专利名称:用于减小多路径信号退化的系统和方法
技术领域:
本发明涉及在信号处理期间减少信号劣变的系统和方法,尤其涉及把由图像信号,比如高清晰度电视(以下称HDTV)信号的非线性处理引起的多路径信号损失减到最少的系统和方法。
背景技术:
现代技术的发展已经在许多技术领域提供了进步。图象处理是这些领域当中的显著者之一。目前,压缩的数据使能大量的数字视频数据使用相对小的带宽传输。与本技术的发展相一致的是HDTV的出现。HDTV的出现将引出许多新的技术。例如,按照一个已知的标准,比如运动图象专家组2(下称″MPEG2″)等标准的演播室环境处理可能需要一个新的信号标准,以使有可能以最小的质量损耗和降低制作编辑以及合并HDTV信号。这种制作处理通常需要在时域中操作(即像素),这与编码图象的频域操作相对应。像素域处理需要解码输入到像素域的一个HDTV MPEG-2比特数据流。处理完成以后,产生的图像必须被编码回到一个MPEG-2比特数据流,以便作为演播室输出信号输出传递,或存储用于随后在该演播室环境中的使用。
演播室环境中的用于处理HDTV信号的一种选择是使用高比特率和受限制的图象组(下称GOP)结构。例如,可以考虑只使用帧内编码(下称I)宏数据块,或考虑一个稍复杂的GOP结构,只包括重复I和双向预测编码(下称B)图象(即IBIBI)。邻近地放置I帧可用于简化针对编辑删节和插入的处理。某些提议主张在大联盟的每秒20兆比特的HDTV比特率上大幅地增加比特率,到比如每秒129和225兆比特,其加法的附加比特可以顺应现有的OC-3和OC-12通信标准。
使用像素处理的一个主要问题是,MPEG-2解码和重新编码将需要一个处理途径,并且这通常将引起累进的信号质量降低。这种退化的最重要的原因之一是非线性处理,即HDTV信号的解量化和重新量化。考虑对于一个典型的生产过程来说可能需要的多达8个演播室处理途径的情况,必须关注和解决HDTV信号劣变的问题。
本发明的另一目标是通过限制使用在编码和解码操作中的量化值提供减小多路径损耗的一个系统和方法。
本发明的再一个目标是提供一个针对给定处理途径而把一个宏数据块量化值限制到一个从宏数据块量化值的给定设置中选择出来的一个值的系统和方法,其中该构成此给定设置给定的宏数据块量化值是从用于前面处理途径的宏数据块量化值中获得的。
本发明的另一目的是提供一个把针对给定处理途径的一个宏数据块量化值限制到等于用于前面处理途径、而由一个给定整数所除的宏数据块量化值的一个值的系统和方法。
可以根据本发明原理获得的这些和其他目的是通过执行一个第一个处理操作获得的,该第一个处理操作包括使用一个第一个量化值对于一个数据的预定单元(例如宏数据块的8×8亮度数据块、整个宏数据块等)进行编码和解码。稍后通过使用一个第二量化值对于该数据的预定单元进行编码和解码而执行一个第二处理操作。该第二量化值是从通过用各种整数值划分该第一个量化值而获得的一个或者多个整数值的一组中选择的。在至少一个实施例中,通过用等于2n的整数值划分该n个第一个量化值而获得整数值的组,其中n是一个非负整数。在第一个处理操作和第二处理操作之间,可以对于该数据的预定单元执行一个预定的像素域函数操作,比如图象幅度重置。在这些处理操作中,通过对于该数据的预定单元执行一个离散余弦变换并且量化该数据的预定单元而实现编码。类似地,通过对于该数据的预定单元执行一个相反离散余弦变换并且解量化该数据的预定单元而实现解码。
根据本发明原理的这些和其他目的还可以利用包括利用一个第一个量化值而解码一个数据的预定单元的一个解码器的系统来实现。一个量化限制器接收该第一个量化值并且产生具有一个限制值的一个第二量化值。具体地说,该第二量化值是从通过用各种整数值划分该第一个量化值而获得的一个或者多个整数值的一组中选择的。在至少一个实施例中,通过用等于2n的整数值去划分该n个第一个量化值而获得整数值的组,其中n是一个非负整数。一个编码器利用该第二量化值编码该数据的预定单元。可以提供一个函数操作单元,用于在解码器的解码操作和编码器的编码操作之间对于该数据的预定单元执行一个预定的像素域函数操作。在本系统中,解码器包括对于该数据的预定单元执行一个反离散余弦变换的装置以及用于解量化该数据的预定单元的装置。该编码器包括用于对该数据的预定单元执行一个离散余弦变换的装置,以及用于量化该数据的预定单元的装置。
附图的描述通过结合附图考虑随后详细的描述,本发明的更完整理解和许多优点将变得显见,其中
图1示出用于处理HDTV MPEG-2信号的一个示例的系统配置;图2示出图1及4中的MPEG-2编码器102和108的细节;图3示出图1及4中的MPEG-2解码器104和110的细节;和图4示出根据本发明原理用于处理HDTV MPEG-2信号的一个系统配置。
本发明的详细描述现在参考图1,示出用于处理HDTV MPEG-2信号的示例系统配置。本系统的几个部分可能在一个HDTV演播室环境中存在。图1中,输入可以作为第一输入信号100提供,代表例如YUV像素(依照MPEG-2规范),其需要被编码为用于演播室和存储的HDTV MPEG-2信号分布或作为第二输入信号101提供,代表先前编码的HDTV MPEG-2比特数据流。为了说明的简洁,随后假定只处理一个预定的视频数据单元,比如一个宏数据块的8×8亮度数据块(像素)。因此,为了说明的目的,假定该第一和第二输入信号100和101的每一个代表一个宏数据块的一个8×8亮度数据块。然而应该理解,在实践中该公开的发明(即编码和/或者解码过程)将处理根据MPEG-2规范建立的所有的宏数据块部分。
在图1中,按照本专业已知的那样,第一输入信号100提供到MPEG-2编码器102,其通过执行一个离散余弦变换(下称DCT),把该信号100编码成一HDTV MPEG-2信号103。由编码器102对于第一个输入的信号100的处理可以是在演播室输入以前的原始编码途径。稍后本公开说明书将提供编码器102的操作细节。实际上使用的比特率对于该公开的目的来说,实际上使用的比特率不是特别重要的,因为本发明主要关心的是减少多路径量化损耗。
从编码器102输出的代表一先前编码的HDTV MPEG-2比特数据流或代表HDTV MPEG-2信号103的第二输入信号101被输入到一个MPEG-2解码器104,如本专业已知的那样,该解码器104通过执行解量化操作、反DCT和取整处理操作而产生一个时(即像素)域信号105。由解码器104执行的本操作可能表示在演播室环境中的一个第一个解码途径。稍后本公开说明书将提供解码器104的操作细节。像素域信号105随后传到一个函数操作单元106,执行一个已知函数操作以便产生一个修改的像素域信号107。例如,函数操作单元106可以调节比特率、重新调整由像素域信号105表示的图像大小、或执行在演播室处理中需要的任何其它象素域函数操作。
一个第一个编码/解码误差可以被定义为在第一个输入信号100和像素域信号105之间的差的幅值。由于该输入信号是第一次量化和解量化,所以像素差(即误差)通常可以是很大。第一编码/解码误差、针对所选比特率由MPEG-2编码算法使用的量化值所确定的幅值不能被消除。使用的比特率越高,误差越低。从函数操作单元106输出的已修改的像素域信号107被随后输入到一个MPEG-2编码器108。该编码器108执行与MPEG-2编码器102相同的一个函数操作,产生一个HDTVMPEG-2信号109。由编码器108执行的本操作可能表示在演播室环境中的一个第一个编码途径。该HDTV MPEG-2信号109可以保存用于随后使用,或以随后处理途径使用。
假设执行该附加处理传送,则从编码器108输出的HDTV MPEG-2信号109被随后输入到MPEG-2解码器110,象MPEG-2解码器104那样通过执行解量化操作、反DCT和取整处理操作产生一个像素域信号111。由解码器110执行的本操作可能表示在演播室环境中的一个第二个解码途径。从解码器110输出的像素域信号111可随后传到一个函数操作单元112,执行一个已知像素域函数操作,比如比特率调整或图像幅度重置等等,以便产生一个修改的像素域信号113。
一个第二编码/解码误差可以被定义为在输入到编码器108的像素域信号107和从该解码器110输出的像素域信号111之间的差(在像素中)的幅值。假设函数操作单元106的操作是透明的并且不引入信号损失或降低质量,则第一和第二编码/解码误差表示由于该编码和解码处理所引起的损失,并且该信号劣变的主原因可能是量化并且取整处理的非线性效果。现在将说明编码器102和108、解码器104和110的操作。
图2示出图1中的MPEG-2编码器102和108的细节。图2中,DCT单元200接收第一输入的信号100(当描述编码器102时)或修改的像素域信号107(当描述编码器108时)。DCT单元200执行一个DCT,以便产生例如具有11比特系数值的一个频域输出信号201。通过使用本领域的技术人员公知的MPEG-2指定的帧内量化器矩阵加权204的适当的矩阵方程,不同地处置频域信号201的直流(下称DC)分量202和交流(下称AC)分量203。具体地说,DC矩阵计算单元205产生一个量化的直流信号206,表现对应下列MPEG-2指定方程计算出的的一个值量化DC信号值(206)=DC分量(202)//DC加权(204)在前面的方程中,符号“//”表示整数部分,对于最邻近的整数执行取整处理;一半整数值被从零取整处理掉。
类似地,一个AC矩阵计算单元207产生量化的AC信号208,其中量化的AC信号208的每一个的值都对应下列MPEG-2指定方程量化AC信号的值(208)=16*(对应AC分量(203)//对应AC加权(204)]在前面的方程中,符号*表示一个相乘操作。随后,量化的DC信号206和量化的AC信号208分别地由限幅器209和210限制。在该公开的实施例中,因为频域信号201表示11个比特系数值,所以限幅器209和210的每一个都把信号值限制在+2047和-2047之间。随后,限幅器209和210分别地提供限制的量化DC和AC信号211和212的输出。
限幅的量化AC信号212被随后输入到一个量化AC计算单元213,其借助MPEG-2指定方程式,即用于该给定宏数据块的量化值214的一个函数操作修改该信号212。由编码器的比率控制器(没示出)所选该量化值214,并且用于帮助把该比特数据流保持在一个期望比率。具体地说,一个量化AC计算单元213产生新量化的AC信号215,其中新量化的AC信号215的每一个的值都对应下列MPEG-2指定方程新量化AC信号(215)的值=[对应于量化AC信号的值(212)+符号(对应于量化AC信号(212))*((P*量化值(214))//q)]/[2*量化值(214)]其中对应一个最佳实施例的p=3并且q=4。在前面的方程中,符号″/″表示具有面对零的结果的化简的整数部分。而且该″符号″定义如下符号x=1,ifx>0;符号x=0,ifx=0;而且符号x=-1,ifx<0新量化的AC信号215的值随后由限幅器216限制。在该公开的实施例中,限幅器216把信号值限制在+2047和-2047之间,从而输出新的限幅的量化AC信号217。随后,该新的限幅的量化AC信号217与来自限幅器209的限幅的量化DC信号211组合,以便形式频域HDTV MPEG-2信号103(当描述图2中的编码器102时)或109(当描述图2中的编码器108时)。如前面描述的那样,图1的编码器102和108执行由MPEG-2标准指定的DCT和量化操作。
图3示出图1中的MPEG-2编码器104和110的细节。图3中,频域HDTVMPEG-2信号103(当描述解码器1 04时)或109(当描述解码器110)被作为一个输入提供。输入信号103、109的DC成分301以及AC成分302由使用MPEG-2指定帧内量化器矩阵加权204的适当的矩阵方程不同地处置。具体地说,DC矩阵计算单元303产生一个解量化的直流信号304,它表现对应下列MPEG-2指定方程计算出的一个值
解量化DC信号值(304)=DC分量(301)*DC加权(204)类似地,一个AC矩阵计算单元305产生解量化的AC信号306,其中解量化的AC信号306的每一个的值都对应下列MPEG-2指定方程解量化AC信号的值(306)=[2*量化值(214)*对应于AC分量(302)*对应AC加权(204)]/16AC矩阵计算单元305还把一个取整处理值(″round″)添加到每个解量化AC信号306的值上。这一取整处理值定义如下round=1,如果解量化AC信号的值(306)<0并且为偶数round=-1,如果解量化AC信号(306)的值>0并且为偶数,以及round=0,如果解量化AC信号的值(306)=0.注意,图3的DC和AC矩阵计算单元303和305实际上分别地执行图2的DC和AC矩阵计算单元205和207所执行操作的相反操作。随后,解量化的DC信号304与该解量化的AC信号306组合(每一个都由该″取整处理″值修改),以便形式一个组合的信号307。由组合信号307表示的值随后由限幅器308限制,以便产生一个受限的解量化信号309。在该公开的实施例中,限幅器308把该组合信号307的值限制在+2047和-2047之间。该受限的解量化信号309被随后提供到反相DCT单元310,执行一个相反的DCT,以便产生一个像素域信号311。像素域信号311随后由取整处理单元312取整处理,以便产生像素域信号105(当描述图3的解码器104时)或111(当描述图3的解码器110时)。如前面描述的那样,图1的解码器104和110执行由MPEG-2标准指定的反相DCT和解量化操作。
现在参考图4,示出根据本发明原理的用于处理HDTV MPEG-2信号的一个系统配置。除了图4的系统还包含量化限制器115之外,图4中表示的系统与图1中表示的系统相同。除该区别以外,图4所示的部件与图1的部件相同,并且相同的参考数字被使用来表示相同的部件。在图4中,量化限制器115从解码器104接收针对该正在被处理的给定宏数据块的量化值214。该量化值是由编码器102和解码器104使用的同一个量化值,以便编码和解码该给定宏数据块。量化限制器115限制该编码器108和解码器110能使用在后续处理途径中的该量化值,以便编码和解码该给定宏数据块。限制编码器108使用针对该给定宏数据块的量化值的意图将引起过大的量化负担并且导致大的信号恶化。实验已经表明,限制宏数据块量化值在减小信号恶化方面能具有非常良好的效果。然而,该方式的宏数据块量化值被限制为规定的一个。具体地说,本发明规定该用于一个给定处理途径的宏数据块量化值被限定为从一个给定宏数据块量化值组中选择的一个值。构成该给定组的宏数据块量化值是从用于前面处理途径的宏数据块量化值中获得的。作为第一判据,该组的宏数据块量化值都是整数值。作为第二判据,该组的宏数据块量化值是通过用正整数值除用于该以前的处理途径的宏数据块量化值获得的(即,1、2、3,4,5…直到该值被除尽)。根据至少一个实施例,这些正整数值被限制到等于二的幂的那些值(即2n,其中n是一个非负整数,相应地该整数值将等于1,2,4,8,16…)。最后,作为第三判据,从该可选值的组中最终选择的宏数据块量化值必须是在可适用压缩标准(这里是MPEG-2)下的一个可用值。
作为一个实例,在图4中假定由编码器102和解码器104使用的宏数据块量化值214等于20。量化限制器115从解码器104接收宏数据块量化值214,并且从这一值产生可以由编码器108和解码器110用于后续处理途径的宏数据块量化值组。在此情况中,可选用于后续处理途径的宏数据块量化值是20(20/1),10(20/2),5(20/4),4(20/5),2(20/10)和1(20/20)。注意,通过以其它整数(即3,6-9和11-19)划分的宏数据块量化值214不是整数值,因此不符合上面叙述的第一判据。作为一个一般的计划,量化限制器115从宏数据块量化值的可选组选择最终值,该值最靠近由给定编码器的比率控制器请求的宏数据块量化值。随后,解码器110可以把选择的宏数据块量化值414提供到一个量化限制器(没有示出)用于后续处理途径。当用于给定处理途径的宏数据块量化值被设置确切等于用于该以前处理途径的宏数据块量化值时、获得特别好的实验结果。但是总的来说,当用于给定处理途径的可以选的设置的值被设置等于用于在可选组之内的任何值时、都获得好的实验结果。要指出,本发明避免了使用针对一个给定处理途径的一个宏数据块量化值,该量化值大于前面处理途径使用的宏数据块的量化值。这里的术语″处理途径″当然是指一个给定的编码/解码操作。
图4示出用于两个处理途径的系统配置。然而将显然得知该图4的系统可以被扩展以便使适应于所期望多的处理途径。即图4的系统可以根据本发明的原理修改以便包含附加的编码器、解码器、函数操作单元和量化限制器。在这样的一个修改后的配置中,给定的量化限制器将从前面途径的解码器接收一个宏数据块量化值,并且将根据该接收值产生一个限制的宏数据块量化值用于该可适用处理途径。该限制的量化值当然将被提供到这可适用处理途径的编码器。以这种方式,本发明减小顺序量化和解量化操作的非线性影响。
虽然本公开的说明书假定用于说明给定宏数据块的只一个8×8亮度块被处理的目的,但是在实践中根据该公开的原理将也能够处理该给定宏数据块的其它亮度块和色度块(S)。而且,应该清楚,本发明公开的该原理适用于在逐个宏数据块的基础上的视频比特的处理。即,本发明限制用于宏数据块的量化值,但是按图象顺序分别地用于每一给定宏数据块。然而,为了有助于理解,前面公开的说明书已经被以单个给定宏数据块的背景介绍。
象前面公开的说明书反映的那样,本发明能够减少由于一个图像信号,即一个HDTV MPEG-2信号的非线性处理导致的信号恶化。通过限制使用在处理途径的一顺序中的宏数据块量化值而出现这一良好的结果。相应地,本发明特别适用于播音室环境,其中图像信号的多途径处理,比如在一个HDTV MPEG-2格式中的信号被执行。
虽然已经示出和描述了本发明的最佳实施例,但是应该理解在不背离本发明的实际范围的条件下本领域的技术人员将可以构成各种变化和修改,并且可以等价物替代元件。另外,可以在不背离主要范围的条件下进行许多修改。因此本发明意图不是限制到特定的最佳方式考虑的公开实施例,而是本发明将包括所有落在所附权利要求范围之内的所有的实施例。
权利要求
1.一种用于减少信号恶化的方法,包括步骤通过使用第一量化值对于数据的预定单元进行编码和解码而执行一个第一处理操作;和通过使用一个第二量化值对于该数据的预定单元进行编码和解码而执行一个第二处理操作,其中该第二量化值等于由一个给定整数所除的该第一个量化值。
2.按照权利要求1的方法,还包括步骤在第一个处理操作和第二处理操作之间对于数据的预定单元执行一个预定的像素域函数操作。
3.按照权利要求1的方法,其中该数据的预定单元包括一个宏数据块的一个8×8亮度数据块。
4.按照权利要求1的方法,其中该给定整数等于2n,而n是一个非负整数。
5.按照权利要求1的方法,其中该给定整数等于1。
6.按照权利要求1的方法,其中在该第一和第二处理操作每一个的编码步骤包括子步骤对该数据的预定单元执行一个离散余弦变换;并且量化该数据的预定单元。
7.按照权利要求1的方法,其中在该第一和第二处理操作每一个的解码步骤包括子步骤对该数据的预定单元执行一个反相的离散余弦变换;并且解量化该数据的预定单元。
8.一种用于减少信号恶化的方法,包括步骤使用第一量化值解码一个数据的预定单元;并且使用一个第二量化值编码该数据的预定单元,其中该第二量化值等于由一个给定整数所除的该第一个量化值。
9.按照权利要求8的方法,还包括步骤在解码步骤和编码步骤之间对于数据的预定单元执行一个预定的像素域函数操作。
10.按照权利要求8的方法,其中该数据的预定单元包括一个宏数据块的一个8×8亮度数据块。
11.按照权利要求8的方法,其中该给定整数等于2n,而n是一个非负整数。
12.按照权利要求8的方法,其中该给定整数等于1。
13.按照权利要求8的方法,其中该解码步骤包括子步骤对该数据的预定单元执行一个反相的离散余弦变换;并且解量化该数据的预定单元。
14.按照权利要求8的方法,其中该编码步骤包括子步骤对该数据的预定单元执行一个离散余弦变换;并量化该数据的预定单元。
15.一种用于减少信号恶化的系统,包括一个解码器,使用第一量化值解码一个数据的预定单元;一个量化限制器,用于接收第一量化值,并且产生一个已经限制值的第二量化值,其中该第二量化值等于由一个给定整数所除的第一个量化值;以及一个编码器,利用该第二量化值编码该数据的预定单元。
16.按照权利要求15的系统,还包括一个函数操作单元,用于在解码器的解码操作和编码器的编码操作之间对于该数据的预定单元执行一个预定的像素域函数操作。
17.按照权利要求15的系统,其中该数据的预定单元包括一个宏数据块的一个8×8亮度数据块。
18.按照权利要求15的系统,其中该给定整数等于2n,而n是一个非负整数。
19.按照权利要求15的系统,其中该给定整数等于1。
20.按照权利要求15的系统,其中该解码器包括用于对该数据的预定单元执行一个反相离散余弦变换的装置;和用于对该数据的预定单元解量化的装置。
21.按照权利要求15的系统,其中该编码器包括用于对该数据的预定单元执行一个离散余弦变换的装置;和用于对该数据的预定单元量化的装置。
22.一种用于减少信号恶化的方法,包括步骤使用第一量化值解码一个数据的预定单元;并且使用第二量化值编码该数据的预定单元,其中该第二量化值是从通过用各种整数值划分该第一个量化值而获得的一个或者多个整数值的一组中选择的。
23.按照权利要求22的方法,还包括步骤在解码步骤和编码步骤之间在数据的预定单元执行一个预定的像素域函数操作。
24.按照权利要求22的方法,其中该数据的预定单元包括一个宏数据块的一个8×8亮度数据块。
25.按照权利要求22的方法,其中该解码步骤包括子步骤对该数据的预定单元执行一个反相离散余弦变换;并且解量化该数据的预定单元。
26.按照权利要求22的方法,其中该编码步骤包括子步骤对该数据的预定单元执行一个离散余弦变换;并且量化该数据的预定单元。
27.按照权利要求22的方法,通过用等于2n的整数值划分该第一个量化值而获得整数值的组,其中n是一个非负整数。
全文摘要
减小由于非线性处理,即量化和解量化引起的多路径信号恶化的系统和方法。在一个实施例中,一个解码器,使用第一量化值解码一个数据的预定单元。一个量化限制器接收第一量化值,并且产生已经一个限制值的第二量化值,其中该第二量化值等于由一个给定整数所除的该第一个量化值。一个编码器利用该第二量化值编码该数据的预定单元。可以提供一个函数操作单元,用于在解码器的解码操作和编码器的编码操作之间对于该数据的预定单元执行一个预定的像素域函数操作。在本系统中,解码器执行对于该数据的预定单元执行一个反离散余弦变换以及解量化该数据。该编码器执行对该数据的预定单元的一个离散余弦变换,以及量化该数据的预定单元。
文档编号H04N7/30GK1283367SQ98812772
公开日2001年2月7日 申请日期1998年12月4日 优先权日1997年12月29日
发明者S·S·珀尔曼 申请人:汤姆森许可公司