一种移动自组织网络中基于信任评估的协作通信方法
【专利摘要】本发明提供一种移动自组织网络中基于信任评估的协作通信方法,通过将社会网络中的信任概念融入到自组织网络的路由过程中,并将计算所得信任值和节点可用能量结合,设计了一种基于贝叶斯信任和剩余能量相结合的安全路由协议,有效解决了网络中节点的自私行为,同时可以有效抵制一些常见类型的网络攻击行为;我们的信任值计算方法简单,不会占用过多的计算资源。
【专利说明】一种移动自组织网络中基于信任评估的协作通信方法
[0001]
【技术领域】
[0002]本发明是一种基于局部信任度和安全推荐信任模型的节点协作通信方法,属于移动自组织网络的协作通信【技术领域】。
[0003]
【背景技术】
[0004]移动Ad hoc网络(MANET)是一个独立的系统,通过无线链路连接的移动主机(节点)。这样的网络的建立是不需要任何类型的现有的固定基础设施的支持。移动自组织网络是一个分布式网络,其拓扑处于不断的变化中。这些特点给无线自组织网络带来了多方面的挑战。由于这样的网络没有基站或是接入点之类的基础设施,节点不在彼此的通信范围内时,需要借助中间节点的合作转发来实现多跳通信。Ad hoc网络由于能量受限,信息通常以多跳的方式在节点间传递,如果节点总是转发数据包,则会因能量耗尽而过早失效。另外,如果节点为了保存能量而拒绝所有的转发请求,网络的吞吐量急剧下降,网络通信就会瘫痪。文献中的仿真分析表明简单的不当行为可以使得MANET网络的性能急剧下降。有研究表明网络的转发能耗和吞吐量之间存在一个折中。因此节点如何决定转发数据包以实现最大限度节能,并保证一定的吞吐量也就成为自组织网络研究所要解决的重要问题之一。数据包的转发是网络路由协议的一个重要的基本功能,转发包的策略的好坏将直接影响网络节点间的通信质量。
[0005]在移动自组织网络中,信任(或声誉)被定义为一个节点对其它节点执行网络功能的接受程度。信任值可以激励或约束人们的行为,可以作为显式激励的替代物。在移动自组网中,声誉评价机制就是如何评价节点行为并对不同的行为采取不同的应对策略,其主要目标是防止网络中不良节点的安全威胁,尤其是对抗恶意节点的攻击,它的目标包括:提供用以判断节点是否可信的可靠信息;激励节点的合作行为;排斥不良节点获取网络服务。
[0006]在人际网络中,信任是一种对个体可信行为的主观评价,这一评价建立在与个体的直接交往经验、其它个体的经验推荐基础上。在无线多跳合作网络中存在以下特点:(1)源节点对下一跳节点具有选择权;(2)中继节点在转发过程中会留下反映其行为的特征信息;(3)节点可以提供推荐信息。因此,合作网络与人际网络有很大的相似性。在网络环境中,分组转发成功的概率是中继节点行为可靠性的一种体现,这种能力越强,其信任值就越高。因此,分组成功转发的概率可以作为节点可信度的度量手段。
[0007]目前,针对节点的自私问题,不少研究者提出了自己的解决方案,国内外的激励机制大体上可以分为三类:基于虚拟货币的激励机制、基于博弈论的激励机制和基于信誉的激励机制。基于虚拟货币的激励机制必须设计精细的支付方案,使得节点只有在合作的时候才能是自己的利益最大化。这种方法的缺陷在于作为基础的虚拟货币管理系统需要抗篡改硬件的支持,或者需要集中地支付服务;博弈激励机制在基于节点理性的基础上,采用经济学中博弈论的思想,在节点间建立分组转发博弈模型,设计适当的支付矩阵来最激励节点合作,里面的节点更接近理性的人的思维。其中比较有代表性的是“针锋相对(TFT Titfor Tat)”策略及其变形,这类文献重在纳什均衡的证明,假设的条件比较苛刻,和实际的应用有一定距离。信誉激励机制根据节点的历史行为对其可信程度做出评估,然后采取相应的策略。相比前两种机制,信誉机制所要求的条件低,更易于实现。
[0008]而在现有的信誉机制中,比如CORE,COFIDANT, OCEAN中信誉值的计算采用了简单的累加或是平均,不能很好的反映节点的行为,其计算的合理性值得商榷;对检测出的恶意节点并没有采取适当的惩罚措施,大多是简单的丢弃来及恶意节点的分组,这样显得过于严厉。然而,引入推荐信任又会招致虚假推荐问题。为了快速有效的检测出不合作节点,准确计算节点的可信值就显得尤为重要。此外,在基于信誉激励机制中,存在这样一个问题:合作节点转发的分组数比自私节点发送的多,其对应的声誉值也相对高些,而随着时间的推移,其转发的分组数越多,其声誉值也就越高,而节点在选择下一跳节点时,选取的是信誉值最高的节点,显然,声誉值高的节点作为中继节点的机率就更大,自身消耗的能量也就越多,这就导致了不公平的问题。因此,为了有效延长网络寿命,平衡网络负载,就必须综合考虑节点的能耗情况。
[0009]本发明针对上面所述的四个问题,即(I)信任度估计合理性问题;(2)虚假推荐问题;(3)惩罚机制不当问题;(4)公平性问题,提供了一种移动自组织网络中基于信任模型的协作通信方法,建立依据局部信任度和安全的推荐信任度的信任模型,引入惩罚因子和奖赏因子加快节点信任值得收敛,在无线自组织网络环境下激励节点协作,并充分结合节点能量选择下一跳节点,均衡网络负载。
[0010]模型定义网络模型
在一个无线自组织网络N中,节点仅在二维空间中运动,每个节点的发射功率有限(gp传输范围),当两个节点彼此处于各自的通信范围内时,二者互为邻居节点,相互间可以通信。并且限定节点只能与其邻居节点通信,采用全向天线链路。我们假定在仿真过程中消耗的能量对节点的发射功率没有影响,目的在于把注意力集中在路由的安全问题而不是功率控制。
[0011]节点攻击模型
本发明旨在解决节点在路由行为上的安全问题,因此对节点的攻击行为提出以下合理的假设:
(1)不存在绝对可信的节点,即不能对一个节点完全信任,每一个节点都有一个最小的风险值;
(2)整个系统只解决一种类型的攻击,即不转发分组攻击。当恶意节点收到一个需要其转发的分组时,其以一定的概率将分组丢弃。
[0012](3)系统假定节点在进行节点的能量等级和风险级别时默认对方提供的信息是真实的。
[0013]监测模型
监测模型的主要功能是对邻居节点的转发行为进行监视,从而对其信誉值进行计算。每个节点在发送分组时保存一个副本,并打开监听模式,侦听下游节点是否转发该数据包,并与缓冲区的数据比较,若匹配,则证明成功发送,并释放缓冲区数据包;若不匹配则说明下游节点修改了数据包。若在规定的时间内没有侦听到下游节点转发该消息包,则说明下游节点丢弃了数据包。监测模块把监视到的情况告知声誉评价模块。当节点與给其下一跳节点发送了一个数据包,节点JV1保留该数据包的一个副本,同时启动一个时钟。馮维护一个计数器,计数器中保存有與给发送并且要求必须要转发的数据包的数目。在一段时间后,监测是否正确的将数据包转发给其下一跳节点,如正确转发,则计数器加一,否则计数器不变。
[0014]能量计算模型
一个节点的网络接口一般工作在以下四个状态:发送、接收、空闲、休眠。基站控制移动节点之间的通信量,通过调度和缓存流量,移动节点绝大部分时间工作在休眠状态。而在移动自组织网络环境下,节点并不知道何时回收到分组,故其默认工作状态为空闲。节点发送或接收网络层分组的花销为线性模型,即:
Cosi =I h
发送一个分组的总开销为源节点)发送开销加上所有接收节点的开销。可能的接收者包括目的节点(*?)、处在发射范围内的节点(neS )以及d的发射范围的节点(ne/l ),注意到集合S和D处在不断的变化中。
[0015]基于节点信任度和有效能量的信任协作机制设计
在这部分,我们将具体介绍节点的信任计算方法、信任管理机制,以及信任值传递安全问题的处理。节点的信任值主要由两部分组成:直接信任值和间接信任值。节点信任值得计算主要基于贝叶斯推理推理方法。信任值在传递过程中可能出现的冒名、诋毁以及协同作弊威胁采用单向hash链表解决。
[0016]所述的信任协作方法,是指针对网络中节点出于自私或者恶意目的而随意丢弃需要其完成转发的分组,引入社会信任概念,在节点间建立信任关系,以维持网络的健壮运行。本发明的信任值由直接信任和间接信任组成,直接信任根据节点自身的观测所得,间接信任由第三方节点提供;设计了背离度测试以保证第三方推荐信息的正确性;引入奖惩因子以加快不良节点的检测,以体现失去信任容易建立困难的特性;采用单向哈希链表解决信任值传播过程中可能出现的冒名、诋毁以及协同作弊等威胁;最后将节点的能耗和信任值结合,克服一般的信任模型存在的不公平问题。
【发明内容】
[0017]基于上述分析,本发明提供了一种自组织网络中基于信任评估的协作通信方法,其包括如下步骤:
第一步:直接信任值计算;
直接信任值定义为节点通过与其他节点发生交互,并根据彼此间的直接交互结果(也可以称为第一手消息)对节点的信任值做出相应的计算。本发明采用贝叶斯方法来计算节点的信任值。贝叶斯方法是利用前期的客观数据信息,根据主体经验和各方面的知识,对特定未来事件发生的概率做出的主观估计,是一种主观和客观相结合的方法。它的优点在于简单,预测完全取决于收集到的数据,获得的数据越多,预测结果就越精确,此外,贝叶斯模型还能自我纠正,数据变化了,预测结果也随之变化。因此使用贝叶斯方法来描述节点转发行为非常贴切。本文采用贝叶斯方法来对节点执行路由转发功能概率进行合理估计,即对节点信誉值进行评估。另外,节点转发包的行为近似于二项事件,即转发或不转发,因此可以利用二项事件后验分布服从Beta分布的特性推导信任关系。
[0018]假定在一定的时间内與向.^.发送了 n个分组,成功转发了只个。设P力巧成功转发一个分组的概率,JT记为样本,且JT服从二项分布, JC记为样本观测值。由于P的先验分布是无信息的先验分布,根据贝叶斯假设和共轭分布的选取办法,我们选取M(p} = b^X^作为F的先验分布,根据贝叶斯公式计算可以得到后验概率密度:
【权利要求】
1.本发明提供一种移动自组织网络中基于信任模型的协作通信方法,其特征在于,包含如下步骤: 第一步:直接信任值计算; 直接信任值定义为节点通过与其他节点发生交互,并根据彼此间的直接交互结果(也可以称为第一手消息)对节点的信任值做出相应的计算;本发明采用贝叶斯方法来计算节点的信任值;贝叶斯方法是利用前期的客观数据信息,根据主体经验和各方面的知识,对特定未来事件发生的概率做出的主观估计,是一种主观和客观相结合的方法;另外,节点转发包的行为近似于二项事件,即转发或不转发,因此可以利用二项事件后验分布服从Beta分布的特性推导信任关系; 假定在一定的时间内NI向NJ发送了 n个分组,Nj成功转发了u个;设P为奴Nj成功转发一个分组的概率,X记为样本,且x服从二项分布B(n,p) , x记为样本观测值;由于P的先验分布是无信息的先验分布,根据贝叶斯假设和共轭分布的选取办法,我们选取x(p) = beta(1,1)作为#的先验分布,根据贝叶斯公式计算可以得到后验概率密度:
由式上述推导可知,P的后验概率服从β分布;对于位置参数无信息的条件下,最大后验估计即最大似然估计是优良的估计;NI因此,Ni再一次向发送分组时,将P的最大后验估计定义为该次成功转发的概率,设;Y =Nj 第n+1次成功转发”这一事件,根据上述后验概率得到
将Ni对Nj的直接信任值Td(ij)定义为第n+l个分组被Nj成功转发的概率,则NJ成功转发分组的后验概率服从Beta分布,其最大似然估计为
第二步:间接信任值计算; 由于节点馮和』I之间不一定有直接交互,在此我们定义间接信任即第三方推荐,表示为Tr ;如图1所示,瑪和之间不直接交互,而舄和Ni之间有交互,Nt可以把它对的直接信任T/紛推荐给螞;另一方面,第三方推荐者1^由于自身的原因,并不能够完全正确反映』I的可信程度,我们采用推荐度来表征推荐者的正确度,其值七e[0,l],在此,推荐度可以取为评价节点对推荐节点的直接信任值,即40*); 假设网络中存在三个节点N1、Nt ^WNj , Nt 的直接信任度为 /紛,Nt对瑪的推荐度为Aa,科由于的推荐而得到的间接信任度定义为
当一级推荐不存在时,可以考虑二级及其以上的推荐,这样就形成了一条推荐链,可以推广到η级的推荐信任模型,如图1所示,推广可以得到
由于信任值在传递过程中会有损失,为了减少这种损失,我们采取以下两个原则: 1)信任的推荐级数服从最小原则;当有一级推荐存在时就不考虑二级及其以上的推荐,这样可以避免产生坏环的可能; 2)同级推荐信任度取最大原则;当有两个一级信任推荐巧和瑪时,假设得到的推荐信任度分别为冥(P:)和,则埤对的信任度取二者中得到最大值,即
由于第三方推荐信息不一定准确,当接收到其它节点的推荐信誉时,为了防止不良节点的恶意诽镑攻击,即通过不真实的信任信息降低良好节点信任度或增强恶意共谋节点的信任度,必须对推荐信息的真实性进行检测;当节点坪收到Λ? 的推荐信任值时,首先查看的标志位,若为1,说明该节点不可信,是不合作节点,将该包丢弃 '若为O,则启动背离度测试;在此我们定义背离度测试: Detach-Test: \ ~ 2^(4?) ^ 其中。&)表示节点螞对Wj-的直接信任值,其中11/?表示节点巧对&的直接信任值,如果二者的评价差异大于那么可能是有节点污蔑或是有意提高某节点,属于不正常的评价;为了减少这类评价的影响,我们采用了偏离度测试的方法,通过测试则说明该评价是正常的,否则是错误的; 在通过上述背离度测试后,我们还引入了奖赏因子和惩罚因子以体现建立信任困难失去容易的特性,并且惩罚因子大于奖赏因子,当推荐值小于直接信任值时,引入惩罚因子;当推荐值大于直接信任值时,引入奖赏因子,即:
第三步:综合信任值计算;节点综合信任由上述直接信任和推荐信任组合而成二者按照不同的权重叠加,为了防止恶意诋毁,直接信任的权重大于间接信任的权重;定乂3;力况对I』.的信任值,那么:T(y) = O^-TaQj)Tr(?/%0< β?ι K1LciArβ^Ι 其中α和於分别为直接信任度和间接信任度的权重; 第四步:哈希链表身份认证; 我们采用单向hash链表解决节点信任度在传播过程中会出现的冒名、诋毁以及协同作弊三类主要的威胁;单向hash链表由单向Hash函数不断重复递推得到;设m?{N =表示MANETS中节点的标识,节点JV产生随机数rW,k为单向Hash链表长度,然后利用单向伪随机函数/通过k次重复递推得到=., 函数定义如下:
节点在首次通信时,广播它的身份标识@ ;再次进行通信时,就要以通过预先发送的~标识验证对方的身份;因此节点在第i个时间间隔产生的密钥为;:馬=K^I).节点在通信协议中产生一个验证信息码(MAC Message Authenticat1n Code) ;MAC是信源消息的一个编码函数,它由一部分密钥和一些传输消息的数据生成,可表示成MAC(K,M)的形式;Κ表示密钥,M表示传输消息产生的数据;节点为了认证第i个时间间隔节点的信誉度,发送数据包,里面包括MAC,密钥,泄露延迟;当其它节点收到数据包时,首先检查密钥是否泄露,如果泄露,则不做任何处理,否则存储并进行验证; 第五步:节点信任值与其能量结合; 在上述的基于信任度计算的模型中存在这样一个问题:合作节点转发的分组数比自私节点发送的多,其对应的声誉值也相对高些,而随着时间的推移,其转发的分组数越多,其声誉值也就越高,而节点在选择下一跳节点时,选取的是信誉值最高的节点,显然,声誉值高的节点作为中继节点的机率就更大,自身消耗的能量也就越多,这就导致了不公平的问题;将节点的信任值和节点剩余能量结和,可以有效解决这一问题; 将节点的信任度和有效能量结合得到一个综合性参数,即节点可靠性;为了减少计算量,我们将节点的信任度和有效能量分别划分为多个区间,然后按照一定的规则组合得到不同级别的可靠性;具体的划分如表1所示;
表1:节点可靠性分布。
【文档编号】H04W12/12GK104080140SQ201310107950
【公开日】2014年10月1日 申请日期:2013年3月29日 优先权日:2013年3月29日
【发明者】胡海峰, 刘兴贵, 王堃, 暴建民 申请人:南京邮电大学