基于邻近的应用和服务表现出快速增长的社交技术趋势,这可能对蜂窝无线/移动宽带技术的演进产生重要影响。这些服务基于意识到彼此靠近的两个设备或两个用户,并且这些服务可以包括诸如公共安全操作、社交联网、移动商业、广告、游戏之类的应用。设备到设备(D2D)发现是使能D2D服务的第一步。利用直接D2D通信,用户设备(UE)可以彼此直接通信,而无需涉及基站或增强型节点B(eNB)。D2D通信的一个问题是设备发现以使能D2D服务。设备发现涉及发现D2D通信的通信范围内的一个或多个其他可发现的UE。设备发现还涉及被D2D通信的通信范围内的一个或多个其他发现UE发现。关于D2D通信的设备发现,存在许多未解决的问题,包括资源分配和信令,尤其是针对邻近服务(ProSe)D2D发现。
附图说明
结合附图,从下面的详细描述中,本公开的特征和优点将变得显而易见,其中,附图通过示例的方式一同对本公开的特征进行了说明;并且,其中:
图1示出了根据一些实施例,LTE网络的端到端网络架构的一部分;
图2示出了根据一些实施例,包括用于D2D通信的发现区(discovery zone)的资源格的结构;
图3A示出了根据一些实施例,对发现区度量的报告;
图3B示出了根据一些实施例,使用随机接入信道(RACH)来计数ProSe使能UE;
图4示出了针对处于无线电资源控制(RRC)连接模式的UE计数ProSe使能UE的过程;
图5示出了根据一些实施例,用于D2D发现信号发送的合作上行子帧功率控制;
图6示出了根据一些实施例的eNB触发无竞争D2D发现区资源;
图7示出了根据一些实施例的UE触发无竞争D2D发现区资源;
图8示出了被使能用于邻近服务的UE的计算机电路的功能800;以及
图9示出了根据一些实施例的无线通信设备的功能框图。
现在将参照所示出的示例性实施例,并且本文将使用特定语言来描述相同的事物。然而,应当理解,不意欲对本发明的范围进行限制。
具体实施方式
在公开和描述一些实施例之前,要理解的是,所要求保护的主题不限于特定的结构、处理操作、或本文所公开的材料,而是被扩展为相关领域技术人员所认识到的其等同形式。还应当理解,本文所采用的术语仅被用于描述特定示例的目的,并且不意为进行限制。不同附图中的相同的参考标号表示相同的要素。出于清楚说明操作的目的来提供流程图和处理中所提供的序号,并且不一定指示特定的顺序或序列。
示例实施例
下面提供技术实施例的初步概况,并且稍后详细描述具体的技术实施例。初步概要旨在于帮助读者更快地理解技术,而不打算标识技术的关键特征或必要特征,也不打算限制所要求保护的主题的范围。
本文所公开的实施例提供了用于支持LTE邻近服务(ProSe)D2D发现的信令设计。在这些实施例中,UE可以是ProSe使能UE,其被配置用于D2D发现信号发送和D2D通信。一些实施例通过针对发现区的网络通用和小区特定配置二者,将D2D发现区划分为基于竞争和基于非竞争的发现区来提供D2D发现区(即,发现资源池)的配置。一些实施例提供UE反馈机制,用于向eNB提供关于发现区的负荷的信息。一些实施例提供支持小区/eNB间发现的选项。一些实施例提供使用和配置用于发送D2D发 现分组的随机静默/自适应随机静默的静默因子。一些实施例提供信令内容,该内容包括:发现区配置、静默因子、发送功率控制配置、与跳跃相关的参数、以及用于对发现分组的循环冗余校验(CRC)掩码进行加扰的加扰标识。一些实施例提供用于上述信令内容的信令机制。一些实施例提供静态配设和/或预配置D2D发现资源。一些实施例提供网络和UE行为,以支持无竞争的直接设备发现。下面将对这些实施例进行详细论述。
图1是根据一些实施例的具有各种网络组件的LTE网络的端到端网络架构的一部分。网络100包括通过S1接口115耦合在一起的无线电接入网络(RAN)(例如,如所描绘的E-UTRAN或演进型通用陆地无线电接入网络)100和核心网络120(例如,示出为演进型分组核心(EPC))。为了方便和简洁起见,仅示出了核心网络120以及RAN 100的一部分。
核心网络120包括移动性管理实体(MME)122、服务网关(服务GW)124、和分组数据网络网关(PDN GW)126。RAN包括(可以作为基站操作的)演进型节点B(eNB)104,用于与用户设备(UE)102进行通信。eNB 104可以包括宏eNB和低功率(LP)eNB。UE 102可以是ProSe使能的。
MME在功能上与传统服务GPRS支持节点(SGSN)的控制平面类似。MME管理接入中的移动性方面,例如,网关选择和追踪区域列表管理。服务GW 124终止朝向RAN 100的接口,并在RAN 100和核心网络120之间路由数据分组。另外,服务GW 124可以是用于eNB间切换的本地移动性锚点,并且还可以为3GPP间移动性提供锚点。其他责任可以包括合法拦截、计费、和一些策略执行。服务GW 124和MME 122可以被实现于一个物理节点或分开的物理节点中。PDN GW 126终止朝向分组数据网络(PDN)的SGi接口。PDN GW 126在EPC 120和外部PDN之间路由数据分组,并且可以是用于策略执行和计费数据收集的关键节点。PDN GW 126还可以为非LTE访问的移动性提供锚点。外部PDN可以是任意类型的IP网络,以及IP多媒体子系统(IMS)域。PDN GW 126和服务GW 124可以被实现于一个物理节点或分开的物理节点中。
(宏和微)eNB 104终止空中接口协议,并且可以是针对UE 102的第 一接触点。在一些实施例中,eNB 104可以满足RAN 100的各种逻辑功能,包括但不限于RNC(无线电网络控制器功能),例如无线电承载管理、上行链路和下行链路动态无线电资源管理和数据分组调度及移动性管理。
S1接口115是分离RAN 100和EPC 120的接口。该接口被分成两个部分:S1-U和S1-MME,其中S1-U运载eNB 104和服务GW 124之间的流量数据,S1-MME是eNB 104和MME 122之间的信令接口。X2接口是eNB 104之间的接口。X2接口包括两个部分:X2-C和X2-U。X2-C是eNB 104之间的控制面接口,而X2-U是eNB 104之间的用户面接口。
利用蜂窝网络,LP小区通常被用来将覆盖范围扩展至室外信号不能很好到达的室内区域,或在电话使用非常密集的区域(例如,火车站)中增加网络容量。如本文所使用的,术语低功率(LP)eNB指的是用于实现较窄的小区(比宏小区窄)(例如,毫微微小区、微微小区、或微小区)的任意合适的较低功率eNB。毫微微小区eNB通常由移动网络运营商提供至其住宅客户或企业客户。毫微微小区通常是住宅网关的尺寸或比住宅网关的尺寸要小,并且通常连接到用户的宽带线路。一旦接通电源,毫微微小区即连接到移动运营商的移动网络,并针对住宅毫微微小区提供范围通常为30米至50米的额外覆盖。因此,由于LP eNB通过PDN GW 126被耦合,LP eNB可能是毫微微eNB。类似地,微微小区是通常覆盖小区域(例如,建筑内(办公室、购物中心、火车站等)或者最近更多地在飞机中)的无线通信系统。微微小区eNB通常可以通过X2链路连接到另一eNB,例如,通过其基站控制器(BSC)功能连接到宏eNB。因此,由于LP eNB经由X2接口被耦合至宏eNB,所以LP eNB可以通过微微小区eNB来实现。微微小区eNB或其他LP eNB可以包含宏eNB的一些或全部功能。在一些情况中,这可以被称为是接入点基站或企业毫微微小区。
在一些LTE实施例中,物理下行共享信道(PDSCH)携带去往UE102的用户数据和更高层信令。物理下行控制信道(PDCCH)携带关于与PDSCH信道相关的传输格式和资源分配的信息等。PDCCH还将与上行共享信道相关的传输格式、资源分配和H-ARQ信息通知给UE 102。通常下 行调度(向小区内的UE分配控制和共享信道资源块)在eNB 104处基于从UE 102反馈回eNB 104的信道质量信息来执行,然后在用于(可能分配给)UE 102的物理下行控制信道(PDCCH)上将下行资源分配信息发送给该UE。
PDCCH使用CCE(控制信道要素)来传递控制信息。在被映射到资源要素之前,PDCCH复值符号首先被组成四联体(quadruplet),然后使用子块交织器来排列该四联体以供速率匹配。每个PDCCH使用这些控制信道要素(CCE)中的一个或多个进行传输,其中每个CCE对应于9组物理资源元素(被称为资源要素组(REG)),每组4个物理资源元素。4个QPSK符号被映射到每个REG。基于DCI的大小和信道条件,可以使用一个或多个CCE来传输PDCCH。在LTE中可能定义了四个或更多个不同的PDCCH格式,这些PDCCH格式具有不同数量的CCE(例如,聚合等级,L=1、2、4或8)。
根据一些实施例,ProSe使能的UE 102可以被安排用于设备到设备(D2D)通信,包括用于直接D2D通信的其他UE 102的D2D发现。在这些实施例中,ProSe使能UE 102可以在发现资源内发送发现信号101,以发现一个或多个其他ProSe使能UE。下面将更详细地论述这些实施例。
图2示出了根据一些实施例,包括用于D2D通信的发现区的资源格的结构。所描绘的格是时频格(被称为资源格),该时频格是每个时隙中、下行或上行的物理资源。资源格中的最小时频单元被表示为资源要素(RE)。资源格包括多个资源块(RB),RB描述了某些物理信道至资源要素的映射。每个资源块包括资源要素集合,并且在频域中,每个资源块表示可被分配的最小资源量,但实施例的范围在该方面不受限制。存在使用这样的资源块来传递的若干不同物理信道。图2中所示的资源格可包括LTE操作区202,该LTE操作区202可包括多个由RAN 100使用的物理RB(PRB)。
根据一些实施例,UE 102(图1)可以从eNB 104(图1)接收指示LTE操作区202内的发现区204的信令。发现区204可包括发现资源的多个PRB 206。UE 102可以在发现区204的一些PRB 206内发送发现信号或 发现分组101(图1),以由一个或多个其他UE接收,从而进行D2D发现。在一些实施例中,针对D2D发现分配的资源可以是物理上行共享信道(PUSCH)资源,但实施例的范围在该方面不受限制。
PRB可与时间维度中的子帧的特定时隙和频率维度中的一组特定的频率子载波相关联。例如,每个PRB可由RB索引和子帧索引来标识。在一些实施例中,可在N个资源块的M个子帧内发送发现分组101,其中M和N至少为一,并且可以大于一。下面将更详细地描述这些实施例。
在一些实施例中,PRB可以包括频域的十二个子载波×时域的0.5ms(即,一个时隙)。PRB可被成对地(在时域)分配,但这不是必需的。在一些实施例中,PRB可包括多个RE。RE可包括一个子载波×一个符号。当使用常规CP时,RB包括七个符号。当使用扩展CP时,RB包括六个符号。超过常规CP长度的延迟扩展指示使用了扩展CP。每个子帧可以是一毫秒(ms),并且一个帧可以包括十个这样的子帧。
在D2D发现中存在两种不同的方法:限制式/封闭式D2D发现和开放式D2D发现。限制式/封闭式D2D发现适用于这样的用例,在这些用例中,可发现设备可仅由ProSe使能发现设备的选定集合来发现。封闭式设备发现的另一暗示是考虑如下场景:发现设备尝试发现特定的(一个或多个)ProSe使能设备(来自ProSe使能设备集合的一个或多个ProSe使能设备)。因此,对于该用例,将假设发现设备知道在其邻近范围内其期望发现的ProSe使能设备。
与封闭式D2D发现相比,开放式设备发现考虑这样的用例,在这些用例中,可发现设备可能期望自身被其邻近范围内的其他ProSe使能设备发现。从发现设备的角度而言,开放式设备发现暗示了:可假设发现设备在进行发现之前就知道其他ProSe使能设备的身份。因此,开放式发现的设备发现机制应旨在于尽可能多的发现其邻近范围内的ProSe使能设备。
对于开放式D2D发现,eNB 104对UE 102之间的发现过程具有有限的控制。具体地,eNB 104可以针对UE 102以D2D发现区域的形式来分配某一发现资源,以用来发送发现信息。发现信息可以采用具有有效负荷(payload)信息的发现分组或发现序列的形式。用户期望相互共享的与发 现相关的信息内容可能较高,因为该设计将需要作为由CRC保护的数据有效负荷来发送设备标识的唯一ID、服务标识等(例如,48比特或更多)。根据有效负荷大小和整体发现性能需求,开放式D2D发现设计中发现分组发送所需的资源块(RB)的数目(由来表示)可以是1或者大于1。
在一些实施例中,发现区域可以包括多次出现周期性发现区,每个发现区在频域中包括一些RB并且在时域中包括若干子帧。图2示出了LTE操作区202内的发现区204的示例,其中,和分别表示所分配的RB数目、起始RB索引、子帧数目、每个发现区的起始子帧索引。关于划分这些D2D发现区域的信息可以由eNB使用RRC信令或通过系统信息块(SIB)来半静态地发送信号,以用于网络覆盖之内的场景。对于部分网络覆盖场景,这样的信息可由协调器UE转发至网络覆盖之外的UE。对于网络覆盖之外的场景,发现区可由集中式D2D设备预定义或广播。
在一些实施例中,和参数不包括在D2D区配置消息中,而是从系统角度,除了PUCCH区域(在频带边缘处)之外的完整的系统带宽可被设计为专门针对D2D发现而预留,但实施例的范围在该方面不受限制。在一些实施例中,参数可被配置为D2D发现区分配的周期。
即使对于基于UE的开放式发现的情形,在UE特定的发现资源分配以针对处于RRC_CONNECTED模式下的UE发送发现信号中利用可能的网络协助,从而改善了发现过程的效率,这将是有益的。在该方面,每个D2D发现区域(D2D-DZ)或者发现资源池还可被划分为两个正交时频区:(1)基于非竞争D2D DZ(NCB-D2D DZ),对此该区域,eNB发送周期性资源用于发送发现信号,并且该区域可由RRC_CONNECTED模式下的D2D UE接入;(2)基于竞争D2D DZ(CB-D2D DZ)(也被称为用于UE自主资源选择的发现资源池或类型I发现资源池)。一般地,该区域对于所有D2D UE(包括覆盖之外的UE)是可获得的,其中,D2D使能UE遵循纯粹地基于竞争地发送发现信号。而且,用于CB-D2D DZ的D2D发现资源还可被划分为两个部分,称为部分A和部分B,用于使 能D2D发现,并且根据UE侧缓存的D2D数据量(尤其由于D2D通信操作可遵循D2D发现过程的事实),来粗略指示所需的D2D通信资源的大小(例如,用于D2D通信的子帧数目)。对一组中的D2D发现资源的使用指示大量资源相对于一个预定阈值的倾向。
根据一些实施例,可采用两种不同的方式来配置D2D发现区:网络通用D2D发现区和小区特定D2D发现区,下面将对其进行详细描述。对于网络通用发现区,通用的时频资源集合可被预留用于整个网络的D2D发现。该配置在不同的公共陆地移动网络(PLMN)之间可以是不同的,从而使能相应的运营商以资源配设方面的某一灵活度。发现区可通过每个PLMN经由操作、管理和维护(OAM)工具来配设。发现区的网络通用配置可经由多种方式来通过信号发送。确切的资源配设可基于对网络中ProSe使能UE的数目、其相应的容量和位置(高达追踪区域(TA)粒度)的统计来确定。该信息可在D2D服务器处获得,并且D2D服务器可以经由移动性管理实体(MME)来告知eNB确切的资源配置。
对于小区特定发现区,每个eNB 104可以使用关于活动的ProSe使能UE 102的当前数目和干扰场景方面的信息来确定小区特定发现区或发现资源池的确切资源配置。该信息中的一些信息可经由来自参与发现过程的ProSe使能UE 102的周期性/时间触发/按需反馈来获得。为了使能eNB间的D2D发现,邻居eNB之间存在某一协调等级,并且该协调等级可经由通过X2接口在邻居eNB之间交换发现区的配置方面的信息来获得。
根据实施例,eNB 104可以向ProSe使能UE 102发送指示D2D发现区配置的信令。该信令可以指示发现区204的时间和频率资源以及周期,并且可以指示发现区204的操作参数。D2D发现区204的资源可被分配用于ProSe使能UE 102的D2D发现信号发送。
在一些实施例中,D2D发现区配置信令可以指示发现区204的一次或多次出现,并且D2D发现区配置信令或是由eNB 104半静态地使用无线电资源控制(RRC)信令来发送或是使用SIB来发送。在图2所示的示例中,发现区204包括LTE操作区202内的多个PRB 206,并且发现区204可以周期性或定期出现。
在一些实施例中,信令是由eNB使用专用RRC信令发送或者经由SIB使用公共无线电资源控制(RRC)信令(即,SIB信令)来发送。当由eNB发送的信令经由SIB使用公共RRC信令时,由eNB发送的信令可以包括SIB发送和寻呼发送中的至少一种。在一些实施例中,配置信息可被添加至现有SIB中(例如,根据LTE发布(Release)11)或者经由新定义的SIB来通过信号发送(例如,根据后续的LTE发布)。
对于网络通用和小区特定发现区分配两种情形中的信令,网络应能够将该信息通过信号发送至处于RRC_CONNECTED和RRC_IDLE两种操作模式的UE。对于网络通用D2D发现区分配,可以适用不同的信令机制。在一些实施例中,现有的系统信息块(SIB)(例如,SIB2)可被用来通过信号发送D2D发现区配置信息,该D2D发现区配置信息包括下文将详细讨论的静默因子和其他相关的小区通用参数或网络通用参数。
在一些实施例中,发现区204涉及或者考虑发现周期。在一些实施例中,基于竞争D2D发现被称为或者被认为是类型1发现,而基于非竞争D2D发现可被称为或者被认为是类型2发现。
在一些实施例中,D2D发现区配置信令指示基于非竞争D2D发现区(NCB-D2D DZ)和基于竞争D2D发现区(CB-D2D DZ)中的至少一种,其中,对于NCB-D2D DZ,分配周期性资源以用于仅由处于RRC连接模式的ProSe使能UE来基于非竞争地发送发现信号101,对于CB-D2DDZ,分配周期性资源以用于由任何ProSe使能UE(包括处于RRC连接模式、RRC空闲模式以及处于覆盖之外的UE)来基于竞争地发送发现信号101。在这些实施例中,基于非竞争D2D发现区可被指定用于由处于RRC连接模式的ProSe使能UE根据基于非竞争技术发送发现信号101。在一些实施例中,处于RRC连接模式的ProSe使能UE可被分配以基于非竞争D2D发现区的特定发现资源供其发送发现信号101。在一些实施例中,D2D发现区配置信令可以指示发现区204被划分为基于非竞争D2D发现区和基于竞争D2D发现区。
在这些实施例中的一些实施例中,基于竞争D2D发现区可被指定用于由任意ProSe使能UE根据纯粹基于竞争技术发送发现信号101。在这些实 施例中,ProSe使能UE不被分配以基于竞争发送发现信号101的特定发现资源。利用基于竞争D2D发现区的ProSe使能UE可包括处于RRC连接模式的ProSe使能UE、处于RRC空闲模式的ProSe使能UE以及处于覆盖之外的ProSe使能UE。
在这些实施例中的一些实施例中,eNB 104可提供D2D发现资源的信令,并且基于竞争和无竞争D2D发现资源二者可由eNB划分和配置。在一些实施例中,该划分可以是逻辑性的。对于对资源的实际划分,最终将由网络或者eNB负责(即,基于实现方式)。在一些实施例中,一些物理资源在两个区/资源池之间重叠,但实施例的范围在该方面不受限制。
在一些实施例中,应用层信令可被用来通过信号发送D2D发现区配置。在这些实施例中,D2D服务器可在ProSe使能UE的D2D注册期间通过信号发送D2D发现区配置。D2D发现区配置的改变可通过应用层配置消息从D2D服务器被发送至ProSe使能UE。
在一些实施例中,非接入层(NAS)信令可被用来通过信号发送D2D发送区配置。在这些实施例中,移动性管理实体(MME)可在ProSe使能UE向D2D服务器进行D2D注册期间通过信号发送D2D发现区配置。在这些实施例中,UE或者D2D服务器可以请求发现区信息。对于上述两种信令选项(应用层或NAS信令),支持向RRC_CONNECTED UE进行无竞争资源分配可能效率较低,因为发现区资源是由MME而非eNB管理的,因此,由于核心网中的信令开销,动态资源分配不是优选的。
图3A示出了根据一些实施例,对发现区度量的报告。在这些实施例中,eNB 104(图1)可被配置为接收发现区负荷度量,发现区负荷度量基于一个或多个ProSe使能UE 102(图1)对发现区204(图2)内的发现信号101(图1)进行监控。eNB 104可以基于发现区负荷度量来确定是否改变针对D2D活动的资源分配配置。在这些实施例中,ProSe使能UE 102可以监控由其他ProSe使能UE 102发送的D2D发现信号101的发现区204,并且向eNB 104报告发现区负荷度量。基于发现区负荷度量,eNB104可以对D2D活动的资源分配配置做出改变,包括D2D发现的资源和D2D通信的资源。在一些实施例中,基于发现区记载度量,eNB 104可以 做出改变以优化D2D活动的资源分配配置。例如,eNB 104可以改变D2D活动的资源池的大小,并且可以基于发现区负荷度量来分配后续的发现区资源以及分配用于后续D2D通信的资源。基于发现区负荷度量,eNB 104还可以应用或抑制一种或多个种干扰控制技术,例如,通过改变干扰抑制的参数(例如,随机静默或随机概率发送)。如图3A所示,ProSe使能UE 102可以从eNB 104接收指示发现区配置的信令312。UE 102可以在操作313中监控发现区,并且可以在消息314中报告发现区度量。
在一些实施例中,发现区度量包括在发现区的多次出现中发现信号发送的计数(例如,计数值)。在一些实施例中,发现区度量还包括唯一发现信号发送的数目,并且eNB可以基于发现区负荷度量来确定ProSe使能UE 102的数目。在一些实施例中,发现区度量可包括如下项中的至少一项:发现区的多次出现中发现信号发送的数目;在发现区的多次出现中成功检测到的发现信号的数目;以及对发现区的多次出现中干扰等级的至少。在这些实施例中的一些实施例中,ProSe使能UE可以基于DMRS来区分其他UE的发现信号发送,并且发现区度量可以包括一些盲检唯一DMRS序列或者唯一循环位移值。
在这些实施例中,UE可被配置为提供D2D发现区的配置的反馈。对于小区特定发现区配置的情形,eNB可以从参与发现过程的ProSe使能UE接收小区中的负荷方面的信息。然而,eNB可能仅知道处于RRC_CONNECTED模式的这样的ProSe使能UE的数目。eNB可能不知道在其服务区域内参与D2D发现的RRC_IDLE模式UE的数目。一些实施例向eNB提供关于发现区的负荷时经由使能UE反馈来实现的信息。
在一些实施例中,以寻呼响应的形式,ProSe使能UE可以报告过去的N个发现区中发送的数目,其中,N可以是预定的或者可配置的参数。由于可采用UE特定方式向分配了用于监控寻呼的不同子帧的不同UE群组来配置寻呼周期,作为寻呼响应发起随机接入(RA)过程来提供该反馈的UE的数目可由eNB来管理。注意,给定发现区的配置的低占空比,可能不需要eNB在估计发现区的负荷量的同一寻呼子帧期间从所有RRC_IDLE模式UE请求该反馈。由于静默因子可由eNB来配置,所以其影响可在得 出该估计时由eNB考虑进来。
当eNB要求某一UE或一组UE报告对过去的N个发现区中发送的数目的反馈这一度量时,对该度量的请求可由eNB添加到寻呼消息中并且由eNB使能。此外,eNB通过使用上述机制或者经由通过专用RRC或者MAC CE信令指示的反馈请求可以知道参与D2D发现的RRC_CONNECTED模式UE的数目。
在一些其他实施例中,UE可以报告发现相关度量或者测量,该测量报告类似于最小化驱动测试(Minimization Driving Test,MDT)或作为MDT报告的一部分。在空闲模式中,UE存储并累计该测量,并且一旦UE连接则报告所记录的测量。在连接模式中,UE可以采用周期性或事件触发方式来报告发现相关测量。由于在空闲模式的情形中,报告不是立即进行的,因此可能无需包括指示记录测量结果的时刻的时间戳。此外,还可以包括详细的位置相关信息(例如,小区索引或GPS信息)。对于发现相关度量或测量,如上所述,可以报告过去N个发现区中的发送数目。替代地,可以报告干扰等级或者成功检测D2D发现分组发送的数目。例如,(对于基于PUSCH的发现分组发送)假设发现分组发送使用随机选择DM-RS库序列和/或循环位移,UE可以报告对于最近N1个D2D发现区平均或总和的盲检唯一DM-RS序列或循环位移的数目,其中N1可以是预定义的或者是可配置的。
图3B示出了根据一些实施例,使用随机接入信道(RACH)来计数ProSe使能UE。在这些实施例中,作为初始接入过程的一部分,eNB 104可以基于在基于竞争随机接入(CBRA)过程300期间,从ProSe使能UE102接收的无线电资源控制(RRC)信令(操作308)来确定ProSe使能UE 102的数目。RRC信令例如可以包括发送ProSe使能UE 102的D2D能力指示。在这些实施例中,eNB 104可以基于发现区负荷度量以及基于RRC信令所确定的ProSe使能UE 102的数目来确定对于D2D活动的资源分配配置是否做出改变。
在这些实施例中,RACH用于D2D UE计数:对ProSe使能(即,具有D2D能力)的UE的计数是在UE的初始基于竞争的随机接入 (CBRA)过程(操作302、304、306、308和310)期间执行的。在这些实施例中,UE的ProSe能力可被包括在操作308发送的消息中。这些实施例可被用来计数RRC_CONNECTED模式UE以及RRC_IDLE模式UE。
图4示出了计数处于无线电资源控制(RRC)连接模式UE的ProSe使能UE的过程。在这些实施例中,eNB 104可被配置为发送D2D计数请求消息(操作402)以及从处于无线电资源控制(RRC)连接模式的ProSe使能UE 102接收D2D计数响应消息(操作404)。在这些实施例中,D2D计数响应消息404可以指示响应UE是这样的ProSe使能UE,该ProSe使能UE允许eNB 104基于所接收的D2D计数响应消息404的数目来粗略估计ProSe使能UE的数目。在这些实施例中的一些实施例中,D2D计数响应消息404可以指示处于RRC连接模式的UE不是ProSe使能的。
在一些实施例中,D2D计数请求消息(操作402)可以包括针对D2D计数分配的多个专用RACH前导,并且D2D计数响应消息(操作404)可以包括由ProSe使能UE 102选择的并在所分配的接入时隙(例如,RACH时间/频率资源)内发送的RACH前导之一。
在这些实施例中,一组专用RACH前导可被包括在D2D计数请求消息中。具有D2D能力的UE一旦从网络接收到针对D2D计数目的的计数请求时,该UE通过发送从针对D2D UE计数目的分配的RACH前导池中所选择的RACH前导来进行响应;UE在所分配的接入时隙(RACH信道时间/频率资源)上发送所选择的前导。注意,与当前配置(可通过与关于当前D2D资源配置的某一阈值数目相比来获得)相比,相对粗略地估计具有D2D能力的UE的数目可足以确定是否需要添加或减少D2D发现资源。不需要对大量UE进行非常准确的计数。因此,通过类似于或者仅略大于该阈值数目来分配多个前导签名-时隙组合,直截了当得出所需的信息。
在这些实施例中,由于如下事实,在优化的发现资源分配的一些情形中,对处于RRC_CONNECTED模式中的具有D2D能力的UE计数可能是足够的,所述事实是:通常以半静态方式来分配发现信号资源,并且由于 在无线电接入网络中缺少RRC上下文,因此任何RRC_IDLE模式的具有D2D能力的UE必须使用基于竞争的资源进行D2D发现。网络具有根据所检测到的D2D资源使用统计数据以及碰撞的可能性来逐渐调整资源的能力。因此,如MBMS计数过程的部分所定义的,E-UTRAN首先通过发送D2DCountingRequest消息来发起过程。处于RRC_CONNECTED模式的具有D2D发现能力的UE一旦接收到D2DCountingRequest消息,其将发送D2DCountingResponse消息。
在一些实施例中,eNB可以基于由处于RRC连接模式的ProSe使能UE发送的、指示发现资源释放的RRC消息来确定ProSe使能UE 102的数目。在这些实施例中的一些实施例中,即使处于RRC_CONNECTED模式的ProSe使能UE尚未被配置有专用发现资源,这些UE仍可以发送指示发现资源释放的RRC消息。该信息可以帮助eNB估计残余D2D发现的处于RRC_CONNECTED模式的ProSe使能UE,从而能够优化RRC_CONNECTED模式UE的资源分配。
在一些实施例中,eNB可以基于接收到由处于RRC空闲模式的ProSe使能UE发送的具有D2D能力指示的周期性追踪区域(TA)消息,来确定ProSe使能UE 102的数目。在这些实施例中,ProSe使能UE可被配置为向周期性追踪区域(TA)消息添加D2D能力指示。
在一些实施例中,ProSe使能UE可被配置为从增强型节点B(eNB)接收设备到设备(D2D)发现区配置信令,该D2D发现区配置信令指示时间和频率资源以及发现区的周期性,并且指示一个或多个发现区操作参数。在一些实施例中,当UE处于无线电资源控制(RRC)空闲模式(RRC_IDLE)时,UE可以转换到RRC连接模式((RRC_CONNECTED)以向eNB发送发现资源请求。UE一旦从eNB接收到资源配置消息,其可以自主地切换回RRC空闲模式,至少用于基于竞争D2D发现区(CB-D2D DZ)中的发送。
在一些实施例中,eNB 104可被配置为与一个或多个邻居eNB交换D2D发现区配置信息。eNB 104可被配置为通过信号向ProSe使能UE发送(例如,经由信令)一个或多个邻居的D2D发现区配置信息。在这些实 施例中,邻居eNB之间的某一协调等级可以支持eNB间的发现,尤其对于D2D发现区的小区特定配置的情形。在一些实施例中,eNB 104可以在其相应小区中交换D2D发现区的配置方面的信息。邻居小区的D2D发现配置可由相应的服务小区通过信号发送至UE 102。在一些替代实施例中,服务小区可以告知UE关于由相邻小区发送的相关系统信息块(SIB)的位置的信息,并且UE可以获得相应SIB,从而知道相邻小区中的D2D发现区配置。对于两种情形,关于是否在仅选定的子集的其邻居小区列表中的全部小区的D2D发现区(不与其服务小区D2D发现区相重叠)上发送和/或监听,可基于UE实现方式,尤其对于基于UE的开放式发现。
对于D2D发现区的网络通用配置,构成的小区可被配置为针对子帧边界、子帧号(SFN)等维持严格的时间同步,从而使能通用D2D发现区。例如,这可以使用基于回程的同步或者使用GPS来实现。在一些实施例中,可通过针对D2D发现区使用可扩展循环前缀(CP)并且针对非发现区使用常规长度循环前缀,来放松对严格的时间同步的要求。
对于基于小区而定而被配置的D2D发现区,D2D发现发送/接收和蜂窝(WAN)流量共存的问题产生了一个挑战。由于D2D发现区被配置在当前定义的UL子帧中,因此可例如通过对PUSCH发送的UL功率控制和UL调度、对于发送发现信号合并一些形式的发送功率控制(例如,通过配置最大发送功率)、采用小区集群方法、和/或由UE基于UE几何学来选择发现资源,来管理D2D发现信号发送与UL PUSCH发送之间的小区间干扰。下文将更详细讨论这些实施例。
在一些实施例中,为了通过信号发送一个或多个邻居eNB的D2D发现区配置信息,eNB 104当作为服务eNB进行操作时,其被配置为提供由一个或多个邻居eNB发送的系统信息块(SIB)的位置信息,从而允许由该服务eNB服务的UE获得SIB,该SIB指示一个或多个邻居eNB的D2D发现区配置。在这些实施例中,关于是否在仅选定的子集的其邻居小区列表中的全部小区的D2D发现区(不与其服务小区D2D发现区相重叠)上发送和/或监听,可基于UE实现方式,尤其对于基于UE的开放式发现。在这些实施例中,UE当处于RRC连接模式中时,UE可以从服务eNB接 收信令,并且当UE处于RRC空闲模式中时,UE可以从UE正预占于(camp on)的eNB接收信令。根据实施例,UE当处于RRC连接模式时,其具有服务eNB,而当其处于RRC空闲模式时,其预占于某eNB(因为当其处于空闲模式时,其不由eNB服务)。
在一些实施例中,eNB 104被配置为交换一个或多个邻居eNB的D2D发现区配置信息。基于一个或多个邻居eNB的D2D发现区配置信息,eNB 104可被配置为采用小区间干扰减小技术来减小发现区内的小区内和小区间干扰以及发现信号发送与上行蜂窝发送之间的小区间干扰。小区间干扰减小技术包括如下中的一项或多项:
·对D2D发现信号发送执行合作子帧功率控制,其中,上行子帧设置针对上行蜂窝发送(例如,物理上行共享信道(PUSCH)发送)和D2D发现信号发送之间的干扰减小被配置有独立的功率控制参数;
·对发现信号的发送配置发送功率控制等级;
·采用合作小区集群来对齐一个或多个邻居eNB的发现区;以及
·采用基于几何学的小区内发现区划分。
图5示出了根据一些实施例,用于D2D发现信号发送的合作上行子帧功率控制。在这些实施例中的一些实施例中,对PUSCH发送的UL调度和UL功率控制可由服务小区配置,因为服务小区知道邻居小区中的D2D发现区的配置。在一些实施例中,两个UL子帧设置可被配置为对于不同的UL子帧设置具有独立的功率控制参数(例如,开环功率控制参数PO和alpha)。这可以通过使用一个UL子帧设置来覆盖(一个或多个)邻居小区的D2D发现资源,从而避免蜂窝PUSCH发送对邻居小区的D2D发现信号接收的强小区间干扰,如图5所示。
一些实施例可以合并用于发送发现信号的发送功率控制的形式(例如,通过配置最大发送功率)。在一些实施例中,可以预定义针对D2D发现信号的多个最大功率级别,并且所选择的最大发送功率等级可通过D2D发现配置信令被发送至UE。
一些实施例可以采用小区集群方法,通过该方法,邻居小区经由X2 115(图1)通过信息交换来对齐它们的D2D发现区配置。在这些实施例中,需要对齐仅对于D2D发现区预留的时间-频率资源,并且每个小区可以独立配置静默因子(下文将更详细地讨论),以针对D2D发现区的负荷变化进行调整,从而管理D2D发现区内的小区内/集群内干扰。
在一些实施例中,发现区操作参数可包括如下中的至少一项:静默因子、发送功率控制配置、跳跃相关参数、以及加扰ID。在这些实施例中,不考虑D2D发现操作的类型(开放式发现或限制性发现),对于RRC_CONNECTED或RRC_IDLE ProSe使能UE,与配置和发送发现区和信号(例如,发现分组)相关的某些参数可通过信号被发送至相应UE。
在这些实施例中,发现区配置可以包括将全部的区任意划分为基于竞争发现区和无竞争发现区。可包括参数,该参数用于指示每个发现区在时间域和频率域中的范围(extent),并且可以指示区的配置的周期性和时间偏移。对于小区特定发现区分配,该信息将是特定于小区的,并且服务小区可以通过信号发送与邻居小区相对应的参数以支持eNB间发现。
在一些实施例中,如果固定随机静默被配置,则静默因子的单个值可被通过信号发送。另一方面,为了支持更先进的自适应静默机制,可能需要通过信号发送多于一个参数。在一个实施例中,每个ProSe使能UE 102可被配置有标称静默因子,该标称静默因子适用于相应UE的发现区的第一次出现。对于后续的发现区出现,根据UE是否在先前区进行了发送,可以在某一下限和上限之内将要由UE适用的静默因子增加或减小(网络/eNB通过信号发送的某些因子)。这些界限可以是静态的(预配置的)或者由网络和/或eNB以非常低的速率来配置和更新,但实施例的范围在该方面不受限制。
在一些实施例中,eNB可以被配置为通过针对发现信号发送采用静默和静音协议来减小发现区内的干扰,并且被配置为在发现区参数中包括静默因子。在这些实施例中,静默和静音协议将ProSe使能UE配置有静默因子,以用于基于静默因子所指示的概率来在D2D发现区的随机选择资源上进行D2D发现信号发送。可以控制发现分组的有效到达速率以及D2D发现区内的干扰等级。在这些实施例中,意欲发送发现分组的每个ProSe 使能UE可以从D2D发现区内随机选择资源,并且可以某一概率(例如,(1-p),其中,0≤p≤1)发送分组。在这些实施例中,p可被定义为静默因子,该静默因子由网络采用网络通用方式或者由各个服务小区采用小区特定方式来配置。替代地,可通过1减去发送概率因子来表示静默因子,因为发送概率因子被定义为1减去静默因子。
在一些实施例中,根据UE是否在发现区的在先发现周期中发送了D2D发现信号,去往UE的信令指示要增加或减小静默因子,以用于后续的发现周期。
存在估计D2D发现区的负荷情况的许多方法。负荷情况转而被用来帮助确定如何调整后续DZ的可适用静默因子。在一个实施例(选项1)中,ProSe使能UE当对来自其他UE的在当前D2D发现区中的发现分组进行解码时,ProSe使能UE可以对成功循环冗余校验(CRC)的数目进行计数;该成功CRC计数可由ICRCsucc来表示。可定义阈值数目ThresCRCsucc,以使得当ICRCsucc大于ThresCRCsucc时,UE可以考虑当前发现区负荷较重,因而对于下一发现区,将静默因子增加q0量。另一方面,如果在当前发现区中,ICRCsucc小于或等于ThresCRCsucc时,UE可以对于下一发现区,将静默因子减小q1量。阈值数目ThresCRCsucc可以是静态的,或者由网络以较慢速率配置和更新。
在针对基于竞争发现的实施例(选项2)中,当ProSe使能UE发送发现分组时,ProSe使能UE可以随机选择解调参考信号(DM-RS)序列或发现前导。在接收端,接收发现发送的UE可能需要执行发现前导检测或者分组检测,以查明给定的发现资源中是否存在发现分组,并且执行DM-RS识别以确保适当的信道估计和时间/频率偏移补偿。当执行包括DM-RS盲检的发现前导检测或分组检测时,ProSe使能UE可以计算所有候选DM-RS序列的相关能量,并且选择具有最高相关能量的DM-RS序列用于进一步的带宽处理。
在针对基于竞争发现的其他实施例中,ProSe使能UE可以首先确定每个所监控的发现资源内的全部候选DM-RS序列的最大相关能量。跨发现区(例如,发现周期)中所监控的全部发现资源的平均最大相关能量(本文称为MaxEnDZ)可受制于半双工约束而确定。选择阈值(本文称为 ThresMAXENDR)如果针对当前发现区,MaxEnDZ大于或等于ThresMAXENDR,则UE可以考虑当前发现区发现分组发送的负荷较重,并且对于下一发现区,可以将静默因子增加q0量。因此,如果对于当前发现区,MaxEnDZ小于ThresMAXENDR,则对于下一发现区,UE可以将静默因子减小q1量。ThresMAXENDR可以是静态的或者由网络以较慢速率配置和更新。
在另一实施例(选项3)中,ProSe使能UE可以计算每个所监控的发现资源内的候选DM-RS序列的最大和第二大(即,第二高)相关能量。UE随后可以计算受制于半双工约束下,跨发现区中的所监控的全部发现资源的第二大相关能量的平均值(本文称为MaxSecMaxEnDz)。选择阈值(本文称为ThresMAXSECMAXENDR)。如果对于当前发现区,MaxSecMaxEnDZ大于或等于ThresMAXSECMAXENDR,则UE可以考虑当前发现区发现分组发送的负荷较重,并且对于下一发现区,可以将静默因子增加q0量。因此,如果对于当前发现区,MaxSecMaxEnDZ小于ThresMAXSECMAXENDR,则对于下一发现区,UE可以将静默因子减小q1量。ThresMAXSECMAXENDR可以是静态的或者由网络以较慢速率配置和更新。
在另一实施例(选项4)中,计算每个所监控的发现资源内的候选DM-RS序列的最大和第二大(即,第二高)相关能量。UE随后可以计算每个所监控的发现资源内的最大和第二大相关能量之间的比率,并且将所计算的比率与阈值比率(本文称为ThresratioDR)进行比较。UE随后可以计算(当前发现区中)所计算的比率大于或等于ThresratioDR的发现资源的数目计数。可以确定受制于半双工约束,在发现周期内跨所监控的全部发现资源的平均计数,本文称为Iratio。随后可以将Iratio与阈值(本文称为ThresratioDZ)比较。如果对于当前发现区,Iratio小于ThresratioDZ,则UE可以考虑当前发现区发现分组发送的负荷较重,并且对于下一发现区,可以将静默因子增加q0量。因此,如果对于当前发现区,Iratio大于或等于ThresratioDZ,则对于下一发现区,UE可以将静默因子减小q1量。ThresratioDZ可以是静态的或者由网络以较慢速率配置和更新。
在另一实施例(选项5)中,多个选项1-4可以结合使用,以得到复合度量,从而估计发现区中的负荷情况。还可以结合选项1-4的任意组 合,来使用考虑UE是否在先前发现区中进行了发送的另一选项,从而得到这样的复合度量。可选择用于复合度量的阈值(本文称为Threscomb)。如果当前发现区对于复合度量的值大于或等于Threscomb,则UE可以考虑当前发现区发现分组发送的负荷较重,并且对于下一发现区,可以将静默因子增加q0量。因此,如果当前发现区对于复合度量的值小于Threscomb,则对于下一发现区,UE可以将静默因子减小q1量。Threscomb可以是静态的或者由网络以较慢速率配置和更新。
在另一实施例中,上面列出的标准(例如,选项1-5)中的一个或多个标准可用作定义增加因子q0和减小因子q1的函数的参数。预定义函数f例如可以接纳标准作为参数,并且使用这些参数来确定被用来调整后续发现区的静默因子的增加因子q0的值。在另一示例中,预定义函数可以接纳标准作为参数,并且使用这些参数来确定被用来调整后续发现区的静默因子的减小因子q1的值。
在估计D2D发现区的负荷情况以及调整静默因子的实施例中,静默因子可被约束为符合下限和/或上限。这样的下限和/或上限可以是静态的或者由网络以较慢速率配置和更新。
在一些实施例中,ProSe使能UE可被允许在同一发现区内发送发现分组的多个副本。在该情形被允许的实施例中,发现区可被划分为子发现区(子DZ)。可以使用子发现区(子DZ)代替DZ,来调整静默概率的方案(如选项1-5所描述的)。
在一些实施例中,可针对DZ内的重复发送来定义条件静默概率prcTx。该条件静默概率是以UE在DZ中发送初始发现信号的事件为条件的。如果初始发现信号实际上是在DZ期间被发送的,则在概率prcTx下发送对发现信号的一个或多个后续重复发送。条件静默概率PrcTx可以是静态的或者由网络以较慢速率配置和更新。
在另一实施例中,不同类型的D2D发现消息可以具有不同的大小。公共安全(PS)D2D发现消息和非PS D2D发现消息的发现分组例如通常具有不同的大小。ProSe使能UE可被配置为:依赖于发现分组的大小,在DZ(或者子DZ)中发送/重复发送发现分组达不同次。固定或自适应静默 因子可被用于初始发现信号发送、重复发送、或者两者。所述方法(例如,选项1-5)可被用来基于负荷情况来调整自适应静默因子。
在另一实施例中,上述方法(例如,选项1-5)可被用来估计一组发现周期内的负荷情况。例如,可以在发现区中在n个先前发现周期上平均选项1-5中所描述的比较度量,以得到用于估计当前负荷情况的较大的发现周期样本大小。该组n个先前发现周期可以包括发现周期的滑动窗口,以使得为了估计发现周期t的负荷情况,从发现周期t-n至t-1的度量被包括在该组内。
在一些实施例中,当发现区参数包括发送功率控制配置时,UE可被配置有用于发送D2D发现信号的最大发送功率,该最大发送功率低于相应UE类别所规定的发送功率。在这些实施例中,依赖于发现流量情况和用例,ProSe使能UE可被配置有最大发送功率,该最大发送功率可能低于相应UE类别所规定的发送功率。最大发送功率可用于发现分组发送。如果支持,则将需要通过信号发送与更先进的自适应功率控制选项相关的其他参数。
在一些实施例中,当发现区参数包括跳跃相关参数时,则跳跃相关参数指示:
·在无竞争D2D发现区配置中针对发现资源跳跃的参数;
·跳跃类型,包括类型1或类型2跳跃;
·跳跃模式,包括子帧内或子帧间跳跃;
·对于类型2跳跃的子带大小;以及
·对于类型2跳跃的伪随机序列初始化。
在这些实施例中,对于无竞争发现资源分配,可向UE提供某一随机化跳跃相关信令。另外,对于基于有效负荷的发送(其中,每个发现分组发送跨多个PRB对),可以配置不同类型的子帧内或子帧间跳跃。
在一些实施例中,当发现区参数包括加扰标识时,加扰标识可用于加扰D2D发现分组的CRC掩码。通用的加扰ID可基于每发现群组来分配。在这些实施例中,加扰标识(ID)可用于加扰发现分组的CRC掩码。加扰标识可以基于每发现群组是通用的。对于开放式发现,网络内(对于网 络通用发现资源配置)或者小区集群或小区内(对于小区特定发现资源配置)的全部ProSe使能UE可被配置有通用加扰ID。
对于限制性发现,加扰ID可被用于在向上层发送候选列表以对限制性发现进行验证之前,由发现UE过滤所解码的候选者。对于封闭式发现,基于每白名单列表,加扰与针对限制性发现的是相同的。由此,不在白名单列表中的那些ProSe使能UE将不能解码分组。封闭式群组加扰种子应由D2D服务器生成,并且在D2D注册(不通过SIB/寻呼)期间与白名单列表群组信息一起被发送。
在一些实施例中,对于限制性发现,临时标识符(Temp_ID)可被用来区分属于不同发现群组(其他ProSe使能UE的不同白名单列表)的相同ProSe使能UE。作为限制性发现的部分进行发送的每个ProSe使能UE被分配以一个或多个Temp_ID,该一个或多个Temp_ID代替发现分组中的UE标识。当发现UE解码这样的分组时,该发现UE将该(一个或多个)解码的Temp_ID转发到网络以作为限制性发现过程的一部分,进行进一步的识别和验证。例如,考虑参与限制性发现的三个ProSe使能UE:UE_A、UE_B和UE_C。UE_A和UE_B分别属于不同的群组A和B,并且在其各自的白名单列表中不具有彼此,而UE_C处于两个白名单列表中。然后,UE_C可以被分配以两个不同的Temp_ID(UE_Ca和UE_Cb),以使得UE_A和UE_B二者可以分别发现UE_Ca和UE_Cb,从而利用来自网络的后续识别,可以发现UE_C。然而,UE_A和UE_B经由开放式发现操作仅能够发现彼此。
图6示出了根据一些实施例的eNB触发无竞争D2D发现区资源。在这些实施例中,eNB可以使用RRC和/或第1层(物理层)信令来指示向处于RRC连接模式的ProSe使能UE半永久地分配发现资源,以用于无竞争地发送D2D发现信号。eNB可被配置为通过发送发现资源释放来释放对发现资源的分配。在这些实施例中,可采用多种方式来支持D2D发现的无竞争模式。在一些实施例中,该操作模式可由eNB来触发(操作602),其中,在操作604中,eNB向一个或多个RRC_CONNECTED模式ProSe使能UE配置以用于发送发现信号的专用资源。该情形中的资源 分配可使用RRC和第1层信令的组合、采用半永久分配发现资源的形式来实现(操作606)。依赖于负荷和整体的D2D发现资源分配状态,还可以由eNB释放(操作608)所配置的专用资源。
图7示出了根据一些实施例的UE触发无竞争D2D发现区资源。在这些实施例中,eNB可以响应于来自处于RRC连接模式的ProSe使能UE的RRC资源请求,向该ProSe使能UE分配发现资源以无竞争地发送D2D发现信号。除了eNB决定的发现资源释放,eNB可以响应于经由RRC信令从ProSe使能UE接收到资源释放请求,来释放对发现资源的分配。在这些实施例中,RRC_CONNNECTED UE(例如,在从较高层进行初始化时)可以经由RRC层向服务小区请求(操作702)D2D发现信号发送的资源。后续地,受制于eNB决定,服务小区可以经由RRC信令向UE配置以资源分配的配置(操作704)并且最终经由第1层信令配置以半永久分配。不使用第1层信令/激活,因为可以经由RRC来配置资源(操作704),然后从发现资源池/区的下一次出现开始,发现发送自动被激活(操作706)。除了eNB决定的对资源的释放(操作710),UE还可以经由RRC层请求发现资源释放(操作708)。
在这些实施例中,当D2D发现资源经由PDCCH被明确分配时,可能不需要RRC资源配置(操作704)。还可以实现eNB触发、UE触发无竞争资源分配方案与eNB决定和UE请求资源释放机制的结合。
此外,依赖于活动ProSe使能UE的存在,可以在小区等级/小区集群等级或网络等级不预留用于D2D发现的资源(即,不配置发现区)。在这样的情形中,RRC_CONNECTED模式下的ProSe使能UE可以经由RRC或应用层发送分配D2D发现资源的请求。如果经由应用层进行请求,该请求将被发送至D2D服务器,D2D服务器转而请求eNB开启发现区或者按照需求为无竞争发现分配附加资源。另外,RRC_IDLE模式下的ProSe使能UE可以转换到连接模式以发送发现资源请求。然而,该ProSe使能UE可以不涉及RRC连接设置。例如,UE可以发送仅指示发现区请求的RRC连接请求。替代地,当eNB发送针对发现请求消息的确认(或者发现无线电资源配置)消息时,UE自主地转到空闲模式。
在一些实施例中,D2D发现资源可被静态配设。为了支持网络覆盖之外场景或部分网络覆盖场景中的国家安全和公共安全(NSPS)用例的D2D发现,某些周期性时间-频率资源可针对公共安全(PS)ProSe使能UE被预配置作为D2D发现资源。这样的资源可被配置为具有低的占空比,并且在适当的状况下,依赖于确切的D2D发现协议,可通过针对部分网络覆盖场景或网络覆盖之外场景协调UE,来分配附加资源以补充预配置的D2D发现区。对附加资源的配置可以在考虑静态预配置默认D2D发现区的情况下遵循上述原则。
在一些实施例中,对于基于几何学的小区内D2D发现区划分,UE可以从服务eNB接收指示一个或多个邻居eNB的D2D发现区配置信息的信令,所述信息包括用于小区中心D2D UE和小区边缘D2D UE中的至少一者的D2D发现区的发现资源。UE可至少基于服务eNB的RSRP,来选择针对小区中心D2D UE或小区边缘D2D UE所指示的资源用于发送D2D发现信号。在这些实施例中,UE可以基于UE几何学来选择发现资源。发现区可被划分,并且如果一些发现资源在邻居小区中用于常规的UL调度,则这些发现资源主要用于小区中心UE。具有大于某些预定义或配置阈值的RSRPserving/RSRPstrongest_neighbor比率的ProSe使能UE可以在针对小区中心ProSe使能UE所预留的发现区中发送D2D发现分组。在上文中,RSRPserving是服务小区RSRP,并且RSRPstrongest_neighbor对应于去往邻居小区列表中具有最大RSRP值的小区的链路的RSRP。基于几何学的小区内D2D发现区划分与具有WAN流量的小区内认真调度PUSCH发送相结合可以使能邻居小区中的LTE UL发送与D2D发现区域的共存。eNB可以交换关于用于小区中心D2D UE或小区边缘D2D UE的发现资源方面的信息。在这些实施例中的一些实施例中,UE可以基于RSRPserving而不是比率来选择发现资源,并且将类似地运作,尤其在eNB具有类似发送功率的情形下的NW中(例如,针对仅宏网络)。
图8示出了被使能用于邻近服务(ProSe)的UE的计算机电路的功能800。在810中,ProSe使能UE可以从增强型节点B(eNB)接收设备到设备(D2D)发现区配置信息,该D2D发现区配置信息指示发现区的周期 性和时间和频率资源,并且指示一个或多个发现区操作参数。在820中,ProSe使能UE可以针对其他UE发送的D2D发现信号,来监控D2D发现区的第一发现周期。在830中,ProSe使能UE可以从其他UE接收第一发现周期中的发现分组。在840中,ProSe使能UE可以估计第一发现周期内的负荷情况。在850中,ProSe使能UE可以基于所估计的第一发现周期内的负荷情况,来调整静默因子。静默因子可以包括UE将在第一发现周期之后的第二发现周期内不发送D2D发现信号的概率。
在一个示例中,ProSe使能UE可以通过如下操作来估计发现区(例如,基于竞争D2D发现区)的第一发现周期内的负荷情况:受制于半双工约束,当ProSe使能UE对从其他UE接收到的发现分组进行解码时,计数成功循环冗余校验(CRC)的数目;将成功循环冗余校验(CRC)的数目与阈值数目(该阈值数目可以是静态的或者由来自eNB的信号周期性更新)进行比较;如果成功循环冗余校验(CRC)的数目等于或大于阈值数目,则增大静默因子;以及如果成功循环冗余校验(CRC)的数目小于阈值数目,则减小静默因子。
在另一示例中,ProSe使能UE可以通过如下操作来估计发现区(例如,基于竞争D2D发现区)的第一发现周期内的负荷情况:执行发现前导检测或发现分组检测(包括解调和参考信号(DM-RS)盲检);接收位于第一发现周期内的多个发现资源中的每个发现资源内的多个DM-RS序列;计算所有DM-RS序列的相关能量,所述DM-RS序列包括第一发现区内的多个DM-RS序列;以及从多个发现资源中的每个发现资源内的多个DM-RS序列选择DM-RS序列,其中,所选定的DM-RS序列相对于所计算的所有DM-RS序列的相关能量具有所计算的最大相关能量,所述所有DM-RS序列包括可在相应发现资源上发送的多个DM-RS序列。
ProSe使能UE还可以被配置为通过如下操作来估计负荷情况:计算受制于半双工约束下在发现周期内跨所监控的所有发现资源的第一发现区内的平均最大相关能量;将平均最大相关能量与阈值相关能量(该阈值相关能量可以是静态的或者由来自eNB的信号周期性更新)进行比较;如果平均最大相关能量等于或大于阈值相关能量,则增大静默因子;以及平均最 大相关能量小于阈值相关能量,则减小静默因子。
ProSe使能UE还可以被配置为通过从位于第一发现周期内的多个发现资源中的每个发现资源内的多个DM-RS序列中选择第二DM-RS序列,其中,第二DM-RS序列相对于所计算的所有DM-RS序列的相关能量具有所计算的第二大相关能量,所述所有DM-RS序列包括可在相应发现资源上发送的多个DM-RS序列;计算受制于半双工约束下在发现周期内跨所监控的所有发现资源的第一发现区内的平均第二大相关能量;将第二大相关能量与阈值相关能量(该阈值相关能量可以是静态的或者由来自eNB的信号周期性更新)进行比较;如果第二大相关能量等于或大于阈值相关能量,则增大静默因子;以及第二大相关能量小于阈值相关能量,则减小静默因子。
在另一示例中,ProSe使能UE可以被配置为通过如下操作来估计负荷情况:执行发现前导或分组检测(包括解调和参考信号(DM-RS)盲检);接收位于第一发现周期内的多个发现资源中的每个发现资源内的多个DM-RS序列;计算位于第一发现周期内的多个发现资源中的每个发现资源的每个DM-RS序列的相关能量;确定第一发现周期中的每个发现资源的最大相关能量,其中,位于该发现周期中的多个发现资源中的每个发现资源的最大相关能量包括可在相应发现资源上发送的任意DM-RS序列的最大相关能量;确定位于第一发现周期中的多个发现资源中的每个发现资源的第二大相关能量;计算位于第一发现周期中的多个发现资源中的每个发现资源的相关能量比率,其中,所选定的发现资源的相关能量比率包括所选定的发现资源的最大相关能量与所选的的发现资源的第二大相关能量之间的比率;计算位于第一发现周期中的多个发现资源中的每个发现资源的上的每个发现资源的阈值满足计数,其中,当所选定的发现资源的相关能量比率大于或等于阈值比率(该阈值比率可以是静态的或者由来自eNB的信号周期性更新)时,增大所选定的发现资源的阈值满足计数;计算跨位于第一发现区中所监控的所有发现资源的平均阈值满足计数;将平均阈值满足计数与阈值数目(该阈值数目可以是静态的或者由来自eNB的信号周期性更新)进行比较;如果平均阈值满足计数小于阈值数目,则增 大静默因子;以及如果平均阈值满足计数大于或等于阈值数目,则减小静默因子。
在另一示例中,ProSe使能UE可被配置为通过使用一函数来估计负荷情况,该函数对第一发现周期内的负荷情况进行量化,该函数接收包括如下项中的一项或多项的输入:指示UE是否在先前发现周期中进行了发送的指示符;成功循环冗余校验(CRC)的数目,其中,硬件电路还被配置为当解码第一发现周期内从其他UE接收的发现分组时,计数成功CRC的数目;第一发现区内的最大相关能量,其中,硬件电路还被配置为通过计算在UE处接收的位于第一发现周期内的多个发现资源中的每个发现资源的多个DM-RS序列的相关能量以及将最大相关能量设置等于与多个DM-RS序列中的DM-RS序列相关联的所计算的最高相关能量,来确定最大相关能量;第一发现区内的第二大相关能量,其中,硬件电路还被配置为通过计算在UE处接收的位于第一发现周期内的多个发现资源中的每个发现资源的多个DM-RS序列的相关能量以及将第二大相关能量设置等于与多个DM-RS序列中的DM-RS序列相关联的所计算的第二高相关能量,来确定第二大相关能量;或者平均阈值满足计数,其中,硬件电路还被配置为通过计数位于第一发现周期内的多个发现资源中的每个发现资源上的、最大相关能量与第二大相关能量的比率大于或等于阈值比率的发现资源的数目以及相对于发现区的第一发现周期中的发现资源的数目进行平均,来计算平均阈值满足计数。当由函数量化的负荷情况大于或等于阈值时,ProSe使能UE可以增大静默因子,并且当由函数量化的负荷情况小于阈值时,ProSe使能UE可以减小静默因子。这些阈值可以是静态的,或者由来自UE的信号进行周期性更新。静默因子可由上限值和下限值来设限。当由函数量化的负荷情况大于或等于阈值时,可以增大静默因子以增量因子Q0,并且当由函数量化的负荷情况小于阈值时,可以减小静默因子以减量因子Q1。
图9提供了无线设备(例如,用户设备(UE)、移动站(MS)、移动无线设备、移动通信设备、平板、手机、或其他类型的无线设备)的示例图解。无线设备可以包括一根或多根天线,该一根或多根天线被配置为 与节点、宏节点、低功率节点(LPN)或传输站(例如,基站(BS)、演进型节点B(eNB)、基带单元(BBU)、远程无线电头端(RRH)、远程无线电设备(RRE)、中继站(RS)、无线电设备(RE)、或其他类型的无线广域网(WWAN)接入点)进行通信。无线设备可以被配置为使用至少一个无线通信标准(包括3GPP LTE、WiMAX、高速分组接入(HSPA)、蓝牙、以及Wi-Fi)进行通信。无线设备可以针对每个无线通信标准使用单独的天线或者针对多个无线通信标准使用共享天线。无线设备可以在无线局域网(WLAN)、无线个域网(WPAN)和/或WWAN中进行通信。
图8还提供了麦克风和一个或多个扬声器的图解,该麦克风和一个或多个扬声器可以被用于从无线设备音频输入和从无线设备的音频输出。显示屏可以是液晶显示(LCD)屏、或者其他类型的显示屏(例如,有机发光二极管(OLED)显示器)。显示屏可以被配置为触摸屏。触摸屏可以使用电容性触摸屏技术、电阻性触摸屏技术、或另一类型的触摸屏技术。应用处理器和图像处理器可以被耦合到内部存储器,以提供处理和显示能力。非易失性存储器端口也可以被用来向用户提供数据输入/输出选项。非易失性存储器端口还可以被用来扩展无线设备的存储器容量。可以将键盘与无线设备相集成,或者将键盘无线连接到无线设备以提供附加的用户输入。也可以使用触摸屏来提供虚拟键盘。
各种技术或者其某些方面或部分可以采用被嵌入到有形介质(例如,软盘、CD-ROM、硬驱动器、非暂态计算机可读存储介质、或任意其他机器可读存储介质)中的程序代码(即,指令)的形式,其中,当程序代码被加载到机器(例如,计算机)中并且由该机器运行时,该机器成为用于实施各种技术的装置。电路可以包括硬件、固件、程序代码、可执行代码、计算机指令和/或软件。非易失性计算机可读存储介质可以包括计算机可读存储介质,该计算机可读存储介质不包括信号。在程序代码在可编程计算机上运行的情形中,计算设备可以包括处理器、处理器可读的存储介质(包括易失性和非易失性存储器和/或存储元件)、至少一个输入设备、以及至少一个输出设备。易失性和非易失性存储器和/或存储元件可以是 RAM、EPROM、闪速驱动器、光驱动器、磁性硬驱动器、或用于存储电子数据的其他介质。节点和无线设备还可以包括收发机模块、计数器模块、处理模块、和/或时钟模块或定时器模块。可以实现或利用本文所描述的各种技术的一个或多个程序可以使用应用程序界面(API)、可再用控制等。这样的程序可以被实现于高层程序或面向对象的编程语言中,从而与计算机系统进行通信。然而,(一个或多个)程序可以按需被实现于组件或机器语言中。在任何情形中,语言可以是编译型语言或解释型语言,并且将其与硬件实现方式相结合。
应当理解,本说明书中所描述的功能单元中的许多功能单元以被标记为模块,以便更加着重强调其实现方式的独立性。例如,模块可以被实现为硬件电路,该硬件电路包括常规VLSI电路或门阵列、现成的半导体(例如,逻辑芯片、晶体管、或其他分立组件)。模块还可以被实现于可编程硬件设备(例如,现场可编程门阵列、可编程阵列逻辑、可编程逻辑器件,等等)中。
模块还可以被实现于由各种类型的处理器运行的软件中。所标识的可执行代码的模块例如可以包括计算机指令的一个或多个物理块或逻辑块,其例如可以被组织为对象、程序、或功能。然而,所标识的模块的可执行性不需要物理上位于一起,而是可以包括存储于不同位置中的不同的指令,当这些存储于不同位置中的不同的指令在逻辑上被结合在一起时,其包括该模块并且实现该模块所声明的目的。
实际上,可执行代码的模块可以是单个指令、或许多指令,并且甚至可以跨若干个存储器设备且在不同的程序间被分布于若干个不同的代码段上。类似地,操作数据在本文中可以在模块内被识别和说明,并且可以以任意适当的形式被嵌入并且被组织到任意适当类型的数据结构中。操作数据可以被收集为单个数据集,或者可以被分布于不不同的位置(包括不同的存储设备上),并且可以至少部分地仅作为系统或网络上的电子信号而存在。模块可以是主动的或是被动的,包括可操作以执行所期望的功能的代理。
贯穿本说明书对“示例”的指代意思是结合被包括在本发明的至少一 个实施例中的示例所描述的特定特征、结构、或特点。因此,贯穿本说明书在各个位置出现的短语“在示例中”不一定全部指代同一实施例。
如本文所使用的,为方便起见,多个项、结构元件、组成要素、和/或材料可以被呈现在一般列表中。然而,这些列表应该被理解为好像列表中的每个成员被独立标识为单独且唯一的成员一样。因此,基于其在一般群组中的呈现而无需相反的指示,这样的列表中的独立成员不应该被解释为同一列表的任意其他成员的事实上的等同。此外,本发明的各种实施例和示例在本文可以随着其各种组分的替代一起被指代。应当理解,这样的实施例、示例和替代不被解释为彼此的事实上的等同,而被考虑为对本发明的独立且自主的表示。
而且,所描述的特征、结构、或特点可以在一个或多个实施例中以任意适当的方式进行组合。在如下的描述中,提供了大量具体细节(例如,布局的示例、距离、网络示例等),以提供对本发明的实施例的透彻的理解。然而,相关领域的技术人员将认识到,可以在无需这些具体细节中的一个或多个的情况下实施本发明,或者利用其它方法、组件、布局等来实施本发明。在其它实例中,为了避免模糊所要求保护的主题的各方面,对众所周知的结构、材料、或操作未进行详细示出或描述。
尽管前面的示例是在一个或多个特定应用中对本发明的原理的说明,但在不背离本发明的概念和原理并且无需发明人员的练习的情况下,可以在实现方式的形式、使用和细节上做出大量修改,这对于本领域技术人员而言是显而易见的。因此,除所附权利要求所提出的之外,不意欲对本发明进行限制。