一种能检测心率的耳的制造方法
【专利摘要】本实用新型公开了一种能检测心率的耳机。该耳机包括:减法单元、心率检测单元、加速度传感器、自适应滤波单元、设置在耳机内的腔体和安装在所述腔体内的麦克风;麦克风在耳机被佩戴时采集腔体内的由压力变化产生的信号;加速度传感器采集由于佩戴者的身体运动所产生的信号;自适应滤波单元对所述加速度传感器采集到的信号进行自适应滤波处理,得到由佩戴者的身体运动所产生的信号的估计信号;减法单元从麦克风采集到的信号中减去该估计信号,得到心率相关的信号;心率检测单元根据心率相关的信号进行心率检测。本实用新型的技术方案,减小了外界噪声的干扰,并强化了麦克风采集到的信号信息,此外,还消除了佩戴者的身体运动对心率检测的影响。
【专利说明】一种能检测心率的耳机
【技术领域】
[0001] 本实用新型涉及耳机及心率检测【技术领域】,特别涉及一种能检测心率的耳机。
【背景技术】
[0002] 随着社会经济的不断发展,人们的物质生活水平日渐提高,人们也越来越关注自 己的健康。而心率检测将给人们提供关于健康的非常重要的信息。任何不同于正常心率 的显示都表明健康出现了问题,通过心率检测可以及时发现我们的身体是否出现了问题。 心率检测还可以在一定程度上反映人们的运动强度是否合适,为了能够得到最佳的锻炼效 果,人们在锻炼的过程中应该将心率保持在一定的范围内,而心率检测可以为合理的运动 量提供一个指标。
[0003] 另外,很多人在运动的过程中,喜欢带着耳机听音乐,为了能够测得运动过程中的 心率,又不需要随身携带其他设备,人们开始研究如何利用耳机来检测心率的相关技术。
[0004] 检测心率的技术,除了心率带之外,现在又新兴一种利用耳机来检测心率的技术, 达到便捷准确的目的。
[0005] 利用耳机来检测心率的技术是近几年才出现的。2013年10月23日至25日,日本 横滨健康器械展上,Kaiteki公司和Bifrostec公司展出了一种可以用耳机测定脉搏波动 的技术。该技术利用耳机紧贴耳道形成封闭空间,由于耳膜的振动,耳道内会产生一定的压 力,并且压力随着振动的改变而改变,利用麦克风采集耳道内压力的变化信息,从而达到检 测心率的目的。但是耳机不能占据整个耳道,那么会造成耳道内气体的泄露,从而使得麦克 风检测不到压力的变化,并且心率的检测会受到外界噪声的干扰。
[0006] 利用耳机检测心率,除了存在上述问题外,还有一个重要因素,影响着对心率的准 确检测,即人的身体运动。由于人的身体运动必然会引起耳壁的振动,这种振动同样会造成 耳道内压力的变化,这种压力变化同时会被麦克风采集到,从而干扰了对心率信号的分析。 实用新型内容
[0007] 有鉴于此,本实用新型提供了一种能检测心率的耳机,以解决上述问题或者至少 部分地解决上述问题。
[0008] 本实用新型公开了一种能检测心率的耳机,该耳机包括:减法单元、心率检测单 元、加速度传感器、自适应滤波单元、设置在耳机内的腔体和安装在所述腔体内的麦克风;
[0009] 其中,所述腔体的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的 耳机壳的位置;所述腔体的口所贴合的耳机壳处有开孔,当耳机被佩戴时所述腔体和与所 述开孔贴合的耳廓构成密闭空间;
[0010] 所述麦克风,用于当耳机被佩戴时,采集所述腔体内的由压力变化产生的信号并 输出给减法单元;
[0011] 所述加速度传感器,用于当耳机被佩戴时,采集由于佩戴者的身体运动所产生的 信号并输出给所述自适应滤波单元;
[0012] 所述自适应滤波单元,用于根据心率相关信号对所述加速度传感器采集到的信号 进行自适应滤波处理,得到麦克风采集到的信号中的由于佩戴者的身体运动所产生的信号 的估计信号后输出给所述减法单元;
[0013] 所述减法单元,用于从麦克风采集到的信号中减去所述估计信号,得到心率相关 的信号输出给所述心率检测单元以及所述自适应滤波单元;
[0014] 所述心率检测单元,用于根据所述心率相关的信号进行心率检测。
[0015] 可选地,该耳机进一步包括:低通滤波器,用于对所述麦克风采集到的信号进行低 通滤波处理,得到低通滤波信号并输出给所述减法单元;
[0016] 所述减法单元,用于从所述低通滤波信号中减去所述估计信号,得到心率相关的 信号输出给所述心率检测单元。
[0017] 可选地,所述自适应滤波单元包括:参数可调滤波器和参数自适应调整单元;
[0018] 所述加速度传感器,用于将采集到的信号输出给所述参数可调滤波器和所述参数 自适应调整单元;
[0019] 所述减法单元,用于将所述心率相关信号输出给所述参数自适应调整单元;
[0020] 所述参数自适应调整单元,用于根据加速度传感器采集到的信号、心率相关信号 以及预设的自适应算法去调整所述参数可调滤波器的滤波参数;
[0021] 所述参数可调滤波器,用于利用滤波参数对加速度传感器采集的信号进行自适应 滤波,输出麦克风采集到的信号中的由于佩戴者的身体运动所产生的信号的估计信号给所 述减法单元。
[0022] 可选地,所述心率检测单元,用于对所述心率相关的信号的周期进行检测,由检测 出的信号的周期的倒数得到心率。
[0023] 可选地,所述加速度传感器设置在耳机中的不接触佩戴者皮肤的位置。
[0024] 由上述可见,本实用新型这种耳机,采用了由耳机内的腔体和耳机壳构成的密闭 腔体来安置麦克风,减小了外界噪声的干扰,并强化了麦克风采集到的信号信息。此外,该 耳机中加入了加速度传感器来采集由佩戴者的身体运动产生的信号,对加速度传感器采集 的信号进行自适应滤波,从麦克风采集的信号中减去自适应滤波后的加速度传感器信号, 再进行心率检测,从而消除了 了佩戴者的身体运动对心率检测的影响。
【专利附图】
【附图说明】
[0025] 图1为本实用新型实施例中的一种能检测心率的耳机的结构示意图;
[0026] 图2A是本实用新型一个实施例中的设置有腔体110的耳机100的侧面示意图;
[0027] 图2B是本实用新型一个实施例中的设置有腔体110的耳机100背面示意图;
[0028] 图2C是本实用新型一个实施例中的设置有腔体110的耳机100的侧面剖视图;
[0029] 图3是本实用新型一个实施例中的加速度传感器的安放位置的示意图;
[0030] 图4为本实用新型又一个实施例中的一种能检测心率的耳机的结构示意图;
[0031] 图5是自适应滤波器的一般结构示意图。
【具体实施方式】
[0032] 为使本实用新型的目的、技术方案和优点更加清楚,下面将结合附图对本实用新 型实施方式作进一步地详细描述。
[0033] 图1为本实用新型实施例中的一种能检测心率的耳机的结构示意图。如图1所示, 该能检测心率的耳机1〇〇包括:减法单元150、心率检测单元160、加速度传感器130、自适 应滤波单元140、设置在耳机内的腔体110和安装在腔体110内的麦克风120 ;
[0034]其中,腔体110的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的 耳机壳的位置;腔体110的口所贴合的耳机壳处有开孔,当耳机被佩戴时腔体和与开孔贴 合的耳廓构成密闭空间。
[0035] 麦克风120,用于当耳机100被佩戴时,采集腔体110内的由压力变化产生的信号 并输出给减法单元150。
[0036] 加速度传感器130,用于当耳机被佩戴时,采集由于佩戴者的身体运动所产生的信 号并输出给自适应滤波单元140。
[0037]自适应滤波单元140,用于根据心率相关信号对加速度传感器130采集到的信号 进行自适应滤波处理,得到麦克风120采集到的信号中的由于佩戴者的身体运动所产生的 信号的估计信号后输出给减法单元150。
[0038] 减法单元150,用于从麦克风采集到的信号中减去自适应滤波单元140输出的估 计信号,得到心率相关的信号输出给心率检测单元160以及自适应滤波单元140。
[0039] 心率检测单元160,用于根据心率相关的信号进行心率检测。
[0040]图1中对加速度传感器130检测到的信号进行自适应滤波处理,使得能从加速度 传感器130采集到的人体运动信号准确地估计出麦克风120采集到的人体运动信号,其目 的是消除由于人的身体运动对心率检测的影响。麦克风120和加速度传感器130都会检测 到由于人的身体运动所产生的振动信号,虽然两种信号周期一致,但幅度会有差异,因此需 要采用滤波器消除这种差异,使得能够将人体运动产生的加速度信号从麦克风采集到的信 号中消除,以获得有效的心率信息。
[0041]图1所示的能检测心率的耳机100中,在耳机100内设置腔体110来安置麦克风 120,从而减小了外界噪声的干扰,并强化了麦克风120采集到的信号信息。此外,该能检测 心率的耳机100中加入了加速度传感器130来采集由佩戴者的身体运动产生的信号,对加 速度传感器130采集的信号进行自适应滤波,得到麦克风120采集到的信号中的由于佩戴 者的身体运动所产生的信号的估计信号,再从麦克风采集的信号中减去该估计信号,再进 行心率检测,从而消除了佩戴者的身体运动对心率检测的影响。
[0042] 在本实用新型的一个实施例中,图1所示的耳机进一步包括低通滤波器,用于对 麦克风采集到的信号进行低通滤波处理,得到低通滤波信号后再输出给减法单元150。即减 法单元150,用于从低通滤波信号中减去自适应滤波单元140输出的估计信号,得到心率相 关的信号输出给心率检测单元160。这是因为脉搏振动的频率较低(0.3Hz-3Hz左右),而 外界噪声频率较高,根据这一特点,通过低通滤波器可以消除外界高频噪声的影响。例如, 低通滤波器可以选择截止频率为5Hz的FIR滤波器等。
[0043] 在现有的耳机检测心率的技术中,通常麦克风直接放置在耳机中正对耳道的位 置,用于采集耳膜振动产生的耳腔内压力变化信息,但一方面由于耳机和耳道形成的空间 较大,会造成耳道内气体的泄露,使得麦克风采集的压力变化信息很微弱,另一方面耳机往 往不能占据整个耳道,直接将麦克风放在耳机中,会受到外界噪声的干扰。因此本实用新型 的图1所示耳机中设计了另外一种麦克风的安装方式,具体可以参见图2A-2C。
[0044] 图2A是本实用新型一个实施例中的设置有腔体110的耳机100的侧面示意图。 如2B是本实用新型一个实施例中的设置有腔体110的耳机100背面示意图。图2C是本实 用新型一个实施例中的设置有腔体110的耳机100的侧面剖视图。为了更好地采集和心跳 相关的有用信号,本实用新型设计了一种小腔体用于放置麦克风。参见图2A和图2B,图中 虚线所示的范围是内部腔体110的位置的示意。参见图2C腔体110的开口和耳机壳贴合。 可以看出,在该实施例中,腔体110位于耳机边缘贴近耳廓的部位,耳机在其和腔体贴合的 部位有个开孔111,在耳机被佩戴时,这个开孔111和耳廓紧密贴合,这样,腔体110和贴紧 的耳廓部分构成一个密闭的空间。将麦克风安装在该腔体110中,耳廓壁的收缩振动会引 起腔体110内压力的变化,那么麦克风就会采集到腔体110内压力的变化信息,该信息在一 定程度上反映了心脏的跳动频率,因此可以据此进行心率检测。
[0045] 图3是本实用新型一个实施例中的加速度传感器的安放位置的示意图。由于人体 的运动会使人体的皮肤随之发生振动,本实施例中加速度传感器设置在耳机中的不接触佩 戴者皮肤的位置,从而避免皮肤振动对加速度传感器采集的信号造成影响,提高加速度传 感器采集信号的准确度。参见图3,加速度传感器130可以放置在图3所示虚线框示意出的 耳机的任何一个部位。
[0046] 在物理学中,对于密闭的空间(不考虑温度),压强和体积成反比,也就是说体积 越小压强越大,那么作用在一定面积上的压力也越大。当用户带上耳机后,耳道内形成一个 密闭的空间,由于血管的脉压波动导致耳壁收缩,那么在腔体内会产生一定的压力变化,该 压力变化信号就会被麦克风检测到。一般来说血管的脉压波动非常微弱,密闭的空间越大, 那么麦克风检测到的压力变化越小,为了增加麦克风检测到的压力变化强度,将麦克风装 置在一个密闭的小腔体内,将该部分紧贴耳道,由于血管的脉压波动导致耳壁产生收缩振 动,此振动造成小腔体内的麦克风检测到压力的变化。并且小腔体的设计在一定程度上会 减小外界干扰信号的影响。
[0047] 即使耳机能够占据整个耳道,形成完全封闭的腔体,人的身体运动对心率检测的 影响也是不可避免的。因为,人的身体运动必然会导致耳壁的振动,而这种振动产生的腔体 内的压力变化同样会被麦克风检测到。那么,麦克风采集到的数据不仅包括了由于血管的 脉压波动产生的压力变化信息,同时包括了人的身体运动在耳道内产生的压力变化信息。 为了消除人的身体运动对心率检测的影响,本实用新型在耳机中加入加速度传感器,加速 度传感器装置在耳机中不接触皮肤的部位,比如图3中所示的虚线框所示的耳机位置。利 用加速度传感器采集人的身体运动所产生的加速度信息。人的身体运动所产生的耳道内压 力的变化信息和加速度具有相同的振动频率,以此为基础可以采用一定的滤波器消除人的 身体运动所产生的干扰。
[0048]根据前面的分析,如果能从麦克风检测到的信号中滤除由于人的身体运动所产生 的信号,那么就可以得到由于血液流动造成耳道自身收缩产生的信号,此信号和心脏跳动 频率有关,基于此信号得到心率信息。
[0049]麦克风采集到包括人的身体运动所引起的耳道压力变化信息,加速度传感器采集 到的是人的身体运动对应的加速度信息。虽然两种信号具有一样的振动频率,即周期性相 同,但是幅度会不同,不能直接将该信号从麦克风采集到的信号中去掉,因此本实施例通过 自适应滤波的方法来滤除由于人的身体运动所产生的干扰。
[0050] 综上所述,本发明实施例中:首先,采用体积较小的密闭腔体来安置麦克风,减小 了外界噪声干扰,并强化了麦克风检测到的信号信息。其次,在耳机中加入了加速度传感 器,用于采集由于人的身体运动产生的信号,并通过设计自适应滤波器来消除人的身体运 动对心率检测的影响。再者,根据脉搏振动频率的特点,设计了低通滤波器,进一步减小了 外界噪声的影响。下面以图4为例进行进一步的说明。
[0051] 图4为本实用新型又一个实施例中的一种能检测心率的耳机的结构示意图。如图 4所示,该能检测心率的耳机400包括:减法单元450、心率检测单元460、低通滤波器470、 加速度传感器430、自适应滤波单元440、设置在耳机内的腔体410和安装在腔体410内的 麦克风420。其中,自适应滤波单元440包括:参数可调滤波器441和参数自适应调整单元 442。
[0052] 其中,腔体410的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的 耳机壳的位置;腔体410的口所贴合的耳机壳处有开孔,当耳机被佩戴时腔体和与开孔贴 合的耳廓构成密闭空间。
[0053] 麦克风420,用于当耳机400被佩戴时,采集腔体410内的由压力变化产生的信号 并输出给低通滤波器470。
[0054] 低通滤波器470,用于对麦克风420采集到的信号进行低通滤波处理,得到低通滤 波信号后再输出给减法单元450。
[0055] 加速度传感器430,用于当耳机被佩戴时,采集由于佩戴者的身体运动所产生的信 号并输出给自适应滤波单元440中的参数可调滤波器441和参数自适应调整单元442。
[0056] 参数自适应调整单元442,用于根据加速度传感器430采集到的信号、心率相关信 号以及预设的自适应算法去调整参数可调滤波器441的滤波参数。
[0057] 参数可调滤波器441,用于利用滤波参数对加速度传感器430采集的信号进行自 适应滤波,输出麦克风采420集到的信号中的由于佩戴者的身体运动所产生的信号的估计 信号给减法单元450。
[0058] 减法单元450,用于从低通滤波器输出的信号中减去参数可调滤波器441输出的 估计信号,得到心率相关的信号输出给心率检测单元460 ;减法单元450,还用于将心率相 关信号输出给参数自适应调整单元442。
[0059] 这里参数自适应调整单元442根据输入的加速度传感器430采集的信号以及减法 单元450反馈的心率相关信号,采用自适应算法计算出参数可调滤波器441的滤波参数。
[0060] 心率检测单元460,用于根据心率相关的信号进行心率检测。
[0061] 在本实用新型的一个实施例中,心率检测单元460,用于对心率相关的信号的周期 进行检测,由检测出的信号的周期的倒数得到心率。例如,心率检测单元460,可以利用现有 的自相关方法、阈值方法等检测出心率相关的信号的周期。
[0062] 图5是自适应滤波器的一般结构示意图。如图5所示,自适应滤波器主要由参数 可调滤波器和调整滤波器系数的参数自适应调整单元两部分构成。自适应滤波器在设计 时不需要事先知道有关信号的统计特性的知识,它能够在自己的工作过程中逐渐"了解"或 估计出所需的统计特性,并以此为依据自动调整自己的参数,以达到最佳滤波效果。图5 中,Ex (n)是期望信号,In (n)是输入信号,Out (n)是输出信号,e(n)为估计误差,e(n)= Ex (n) - Out (n)。自适应滤波器的滤波系数受误差信号控制,e(n)通过预定自适应算法对 自适应系数进行调整,最终使得e(n)的均方误差最小,此时输出信号最逼近期望信号。 [0063]在图4所示的耳机中,采用了自适应滤波器对加速度传感器采集到的信号进行滤 波处理,以准确估计出麦克风采集到的由于人体运动产生的信号。如图4所示,yl(n)是加 速度传感器430采集到的信号,即对应自适应滤波单元440中的输入信号,y2(n)为自适应 滤波单元440的输出信号,xL(n)表示对应的期望信号,&n)对应误差信号(主要包括心率 信号)。yL(n)和yl(n)具有一定的相关性,可以通过设计合适的传递函数,来使得yl(n) 经过滤波器后的输出信号y2(n)逼近yL(n)。比如可以根据最小均方误差准则,当误差信号 均方的期望值最小时,输出信号y2(n)可以用来有效估计yL(n),那么之后就可以将人体运 动对心率检测的干扰从麦克风采集到的信号中去除,再次去除干扰信号的影响。麦克风经 过低通滤波后的信号减去加速度传感器经过自适应滤波后的信号,得到和心率相关的信号 信息,以此为基础进行心率的检测。心脏的跳动具有一定的周期性,那么tUn>是具有一 定周期性的信号,根据自相关方法可以获得该信号对应的周期,周期的倒数即为心率。
[0064]具体过程如下:
[0065] 假定麦克风检测到的信号为,加速度传感器检测到的信号为 yl (n)〇
【权利要求】
1. 一种能检测心率的耳机,其特征在于,该耳机包括:减法单元、心率检测单元、加速 度传感器、自适应滤波单元、设置在耳机内的腔体和安装在所述腔体内的麦克风; 其中,所述腔体的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机 壳的位置;所述腔体的口所贴合的耳机壳处有开孔,当耳机被佩戴时所述腔体和与所述开 孔贴合的耳廓构成密闭空间; 所述麦克风,用于当耳机被佩戴时,采集所述腔体内的由压力变化产生的信号并输出 给减法单元; 所述加速度传感器,用于当耳机被佩戴时,采集由于佩戴者的身体运动所产生的信号 并输出给所述自适应滤波单元; 所述自适应滤波单元,用于根据心率相关信号对所述加速度传感器采集到的信号进行 自适应滤波处理,得到麦克风采集到的信号中的由于佩戴者的身体运动所产生的信号的估 计信号后输出给所述减法单元; 所述减法单元,用于从麦克风采集到的信号中减去所述估计信号,得到心率相关的信 号输出给所述心率检测单元以及所述自适应滤波单元; 所述心率检测单元,用于根据所述心率相关的信号进行心率检测。
2. 如权利要求1所述的耳机,其特征在于,该耳机进一步包括:低通滤波器,用于对所 述麦克风采集到的信号进行低通滤波处理,得到低通滤波信号并输出给所述减法单元; 所述减法单元,用于从所述低通滤波信号中减去所述估计信号,得到心率相关的信号 输出给所述心率检测单元。
3. 如权利要求1或2所述的耳机,其特征在于,所述自适应滤波单元包括:参数可调滤 波器和参数自适应调整单元; 所述加速度传感器,用于将采集到的信号输出给所述参数可调滤波器和所述参数自适 应调整单元; 所述减法单元,用于将所述心率相关信号输出给所述参数自适应调整单元; 所述参数自适应调整单元,用于根据加速度传感器采集到的信号、心率相关信号以及 预设的自适应算法去调整所述参数可调滤波器的滤波参数; 所述参数可调滤波器,用于利用滤波参数对加速度传感器采集的信号进行自适应滤 波,输出麦克风采集到的信号中的由于佩戴者的身体运动所产生的信号的估计信号给所述 减法单元。
4. 如权利要求1或2所述的耳机,其特征在于, 所述心率检测单元,用于对所述心率相关的信号的周期进行检测,由检测出的信号的 周期的倒数得到心率。
5. 如权利要求1所述的耳机,其特征在于, 所述加速度传感器设置在耳机中的不接触佩戴者皮肤的位置。
【文档编号】H04R1/10GK204145698SQ201420482382
【公开日】2015年2月4日 申请日期:2014年8月25日 优先权日:2014年8月25日
【发明者】刘崧, 李波, 李娜 申请人:歌尔声学股份有限公司