厚度测量仪841上,测量半导体基板的厚度,即阻挡层的厚度。
测量厚度后,第二个机械手832将半导体基板输送到形成籽层的装置812,通过化学镀铜在阻挡层上形成籽层。在输送到浸渍镀覆装置813前,通过第二个机械手832将从洗涤和干燥步骤前进的半导体基板W送到第二个校准器-厚度测量仪842上。铜镀层的刻痕由第二个校准器-厚度测量仪842校准。在这种情况下,如果需要在镀铜前可以再次测量半导体基板的膜厚。
在校准刻痕后,由第三个机械手833将半导体基板送到镀铜的镀覆装置813中。通过第三个机械手833将从洗涤和干燥步骤前进的半导体基板W送到斜面/背面洗涤装置816中,除去半导体基板端部不需要的铜膜(籽层)。在斜面/背面洗涤装置816中,蚀刻斜面并且在事先指定的时间内用化学溶液,如氢氟酸洗掉附着到半导体基板背面的铜。在这种情况下,在半导体基板前进到斜面/背面洗涤装置816中之前,用第二个校准器-厚度测量仪842测量半导体基板的膜厚。斜面的蚀刻时间可以根据镀覆形成的所得铜膜厚度来任意变化。通过斜面蚀刻要蚀刻的区域是基板的周边,那里没有形成线路,即使形成了任何线路也没有用作芯片。斜面部分包括在该区域中。
通过第三个机械手833将洗涤和干燥步骤后从斜面/背面洗涤装置816中前进的半导体基板W送到基板倒转机843上,并且倒转使镀覆的表面面向下,接着通过第四个机械手834将其送到退火装置814中稳定线路。在退火处理前和/或后,半导体基板被送到第二个校准器-厚度测量仪842上,测量在半导体基板上形成的铜膜的厚度。此后,通过第四个机械手834将半导体基板送到第一个抛光机821上,抛光铜层和籽层。
可选的磨料颗粒,包括确保平坦表面的固定磨料颗粒可以用于抛光,阻止表面变成凹形。在第一个抛光机中完成研磨后,通过第四个机械手834将半导体基板送到第一个洗涤装置815中洗涤。在洗涤操作中,在半导体基板的两面(表面和背面)放置大约与半导体基板相同长度的滚筒。在旋转半导体基板和滚筒并且注入纯水或去离子水时擦洗半导体基板。
在第一次洗涤完成后,通过第四个机械手834将半导体基板送到第二个抛光机822上来抛光半导体基板上形成的阻挡层。任何可选的磨料颗粒,包括确保平坦表面的固定抛光颗粒可以用于研磨,阻止表面变成凹形。在第二个抛光机中完成研磨后,通过第四个机械手834将半导体基板再次前进到第一个洗涤装置815中来擦洗半导体基板。洗涤后,通过第四个机械手834将半导体基板前进到第二个基板倒转器844上,并且倒转使镀覆的表面面向上,然后通过第三个机械手833将其放到临时基板台845上。
通过第二个机械手832将半导体基板从临时基板台845上送到覆盖层镀覆装置817中,从而在铜表面镀覆镍-硼阻止铜在大气中氧化。通过第二个机械手832将覆盖了保护膜的半导体基板从覆盖层镀覆装置中送到第三个膜厚测量器846中测量铜膜的厚度。然后,通过第一个机械手831将半导体基板前送到第二个洗涤装置818中,从而用纯水或去离子水洗涤半导体基板。洗涤后,通过第一个机械手831将半导体基板送回到放在装卸部分820上的盒820a中。
校准器-厚度测量仪841和校准器-厚度测量仪842确定基板刻痕的位置并且测量膜厚。
在斜面/背面洗涤装置816中,从边缘(斜面)蚀刻铜并且同时洗涤背面。另外,可以在半导体基板表面上的线路部分控制自然氧化的铜膜的生长。图11表示斜面/背面洗涤装置816的轮廓图。如图11所示,斜面/背面洗涤装置816在带有底层的圆柱形防水壳内装备有基板支持部分922,周来水平支载基板W并且使其高速旋转,同时使用多个安装在柱体外围的旋压车床用夹头921使基板W的上表面面向上,还装备有安装在由基板支持部分922支载在基板W表面近中央的基板W上的中心喷嘴924,以及安装在基板W外围上边缘喷嘴926。中心喷嘴924和边缘喷嘴926都安装有向下的喷嘴。在基板W的背面近中央处还装备有带有向上喷嘴的背面喷嘴928。边缘喷嘴926被配置成在水平和垂直方向上可以相对于基板W自由运动。
边缘喷嘴926可以任意地位于从基板周围到中央的任何位置,并且其可移动的长度L根据基板W的尺寸和用途来确定。通常,切边的宽度C设定在2-5毫米的范围内。可以除去在设定切边宽度内镀覆的铜膜,因为旋转在界限以上,在该界限一从背面到表面上液体泄漏量会引起问题。
现在描述使用该洗涤装置洗涤的方法。首先,由基板支持部分922借助旋转夹头921水平支载的半导体基板W与基板支持部分922一起水平旋转。在这种情况下,从中心喷嘴924对基板W近中央处的表面施用酸性溶液。非氧化性酸可以用作酸性溶液。实例包括氢氟酸、盐酸、硫酸、柠檬酸、草酸等等。另一方面,从边缘喷嘴926连续或间歇地对基板W的周围施用氧化剂溶液。臭氧水溶液、过氧化氢溶液、硝酸溶液、次氯酸钠溶液可以用作氧化剂溶液。
在围绕半导体基板W外围的切边宽度C区域中的上面和边缘处形成的铜膜等被氧化剂溶液快速氧化,同时被从中心喷嘴924供应的酸性溶液蚀刻且溶解去除,并且通过该操作扩展到整个表面。以这种方式在基板外围混合氧化剂和酸性溶液可以产生比使用预先混合好的溶液所得到的侧面更陡峭的蚀刻侧面。铜的蚀刻速度根据所用溶液的浓度来确定。在基板表面电路形成区内形成的铜的任何氧化膜被即时地由酸性溶液除去并且通过基板的旋转扩展到整个表面上。因此,这种铜的氧化膜不会积累。在终止使用来自中心喷嘴924的酸性溶液后,铜的附着可以通过终止从边缘喷嘴926供应氧化剂溶液由暴露在表面上的氧化硅来控制。
另一方面,氧化剂溶液和氧化硅薄膜的蚀刻溶液被并行或交替地从背面喷嘴928施用于基板背面的中央。附着到半导体基板背面上的金属铜等与硅基板一起被氧化剂氧化,并且使用氧化硅薄膜的蚀刻溶液蚀刻除去。为了降低过程中所用化学品的数量,与用于表面的氧化剂溶液相同的溶液可以优选地用作氧化剂溶液。氢氟酸可以用作氧化硅薄膜的蚀刻溶液。在这种情况下,从降低所用化学品数量的角度来看,使用氢氟酸作为用于表面的酸性溶液是优选的。如果首先停止使用氧化剂,可以得到疏水表面;如果首先停止使用蚀刻剂溶液,则得到亲水表面。以这种方式可以根据后续处理的需要来调节背面。
在这种方式下,在除去由对基板施用酸性溶液(蚀刻溶液)而保留在基板W表面上的金属离子后,用纯水来取代蚀刻溶液,从而除去蚀刻溶液。然后,进行旋转干燥操作。铜膜在围绕半导体基板W外围的切边宽度C区域中的去除和背面上铜污染物的去除可以以这种方式在短时间,如80秒内同时实施。尽管可能在2~5毫米范围内的可选宽度内切割边缘,但是蚀刻所需的时间并不取决于边缘的切边宽度。
镀覆后和CMP步骤前的退火步骤对于CMP处理和线路的电学特性是有效的。当观察CMP处理后而未退火的宽线路表面(几微米)时,观察到许多类似于微空穴的缺陷并且整个线路的电阻增加。电阻的增加由退火得到改善。基于在未退火处理的薄线路中没有观察到空穴的事实,认为颗粒生长的程度与退火相关。具体地说,尽管颗粒在薄的线路中很难生长,但是宽的线路可以允许颗粒的生长。在退火处理中的颗粒生长期间,相信甚至由SEM(电子扫描显微镜)都很难观察到的非常小的孔在波动时向上运动,从而在线路表面上产生形成微空穴的凹陷。至于退火装置中的退火条件,当在加入2%或更少氢气的气氛中于约300~400℃下退火1~5分钟时,得到上述想要的效果。
图12和13表示退火装置814。该退火装置814具有用于加热半导体基板到例如400℃的加热板1004,加热板位于带有用于插入并取出半导体基板W的门1000的室1002的上面,以及用于通过例如冷却水流冷却半导体基板W的冷却板1006,冷却板安装在室1002的上面和下面。另外,在顶部垂直可移动地穿过冷却板1006安装有多个用来支持半导体基板W的升降栓1008。此外,以彼此面向的位置在半导体基板W和退火期间的加热板1008间安装用来引入阻止氧化的管道1010和用于排出已经引入1010并且流过半导体基板W和加热板1004间空间的气体的管道1012,并且加热板1004位于它们之间。
流过带有过滤器1014a的N2引入管1016的N2气和流过带有过滤器1014b的H2引入管1018的H2气在混合器1020中混合。用于引入气体的管道1010与在混合器1020中混合的气体流过的引入混合气体的管道1022相连。
这种配置使借助门1000载入室1002中的半导体基板W通过升降栓1008来支持,并且使升降栓1008上升,从而增加升降栓1008支载的半导体基板W和加热板1008间的距离至例如约0.1~1.0毫米。在这种条件下,半导体基板通过加热板1004加热到例如400℃,同时从气体引入管道1010引入防氧化气体,气体在半导体基板W和加热板1004间流动并且从排气管道1012排出。在这种方式下,半导体基板W被退火而不会被氧化。在完成退火前,退火操作被进行约几十秒到60秒。基板的加热温度在100~600℃的范围内选择。
在完成退火后,降低升降栓1008减少升降栓1008支载的半导体基板W和冷却板1006间的距离至例如约0~0.5毫米。然后,通过向冷却板1006引入冷却水例如约10~60秒使半导体基板W冷却到100℃或更低。冷却的半导体基板被输送到下一步骤。
尽管N2气和几个百分比H2气的混合气被用作在本实施例中防止氧化的气体,但是也可以单独使用N2气。
图15到23表示本发明基板加工装置的另一实施例。如图15所示,该基板加工装置的主体部分具有近圆柱形的容纳镀液45的镀覆加工容器46和位于镀覆加工容器46上方的用于固定基板W的头部分47。
镀覆加工容器46具有顶部开口的镀覆室49并在底部具有阳极48。在镀覆室49是提供有容纳镀液45的镀覆容器50。以固定的间隔沿着边缘安置多个镀液注射喷嘴53,每个喷嘴从镀覆容器50的内壁向镀覆容器50的中央水平注射镀液。这些镀液注射喷嘴53与镀覆容器50内垂直伸展的镀液供应管连接。
另外在本实施例中,在镀覆室49的阳极48上方提供了带有大量直径约为例如3毫米孔的多孔钢板220。这就阻止了阳极48表面上形成的黑色薄膜免受镀液45的伤害而流出。
如图21所示,镀覆容器50装备有第一镀液出口57,用于从镀覆室49的底部周围除去镀覆室49中的镀液45、第二镀液出口59,用于排出从位于镀覆容器50上部的坝58上溢流出的镀液45、第三镀液出口120,用于在溢出坝58前排出镀液45,以及以固定间隔在坝58下面提供的具有特定宽度的开口222。
这种配置允许在镀覆操作期间镀覆的量较大时从第三镀液出口120排出镀液,而且同时允许镀液流出坝58并且也从第二镀液出口59借助开口222排出,如图21(a)所示。另一方面,当镀覆操作期间供应的镀覆量小时,镀液从第三镀液出口120排出到外部,并且同时从第二镀液出口59借助开口222排出到外部,如图21(b)所示。在这种方式下,操作很容易与镀覆的量一致。
此外,如图21(d)所示,在镀液注射喷嘴53的上方,以固定的间隔沿着周边安置用来控制液体液位并连接镀覆室49和第二出口59的贯通孔224。这就允许在没有镀覆操作时通过使镀液流过贯通孔224并从第二镀液出口59处排出溶液的方法来控制镀液液面的液位。贯通孔224在镀覆操作期间还具有类似于管口的功能,因此可以控制镀液的流出。
如图16所示,第一镀液出口57借助镀液排出管60a与贮水池226相连。在镀液排出管60a中提供流速调节器61a。第二镀液出口59和第三镀液出口120连接入镀覆容器50中,然后借助镀液排出管60b直接与贮水池226连接。
进入贮水池226的镀液45经泵228从贮水池226中供给镀液控制罐40。镀液控制罐40装备有温度控制器230和用来收集并分析样品溶液的镀液分析仪232。通过单流向泵将234镀液45从镀液控制罐40中经过滤器236供应到镀铜装置156的镀液注射喷嘴53中。在镀液供给管55中提供有用于维持固定二次侧压的控制阀56,供给管从控制罐40延伸到镀铜装置156中。
现在,返回图15,在镀覆室49的近周边区提供垂直的调整环62。垂直调整环62使镀液表面的中央区通过镀覆室49中镀液45的向上液流而向上推动并且提供平稳的向下液流,而且同时均匀电流密度分布。在周边的未端还提供有固定到镀覆容器50上的水平调整环63。
另一方面,头部分47装备有可自由旋转的向下开口且侧壁上有孔94的有底圆柱形外壳70,以及垂直运动的下端带有压环240的压杆242。如图19和20所示,在外壳70的下端安装有基板支架72,它是向内伸出的环。基板支架72带有密封材料244,它也是向内伸出的环,其表面的尖端以锥形体的形状向上伸出。阴极接触点76安置在密封材料244上。另外,在基板支架72上以固定的间隔呈辐射状地提供有通风孔75,通风孔水平延伸到周边并且进一步向上倾斜地向外延伸。
如图15所示,在镀液45的液位较低时,这种配置能用吸附臂H保持住基板W,将其推入外壳70并且放到基板支架72的密封材料244的表面上,然后如图19和20所示,在从外壳70中拉出吸附臂H后,降低压环240。在这种方式下,可以通过在密封材料244和压环240间推挤其外围而保持住基板W,从而安全地密封基板W的底部,并且在基板W保持住时通过压挤它们而保持住密封材料244,同时使基板W和阴极电极接触点76电接触。
再次参照图15,外壳70与马达246的输出轴248相连并且配置成通过马达246的驱动而旋转。压杆242沿着支架258的周边以环形垂直安装在指定的位置,通过装备有导向器的汽缸252的作用,它可以借助齿轮256而自由旋转地支载在可垂直运动的滑动器254的下端,导向器被固定到围绕马达246的承载体250上。这种配置允许压杆242通过汽缸252的作用而垂直运动,同时整体随着支持基板W的外壳70而旋转。
承载体250使用通过马达260驱动而旋转的球轴承261附加到可垂直运动的滑动基262上。承载体250进一步由上外壳264围绕着,并且配置成通过马达260的驱动而与上外壳264一起垂直运动。另外,镀覆容器50在其表面上装备有在镀覆操作期间围绕着外壳70的下外壳257。
这种配置允许在升高承载体250和下外壳264的条件下在装置中进行维修,如图18所示。镀液的晶体趋向于容易附着到坝58的内壁上。但是,如果通过升高承载体250和下外壳264使大量镀液溢出坝58,就可以阻止这种镀液晶体的附着。镀覆容器50整体装备有盖子50b,它能在镀覆操作期间盖住溢出的镀液而防止镀液飞溅。通过用超级防水材料,例如HIREC(NTT Advance Technology Co.,Ltd.)涂覆底表面可以避免镀液晶体附着到盖子50b的底表面上。
在本实施例中,沿着周边在外壳70的基板支架72上部的四个点上提供用来牵拉基板W拉绳的基板拉绳-牵拉结构270。图22表示基板拉绳-牵拉结构270的细节,它具有门形支架272并固定到外壳70上,以及安装在支架上的定位块274。定位块274借助水平固定枢轴276由支架272自由旋转地支载在上部。另外,在外壳70和定位块274间安装压缩盘簧。这种配置允许借助压缩盘簧278将定位块274绕着枢轴276向前推动,以至于其下端向内伸出。上表面274a起着制动器的作用,并且与支架272的上侧面272a的底部形成接触,因此调节定位块274的运动。定位块274的内表面是向上和向外伸出的拔梢274b形态。
这种配置能在以下面的方式拉出基板的拉绳。当基板通过吸附臂,例如输运机械手而转移到保持的外壳70上并且放在基板支架72上时,如果基板的中央偏离基板支架72的中央时定位块274转向外,抵抗压缩盘簧278的弹力。如果例如输运机械手的吸附臂释放出基板,由于压缩盘簧278的弹力定位块恢复到原始位置,由此拉出基板的拉绳。
图23表示用于给阴极电极接触点76的阴极电极板208供应电力的加料接触点(探针)77。加料接触点(探针)77由活塞构成并且内附延伸到阴极电极板208上的圆柱形保护体280,因此加料接触点(探针)77被保护不受镀液的侵蚀。
下面描述使用本发明基板加工装置156的镀覆方法。首先,当基板被输送到基板加工装置156上时,输运机械手的吸附臂(未在图中显示)和面向下的由吸附臂吸附保持的基板W被从孔94处插入外壳70中。在降低吸附臂后,释放真空吸附而将基板放到外壳70的基板支架72上。然后,升高吸附臂,并从外壳70中拉出。接下来,通过在基板支架72和压环240的底部间推挤其周边而降低压环240,从而保持住基板W。
然后,从镀液注射喷嘴53中注入镀液45,同时以中等速度旋转外壳70和保持的基板W。在镀液45已经加到指定的水平几秒钟后,降低外壳70的旋转速度(例如降到100min-1)。然后,通过使电流流过阳极48和用作阴极的基板而实施电解镀覆。
在关闭电流后,降低供应镀液的量,使镀液仅能从液位控制器的贯通孔224中流出,控制器提供在如图21(d)所示的镀液注射喷嘴53的上方,因此外壳70和外壳70保持的基板被暴露于镀液液面的上方。因此外壳70和保持的基板在液面上方的位置以高速(例如500~800min-1)旋转,从而通过离心力除去镀液。在除去镀液后,停止外壳70的旋转,以至于外壳70能面向特定的方向。
在外壳70完全停止旋转后,升高压环240。接着,输运机械手28b的吸附臂从外壳70的孔94处插入外壳70中,吸附表面面向下。降低吸附臂至吸附臂能吸附基板的位置。然后,由吸附臂通过真空吸附而吸附的基板和吸附臂运动到外壳70的孔94上方的位置,从而从外壳70的孔94处输送吸附臂和保持的基板。
使用这种基板加工装置156,头部分47的结构被简化并且缩小尺寸了;当镀覆容器46中镀液的液面维持在适于镀覆操作时,实施镀覆操作,并且当液面维持在适于基板输运操作时实施镀液除去操作和基板输运操作。另外,可以阻止在阳极48表面上形成的黑色薄膜的干燥和氧化。
图24到29表示使用本发明镀覆方法的基板加工装置的再另一个实施例。如图24所示,该基板加工装置具有用于实施镀覆和辅助操作的基板加工部分2-1和邻近安装到基板加工装置加工部分2-1上并用于储备镀液盘2-2。还提供有包括电极部分2-5的电极臂部分2-6,电极部分保持在可绕着轴2-3运动的臂2-4的未端并且可以在基板加工部分2-1和镀液盘2-2间运动。
另外,在基板加工部分2-1的侧面安装用来向基板注射化学溶液,例如纯水和离子化水的预涂覆-恢复臂2-7和固定的喷嘴2-8。在本实施方案中,安置三个固定的喷嘴2-8,每个用于供应纯水。如图25和26所示,基板加工部分装备有用于支载镀覆面向上的基板W的基板支架2-9和阴极部分2-10,安装阴极部分使之在上部围绕着基板支架2-9的周边。另外,绕着基板支架2-9的周边安装用于阻止过程中所用各种化学溶液飞溅的带底近圆柱形杯2-11,以至于它能借助汽缸2-12而垂直运动。
基板支架2-9被设计成能够通过汽缸2-12在下基板输送点A和上镀覆点B,以及位于这些间的中间预处理/洗涤点C之间垂直运动。基板支架2-9可以借助旋转马达2-14和皮带2-15以可选的加速度与阴极2-10整体旋转。相对基板输送点A在电解镀铜装置支架侧面的输运机械手(未显示)的侧面上提供基板传入-传出入口(未显示)。当基板支架2-9升高到镀覆点B时,基板支架2-9保持的基板W的周边与下面描述的阴极部分2-10的密封材料2-16和阴极电极2-17形成接触。另一方面,提供杯2-11使其上端位于上述基板传入-传出入口和下面,并且当如图26中虚线所示升高时可以运动到阴极部分2-10的上方。
当基板支架2-9被升高到镀覆点B时,阴极电极2-17被压向由基板支架2-9保持的基板W的周边,从而允许向基板W供应电流。同时,密封材料2-16的内周与基板W的表面接触并挤压其周边,因此不透水地密封了周边。这不仅防止了向基板W供应的镀液从基板W的端部泄漏,而且防止了镀液污染阴极电极2-17。
如图31所示,电极臂部分2-6的电极2-5在旋转臂2-4的自由端具有外壳2-18、绕着该外壳2-18的中空支架2-19,以及阳极2-20,阳极的周边受外壳2-18和支架2-19推挤并将其固定。阳极2-20盖住外壳2-18的开口并且在外壳2-18上形成吸室2-21。引入管道2-28的镀液和用来引入并排出镀液的镀液排出管道(未显示)被连接到吸室2-21上,如图32和33所示。另外,阳极2-20具有大量在整个表面垂直分布的孔2-20b。
在该实施方案中,阳极2-20的底部装备有由水分保持材料构成的镀液浸渍材料2-22,它覆盖了阳极2-20的整个表面。通过向镀液浸渍材料2-22中添加镀液来使阳极2-20的表面变湿,因此防止了黑色薄膜落到基板镀覆的表面上,并且同时在将镀液装入基板镀覆表面和阳极2-20之间时,使除气变得容易。镀液浸渍材料2-22是由至少选自下列物质之一的化合物构成的纺织物或无纺织物或海绵状结构体聚乙烯、聚丙烯、聚酯、聚氯乙烯、聚四氟乙烯、聚乙烯醇、聚氨基甲酸酯,以及这些化合物的衍生物。还可以使用多孔陶瓷作为镀液浸渍材料2-22的材料。
镀液浸渍材料2-22如下安装在阳极2-20中。具体地说,使用大量下端有头的固定销2-25来连接镀液浸渍材料2-22和阳极2-20,以至于销不会向上脱离并且轴穿过阳极2-20。借助U形弹簧片2-26可以使固定销2-25向上运动,因此借助弹簧片2-26的弹力镀液浸渍材料2-22牢固地连接到阳极2-20的底部。在这种方式下,即使阳极的厚度随着镀覆的进程而逐渐降低,镀液浸渍材料2-22也安全地连接到阳极2-20的底部。通过这种配置可以防止由于阳极2-20和镀液浸渍材料2-22间空气的侵蚀而造成的错误镀覆。
可以使用例如直径约为2毫米的由PVC(聚氯乙烯)或PET(聚对苯二甲酸乙二醇酯)制成的圆柱形销,使它们从上面穿透阳极并且对从阳极底部冒出的销的尖端应用粘合剂,因此阳极可以粘合并固定到镀液浸渍材料2-22上。尽管可以使用镀液浸渍材料与阳极接触,但是在阳极和用于保持镀液的镀液浸渍材料间可以有间隙。间隙的大小小于20毫米,优选地从0.1~10毫米,并且更优选地从1~7毫米。当使用可溶解的阳极时,阳极从底部溶解。阳极和镀液浸渍材料间的间隙会随着时间增加约0~20毫米。
当基板支架2-9处于镀覆点B时(参见图26),上述的电极部分2-5降低至由基板支架2-9保持的基板W和镀液浸渍材料2-22间的间隙变成约0.1~10毫米,优选地约0.3~3毫米,并且更优选地从约0.5~1毫米。在这种条件下,镀液从镀液加料管中供应并加到基板W的表面(镀覆面)和阳极2-20间的空间中,从而使镀液被包含到镀液浸渍材料2-22中。然后,从镀覆电源向基板W的表面(镀覆表面)和阳极2-20间的界面施加电压,从而在基板W的镀覆表面上产生镀层。
现在描述使用这种基板加工装置156的镀覆方法。
首先,通过输运机械手68(未显示)在基板输送点A处将镀覆前的基板输送到基板支架2-9并且放到基板支架2-9上。接着,升高杯2-11,同时将基板支架2-9也升高到预处理-洗涤点C。在这种条件下,已经处于收回位置的预涂覆-恢复臂2-7被移动到相对基板W的位置。从安装在预涂覆-恢复臂2-7尖端的预涂覆喷嘴中将包含例如表面活性剂的预涂覆溶液间歇地注射到基板W的镀覆表面上。在这种情况下,由于基板支架2-9的旋转预涂覆溶液喷涂到基板W的整个表面上。然后,预涂覆-恢复臂2-7返回到收回位置,并且基板支架2-9以更大的速度旋转,从而通过离心力从基板W的镀覆表面上除去预涂覆溶液并且干燥镀覆表面。
接着,水平转动电极臂部分2-6,使电极2-5从镀液盘2-2的上方来到镀覆区的上方。然后,使电极2-5向阴极部分2-10降低。当电极2-5已经降低时,向阳极2-20和阴极部分2-10施加镀覆电压,镀液被供应到电极部分2-5的内部,然后从连接到管道上的镀液供应端口供应到镀液浸渍材料2-22中,渗入阳极2-20。在这种情况下,镀液浸渍材料2-22不会与基板W的镀覆表面形成接触,而是位于约0.1~10毫米的距离处,优选地为0.3~3毫米,并且更优选地0.5~1毫米。
如果继续供应镀液,从镀液浸渍材料2-22中渗出的包含铜离子的镀液被加入镀液浸渍材料2-22和基板W镀覆表面间的空隙中,因此基板W的镀覆表面上被镀覆铜。在这种情况下,基板支架2-9可以以低的速度旋转。
在完成镀覆过程后,升高电极臂部分2-6并且转动使电极部分2-5返回到镀液盘2-2上的位置。然后,使电极部分2-5降低到正常位置。接着,从收回位置将预涂覆-恢复臂2-7移动到相对基板W的位置,然后,使之降低,从而使用镀液回收喷嘴(未显示)回收残留在基板W上的镀液。在残留镀液回收后,预涂覆-恢复臂2-7返回到收回位置,并且向基板W的中央注入纯水,同时基板支架2-9以增加的速度旋转,从而用纯水代替基板W表面上的镀液。
在这种漂洗操作后,使基板支架2-9从镀覆点B降低到预处理-洗涤点C。基板支架2-9和阴极部分2-10通过在从静止的纯水喷嘴2-8供应纯水的同时使之旋转而用水洗涤。在这种情况下,密封材料2-16和阴极电极2-17可以与基板W同时用直接供应到阴极部分2-10的纯水或从基板W表面散射的纯水来洗涤。
在用水洗涤后,停止从静止喷嘴2-8供应纯水。基板支架2-9和阴极部分2-10以更高的速度旋转,从而通过离心力从基板W表面除去纯水并且干燥表面。密封材料2-16和阴极电极2-17也一起被干燥。干燥后,停止基板支架2-9和阴极部分2-10的旋转并且将基板支架2-9移动到基板输送点A处。
本发明并没有局限于上述的实施方案。许多修改和变化能可能在权利要求、说明书和图表中描述的技术概念的范围内。任何在本说明书或图表中没有详述的配置、结构和材料都包括在本发明技术概念的范围内,因为它们都表现了本发明的行为和作用。
实例通过实施例本发明将被更详细地描述,实施例并没有解释为限制本发明。
实例1通路孔填充性能的评价制备具有如图30所示配置的图案化基板,基板具有直径80μm且深度40μm的盲通路孔和直径150μm的焊盘,并且用化学镀铜处理提供导电性。使用LIZATRON工艺(Ebara-Udylite Co.,Ltd.)来进行化学镀铜。
在导电性处理后,使用下面七种铜镀液(本发明的镀液1-4和比较镀液1-3)来对图案化的基板镀覆铜。镀铜在25℃下实施,阴极电流密度为2A/dm2,在通气搅拌下进行60分钟。
印刷电路板中经常使用的添加剂被用于比较镀液1和3。除了添加剂类型外,比较镀液1与本发明的镀液1具有相同的配方,然而比较镀液3是用于传统印刷电路板的很慢的镀液组分。比较镀液2使用商购的添加剂来进行通路孔镀覆。
通过抛光基板图案部分并且用显微镜观察镀覆厚度的方法来评价镀覆后的通路孔填充性能。焊盘和通路孔区用于测量镀覆的厚度。图31中所示的两个点P1和P2用于焊盘区测量,对于通路孔,测量图31中的通路孔中央D。比较测量值来确定通路孔的填充性能。结果列于表1中。
(硫酸铜镀液组成)本发明的镀液11.硫酸铜(五水合) 225g/L2.硫酸(98%) 55g/L3.氯离子 60mg/L4.胺/缩水甘油醚反应聚合物*1250mg/L5.SPS *2 6mg/I.
*1 KB12(Goo Chemical Co.,Ltd.)*2结构式(XXII)中L2=L3=C3H6,X1=Y1=SO3H的化合物本发明的镀液21.硫酸铜(五水合) 150g/L2.甲磺酸(MSA) 80g/L3.氯离子 40mg/L4.胺/缩水甘油醚反应聚合物* 1150mg/L5.MPS *3 0.5mg/I.
*1同上*3结构式(XXI)中L1=C3H6,M1=Na的化合物本发明的镀液31.氧化铜70g/L2.甲磺酸(MSA) 100g/L3.氯离子40mg/L4.胺/缩水甘油醚反应聚合物*1 100mg/L5.二硫代氨基甲酸衍生物*44mg/I.
*1同上*4结构式(XXIII)中R3=R4=C2H5,L4=C3H6,X2=SO3H的化合物本发明的镀液41.氧化铜 70g/L2.丙醇磺酸 80g/L3.氯离子 60mg/L4.胺/缩水甘油醚反应聚合物*1 400mg/L5.SPS *2 2mg/I.
*1同上*2同上比较镀液11.硫酸铜(五水合) 225g/L2.硫酸(98%) 55g/L3.氯离子 60mg/L4.CU-BRI TE TH *55ml/L
*5 Ebara-Udylite Co.,Ltd.的产品比较镀液21.硫酸铜(五水合) 225g/L2.硫酸(98%) 55g/L3.氯离子 60mg/L4.通路填充镀覆的增亮剂 *6 20ml/L*6 Ebara-Udylite Co.,Ltd.的产品比较镀液31.硫酸铜(五水合) 75g/L2.硫酸(98%) 180g/L3.氯离子 60mg/L4.CU-BRITE TH *5 5ml/L*5同上(结果)表1
从表1中所示的结果可以看出,如果使用其中使用用于印刷电路板的传统添加剂的比较镀液1来镀覆,盲通路孔中镀层厚度(D)与表面相等或者略薄于表面(P1和P2焊盘区)。相比而言,使用本发明的镀液1-4在盲通路孔区可以填充孔至基本上60μm的深度。
尽管使用比较镀液2可以填充通路孔,但是近焊盘区的镀层厚度(P1阻挡侧)趋向于比孔中央(P2)的厚度更厚。这种趋势并不可取,
因为不仅可能可能不利地影响阻抗特性,而且抵制了应用并且层压期间的通路上的通路(via-on-via)形成变得困难。相比而言,当使用本发明的镀液1-4时,整个表面被均匀镀覆,而且边缘附近的镀层厚度没有增加。
实例2焊盘引线区中膜厚均匀性的评价制备如图32所示的图案化基板(线宽100μm,深度30μm),模拟用于MPU等的封装板。使用本发明的镀液2并且在与实施例1中使用的相同条件下使用实施例1中所用的比较镀液2来对图案化的基板镀覆铜,从而评价线路区膜厚的均匀性。
根据显微镜方法测量的断面膜厚以实施例1中相同的方式实施评价。测量两个点,图33所示的线端(阻挡侧)L1和中央L2来评价焊盘引线区膜厚的均匀性。结果列于表2中。
(结果)表2
从表2中可以看出,使用本发明的镀液2,线路中央(L2)和末端(L1阻挡侧)被镀覆至几乎相同的厚度。相比而言,在与实施例1中焊盘区相同的方式下,证实阻挡侧(L1)中的镀层厚度要大于中央(L2)的厚度。这些结果表明因为传统的通路填充镀覆溶液使用添加剂控制通路填充扩散速度的作用,所以镀液很容易受流体速度(搅拌速度或扩散层厚度)的影响。这可能是使用比较镀液2处理时样品中可见的镀层厚度波动的原因。相比而言,使用本发明的添加剂不管流体的流速如何,都能得到均匀厚度的镀层。膜厚的均匀性优良。
实例3贯通孔匀镀能力的评价基于实施例1和2的结果,为了调查将本发明镀液应用于贯通孔镀覆的可能性,在通孔中实施下面的匀镀能力试验。
带有直径1毫米和0.3毫米贯通孔的厚度1.6毫米的基板(FR-4)被用作样品。使用与实施例1中所用相同的LIZATRON过程对样品进行化学镀铜,形成厚度0.5μm的化学镀铜层。
使用本发明镀液1和比较镀液2在25℃,2A/dm2的电流密度下镀覆该基板的通孔70分钟。为了比较评价,使用传统镀液(比较镀液3)对贯通孔实施相同的实验。
如图34所示,通过测量贯通孔中央(左L2,右R2)和基板表面(左L1,右R1)上的镀层厚度,并且将结果应用于下面的公式的方法来确定镀覆能力(%)。另外,也测量贯通孔角落的镀层厚度(左L3,右R3)。
从1毫米贯通孔和3毫米贯通孔获得的结果分别列于表3和4中。
(匀镀能力的计算)匀镀能力(%)={(L2+R2)/(L1+R1))×100 (X)(结果直径1毫米的贯通孔)表3
表4
从表3和4中的结果可以看出,本发明的镀液表现出等同于或优于传统通孔镀液的匀镀能力。另一方面,使用比较镀液2处理的样品在贯通孔内壁的右边和左边具有明显的镀层厚度差异。另外,角落一侧的镀层厚度非常小,表明在热循环试验等期间电路断裂的高度危险。相信与实施例2中所述相同的原因可以用于解释本实施例中的膜厚差异。
实例4镀覆薄膜性质的评价镀覆铜膜的性质在印刷电路板镀铜中是重要的。在本实施例中,使用本发明镀液获得的铜膜的性质与使用印刷电路板常用镀液(比较镀液3)和用于装饰目的的镀液(比较镀液4)获得的铜膜进行比较。
(性质测量)对50μm厚的不锈钢板使用试验镀液进行镀铜,然后产品在120℃退火60分钟。从不锈钢板上剥离所形成的薄膜并且制备宽10毫米的条形试验片。通过使用拉力试验机(Shimazu Corp.生产的auto-graph AGS-H500N型)测量薄膜的伸长率和拉伸强度来评价镀覆薄膜的性质。结果列于表5中。
(硫酸铜镀液组成)比较镀液41.硫酸铜(五水合) 225g/L2.硫酸(98%) 55g/L3.氯离子 60mg/L4.装饰用镀铜增亮剂*7 10ml/L
*7 UBAC#1(Ebara-Udylite Co.,Ltd.)(结果)表5
基于实施例1-4的结果,根据下面的评价标准来评价每一项。基于每一项评价结果来做出总体评价。结果列于表6中。
每一项评价标准○适合需求△有一些适合×不适合总体评价的评价标准◎适用于所有项△适用于部分项×不适用(总体结果)表6
如上面所述,由传统上很难的图案镀覆方法来进行通路填充镀覆现在已通过使用本发明的镀液成为可能。另外,带有贯通孔和通路孔的印刷电路板可以使用本发明的镀液通过一次镀覆过程来加工。因此,可能高效地制造高性能的具有微小图案的印刷电路板,例如堆叠基板而具有高度的可靠性。
实例5镀覆微电路板的评价提供如图35所示的带有大量通路孔(直径0.2μm,深度1μm(长径比=5))的硅晶片作为微电路板样品。为了提供具有导电性的这种样品板,通过溅射方法形成100纳米厚度的铜籽层。
使用具有下面组成的镀液(本发明镀液5-7)和前面实施例中使用的比较镀液1-3在24℃、电流密度2.0A/dm2下镀覆样品板150秒。
本发明镀液51.硫酸铜(五水合)180g/L2.硫酸(98%)25g/L3.氯离子10mg/L4.胺/缩水甘油醚反应聚合物*8 200mg/L5.SPS*2 50mg/L*2同上*8结构式(XIII)的化合物本发明镀液61.硫酸铜(五水合) 180g/L2.硫酸(98%) 25g/L3.氯离子 30mg/L4.胺/缩水甘油醚反应聚合物*9 200mg/L
5.SPS*2 5mg/L*2同上*9结构式(XI)的化合物本发明镀液71.硫酸铜(五水合)150g/L2.甲磺酸(MSA) 80g/L3.氯离子40mg/L4.胺/缩水甘油醚反应聚合物 *10200mg/L5.SPS*2 50mg/L*2同上*10结构式(XVI)的化合物从使用本发明镀液5-7和比较镀液1-3镀覆的样品板来制备FIB部分。使用SEM(Hitachi,Ltd.生产的S-4700型)观察通路孔的内部。断面照片如图36-40所示。
从如图36-38所示的结果可见,由本发明镀液5-7镀覆的样品板表现出优良的填充性能而不会产生底部空隙和接缝空隙。样品没有出现产生称作过镀覆或隆起的密集图案-厚膜部分的传统问题。
另一方面,如图39所示,在由比较镀液1和2镀覆的样品板的通路孔中可以看见由于孔开口收缩引起的空隙。另外,如图40所示,在由比较镀液3镀覆的样品板的通路孔中可以见到缝形空隙,这证实了这些板涉及不利影响电学特性的危险。
使用本发明的铜镀液和镀覆方法可以获得表现出优良的通路填充性质、优越的镀层均匀性,以及对共存通孔优良均匀性的铜镀层。另外,具有高导电可靠性的铜镀层可以在电子电路基板上产生,例如半导体硅晶片和印刷电路板,其中电路图案由微小的线路沟槽形成。还可以产生允许容易地分析所有组分的镀层。因此,可以以低的成本高效地生产用于电子电路的具有微小图案的印刷电路板和基板,例如积层板而具有高度的可靠性和高性能。
权利要求
1.一种包含胺类化合物和缩水甘油醚的反应聚合物和/或该反应聚合物季铵衍生物的铜镀液。
2.根据权利要求1的铜镀液,具有25~75g/L的铜浓度。
3.根据权利要求1或权利要求2的铜镀液包含10~1000mg/L的胺类化合物和缩水甘油醚的反应聚合物和/或该反应聚合物季铵衍生物。
4.根据权利要求1到3任一项的铜镀液,包含10~200g/L的有机酸或无机酸。
5.根据权利要求1到4任一项的铜镀液,包含选自磺烷基磺酸或其盐、双硫有机化合物和二硫代氨基甲酸衍生物构成的组中的一种或多种组分,浓度为0.1~200mg/L。
6.根据权利要求1到5任一项的铜镀液,其中铜镀液是酸性的。
7.根据权利要求2到6任一项的铜镀液,其中选自硫酸铜、氧化铜、氯化铜、碳酸铜、焦磷酸铜、烷基磺酸铜、链烷醇磺酸铜和有机酸铜盐构成的组中的一种或多种铜化合物被用作铜离子源。
8.根据权利要求4到7任一项的铜镀液,其中选自硫酸、链烷硫酸和链烷醇硫酸构成的组中的一种或多种酸被用作有机酸或无机酸。
9.根据权利要求1到8任一项的铜镀液,进一步包含氯。
10.根据权利要求9的铜镀液,其中氯的浓度为0.01~100mg/L。
11.根据权利要求1到10任一项的铜镀液,允许在包含碱性组分和添加剂的镀液中分析控制所有组分。
12.一种镀覆基板的方法,该方法包括通过导电性处理来加工图案化的基板;以及使用包含胺类化合物和缩水甘油醚的反应聚合物和/或该反应聚合物季铵衍生物的铜镀液来镀覆基板。
13.一种镀覆基板的方法,该方法包括提供带有微小电路图案和在其上形成的金属籽层的电子电路板,以及使用包含胺类化合物和缩水甘油醚的反应聚合物和/或该反应聚合物季铵衍生物的铜镀液来镀覆电子电路板。
14.根据权利要求12或13的镀覆基板的方法,其中通过化学镀、使用碳或钯的直接镀覆方法、溅射、气相沉积,或者化学气相沉积、采用金属(包括碳)涂覆处理来实施所述导电性处理。
15.根据权利要求12到14任一项的镀覆基板的方法,其中镀液包含25-75g/L的铜离子。
16.根据权利要求12到15任一项的镀覆基板的方法,其中铜镀液包含10~1000mg/L的胺类化合物和缩水甘油醚的反应聚合物和/或该反应聚合物季铵衍生物。
17.根据权利要求12到16任一项的镀覆基板的方法,其中铜镀液包含10~200g/L的有机酸或无机酸。
18.根据权利要求12到17任一项的镀覆基板的方法,其中铜镀液包含选自磺烷基磺酸或其盐、双硫有机化合物和二硫代氨基甲酸衍生物构成的组中的一种或多种组分,浓度为0.1~200mg/L。
19.根据权利要求12到18任一项的镀覆基板的方法,其中铜镀液是酸性的。
20.根据权利要求15到19任一项的镀覆基板的方法,其中选自硫酸铜、氧化铜、氯化铜、碳酸铜、焦磷酸铜、烷基磺酸铜、链烷醇磺酸铜和有机酸铜盐构成的组中的一种或多种铜化合物被用作铜离子源。
21.根据权利要求17到20任一项的镀覆基板的方法,其中选自硫酸、链烷硫酸和链烷醇硫酸构成的组中的一种或多种酸被用作有机酸或无机酸。
22.根据权利要求12到21任一项的镀覆基板的方法,其中铜镀液进一步包含氯。
23.根据权利要求22的镀覆基板的方法,其中铜镀液中氯的浓度为0.01~100mg/L。
24.一种用于铜镀液的添加剂,该添加剂包含胺类化合物和缩水甘油醚的反应聚合物和/或该反应聚合物季铵衍生物、磺烷基磺酸或其盐、双硫有机化合物和二硫代氨基甲酸衍生物作为有效组分。
全文摘要
一种特征为包含胺类化合物和缩水甘油醚的反应聚合物和/或该产物季铵衍生物的铜镀液以及使用该镀液镀覆基板的方法。具有微小电路图案和例如盲通路孔或贯通孔的小孔的基板,如例如硅晶片的半导体晶片或印刷电路板,可以被高度可靠地镀覆铜。
文档编号H05K3/42GK1507505SQ0280951
公开日2004年6月23日 申请日期2002年5月9日 优先权日2001年5月9日
发明者萩原秀树, 君塚亮一, 寺岛佳孝, 丸山惠美, 三宅隆, 长泽浩, 佐保田毅, 饭村诚司, 一, 原秀树, 司, 孝, 毅, 美 申请人:荏原优莱特科技股份有限公司, 株式会社荏原制作所