控制广域网中的方向不对称性的利记博彩app

文档序号:7849169阅读:149来源:国知局
专利名称:控制广域网中的方向不对称性的利记博彩app
技术领域
本发明涉及特别是广域网基础结构中的网络数据通信。
背景技术
广域网(WAN)是指涵盖广阔区域的计算机网络,例如,其通信链路跨越城市边界、地区边界或国家边界的网络。这与通常分别局限于房间、建筑物、校园或特定城市区域(例 如ー个城市)的个人网(PAN)、局域网(LAN)、校园网(CAN)或城域网(MAN)形成对比。WAN通常用于将LAN和其他类型的网络连接在一起,使得在ー个位置的用户和计算机能够与其他位置的用户和计算机通信。很多WAN是为ー个具体组织而建立的并且是私有的。其他由因特网服务提供商建立的WAN提供从ー个组织的LAN到因特网的连接。WAN通常是使用专线建立的。在专线的每一端,路由器的一侧连接到LAN而另ー侧连接到WAN内的集线器。WAN也可使用成本较低的电路交换或分组交换方法来建立。诸如传输控制协议/因特网协议(TCP/IP)的网络协议能够提供在WAN内的传输和定址功能。


图I示出了根据ー个实施例的包含广域应用服务(WAAS)模块的示例WAN基础结构。图2示出了根据ー个实施例的WAAS模块的示例实现。图3不出了根据ー个实施例的包括WAAS模块标识符的传输控制协议(TCP)同步-确认(SYN-ACK)数据包。图4示出了根据ー个实施例的由WAAS模块用来标记传出的TCP同步(SYN)数据包的示例表格。图5示出了标记SYN-ACK数据包的示例步骤序列。图6示出了根据ー个实施例的更新由WAAS模块用来标记随后传出的TCP SYN数据包的表格的示例步骤序列。图7示出了根据ー个实施例的标记传出的TCP SYN数据包的示例步骤序列。图8示出了根据ー个实施例的将TCP SYN数据包从ー个WAAS模块重定向到另ー个WAAS模块的示例步骤序列。
具体实施例方式概述在一个实施例中,ー种方法包括检测从广域网(WAN)中的ー个节点离开前往另一个节点的数据包,识别该数据包被定址到的网络目的地址,从诸如表格的存储数据中获得与该网络目的地址相关联的WAN设备的标识符,以及用该标识符标记该数据包以获得标记的数据包供传送到WAN。WAN设备被部署在WAN的边缘处。当标记的数据包被ー个WAN设备接收时,该WAN设备将该标记的数据包重定向到与标记的标识符相关联的WAN设备。在一个具体实现方式中,被识别的WAN设备是第一个“看见”或检测到通过WAN传输的同步-确认(SYN-ACK)数据包的WAN设备。示例实施例图I示出了一个示例广域网(WAN)基础结构,该WAN基础结构包括WAN 130以及其中具有客户端112、路由器114c和广域应用服务(WAAS)模块200c (为了说明的目的在图中示出为两个分开的块)的分支机构110。WAAS模块200c和此处稍后将描述的其他WAAS模块200a、200b —起工作以提升WAN的性能。WAAS模块可被部署在例如WAN和局域网(LAN)的边界或边缘处,通常在逻辑上接近于路由器,这样经由WAN从ー个LAN向另ー个LAN或网络中的其他节点通过的数据可以被监测到并且甚至以某些方式(包括此处描述 的方式)被处理。通过检查流入WAN的数据,网络管理员能够尤其是在应用层上更奸地协调通信流。更具体的说,彼此协调地工作的WAAS模块能够(除其他可能的服务之外)提供TCP流量优化、数据冗余消除、基于会话的压缩服务、协议优化以及对象缓存。客户端112可以是计算机或者被配置为通过诸如传输控制协议/因特网协议(TCP/IP)的通信协议与诸如服务器的其他电子设备进行电子通信的其他电子设备。这样的通信可以通过WAN 130被建立到例如数据中心A140和/或数据中心B 150。如图I所示,数据中心A包括路由器114a、WAAS模块200a、局域网(LAN)交换机116a以及服务器118a(示例IP地址为2XX. 2XX. 2X. 2)。同样地,数据中心B包括路由器14b、WAAS模块200b、局域网(LAN)交换机116b以及服务器118b (IP地址为3XX. 3XX. 3X. 3)。如上所述,WAAS模块200被部署在节点的边缘处,使得经由WAN进入和离开节点的数据包通信量能够被WAAS模块200检查并且以希望的方式被处理。在操作中,客户端112可能希望与具有一具体IP地址的服务器建立连接,例如TCP连接。IP地址是逻辑地址,因而与该IP地址相关联的服务器在理论上可以位于任何的物理位置。客户端112不需要知道服务器在哪个位置,客户端112也没有任何必要知道与ー给定连接相关联的数据包实际上是如何在客户端112和数据中心140、150之间流动的。虽然客户端112可能不需要知道数据包是如何被路由的或者网络中的哪些要件可能是彼此对等的,但这可能是想要优化或改进整体网络控制、可操作性或效率的网络管理员们所感兴趣的。一种优化WAN操作的方法是カ求对称通信,其中例如TCP连接的两个方向都被同一 WAAS模块看见(其中,再次地,WAAS模块被部署在每个节点的边缘(例如数据中心A 140和数据中心B 150的边缘)处)。对称通信可在底层网络基础结构的路由策略対称性地转发通信量时实现。在这些情况中,TCP连接的两个方向都遵循相同的底层网络路径。如果在两个方向上的该路径不是相同的,则满是対称的目标就变得很困难。更具体地说,在ー种可能的情境中,连接可能在地理位置上分开的数据中心之间“跳跃”从而导致不对称性。再次參考图1,并且为了进ー步地说明不对称性的情况,远程分支机构110通过WAN 130被连接到数据中心A 140和数据中心B 150。由这种拓扑可产生几种连接流模式I.分支 110 > DC A 140 > DC A 服务器 118a > DC A 140 >分支 110。在这个流程中,数据从分支机构110通过到达数据中心A 140,然后到达服务器118a。响应或回复数据从服务器118a穿过数据中心A 140然后返回到分支机构110。
2.分支 110 > DC B 150 > DC B 服务器 118b > DC B 150 > 分支 110。这个流程与上述实例(I)的流程相似,除了通信是发生在分支机构Iio和数据中心B 150中的服务器118b之间。3.分支 110 > DC A 140 > DC B 150 > DC B 服务器 118b > DC B 150 > 分支110。这个流程既涉及数据中心A 140也涉及数据中心B 150。更具体的说,前往数据中心B 150的数据实际上首先向数据中心A 140路由。回复或响应数据从数据中心B 150被传送到分支机构110。4.分支 110 > DC B 150 > DC A 140 > DC A 服务器 118a > DC A 140 > 分支110。与上述的实例(3)的流程类似,在这个流程中的数据穿过数据中心B经过路径流向数据中心A 140。图I描绘了实例(3)的具体流程,并且在实例(3)和实例(4) 二者中,连接请求通过例如IP被发送到一个数据中心(数据中心B),尽管目标服务器实际上存在于另ー个数据中心(数据中心A)。因此,通信流被认为是不对称的。同样如图I所示,由于WAAS模块 200a、200b、200c都部署在相应节点的边缘处,所以它们可以“看见”在整个基础结构中流动的通信量,并且下面会给出更详细的说明,这些模块可以被用于提高或优化节点,例如客户端112和数据中心B 150中的服务器118b之间的连接。更具体的说,在例如在客户端112和服务器118b (示例IP地址为3XX. 3XX. 3X. 3)之间的TCP连接请求中,客户端112通过发送同步(SYN)数据包到预定目的地址来发起连接请求。该SYN数据包通过WAAS模块200c并且因此被WAAS模块200c “看见”或检测到。虽然SYN数据包具有与数据中B 150相关联的目的地址,但IP路由选择的考虑事项可能使SYN数据包被发送到数据中心A 140,在那里WAAS模块200a也能“看见”该数据包。该SYN数据包被LAN交换机116a接收,该交换机意识到该SYN数据包中的目的地IP地址为3XX. 3XX. 3X。因此,LAN交换机116a (例如,通过布置在LAN交换机116a,116b之间的“回程”链路145)将该SYN数据包发送到(具有预定IP地址的)服务器118b所在的数据中心B。当然,回程链路的使用不过是一种执行重定向的方法的ー个示例,而且其他方法也是可能的。因为服务器118b是目标服务器或节点,该服务器118b根据TCP生成并且发送去向客户端112的同步-确认(SYN-ACK)数据包。该SYN-ACK数据包在其返回到客户端112的行程上被WAAS模块200b看见。如图所示的,路由器114a,114b和114c使得数据包能路由到WAN 130中。进ー步地根据TCP,客户端112响应于它已接收的SYN-ACK数据包来生成并且发送确认(ACK)数据包返回到服务器118b。该ACK数据包很可能经过SYN数据包所经过的相同的路径(例如,经由数据中A 140)。鉴于前述情况,不对称在于如下事实=SYN-ACK数据包从与SYN数据包到达的节点(数据中心A 140)不同的节点(数据中B 150)被接收。这种不对称从WAN传输设备(例如WAAS模块200)的角度来看不是最佳的网络状态。为了检测并且处理这种不对称(在TCP而非IP层),数据中心B中的WAAS模块200b被配置为在SYN-ACK数据包中增加TCP选项以用信号通知分支机构110内的客户端112处的信号WAAS模块200a,它(S卩,WAAS模块200b)应该是优化将来去往服务器118b的连接的设备。这种特别标记的SYN-ACK数据包到达分支110处的WAAS模块200a,该数据包在那里被缓存供将来使用。当用于随后连接到相同服务器118b上的SYN(或者其他的)数据包由客户端112 (或者远程分支110中的任何其他客户端)发起时,远程分支110中的WAAS模块200a为SYN数据包增加ー个TCP选项以指示该SYN数据包应被转发到数据中心B 150的WAAS模块200b。因此,在这样的“标记的”SYN数据包被数据中心A 140中的WAAS模块200a(由于IP路由选择)接收时,WAAS模块200a看见或检测到该选项并且使用例如像通用路由封装(GRE)隧道(并且对于所有将来用于连接的数据包也是这样做)的IP路由技术将SYN数据包重定向到数据中心B 150中的WAAS模块200b。数据中心B 150中的WAAS模块200b因此接收该SYN数据包,移除任何隧道(例如,GRE)头信息,并且转发原始SYN (或者其他的)数据包到服务器118b。由于服务器118b是目标节点,所以WAAS200b也接收响应的SYN-ACK数据包,因此达到了对称流处理的基本要求(再一次地,从WAAS模块200的角度;IP路由选择没有被改变)。应指出的是网络中的任何WAAS模块200均可以执行重定向。这是特别有益的,因为IP路由选择可能发生变化,但仍然可以实现重定向。 图2示出了可用于WAAS模块200a、200b或200c的WAAS模块200的示例实现。应指出的是WAAS模块功能可被实现为ー个或多个硬件组件、一个或多个软件组件或者它们的组合。更具体地说,WAAS模块200可以由可编程处理器(微处理器或微处理器)或者固定逻辑处理器210构成。对于可编程处理器的情况,任何相关联的存储器215都可以是被编码有或存储了指令(例如数据包标记/检测逻辑218)的任何类型的有形处理器可读存储器(例如,随机存取、只读等)。可替代地,WAAS模块200可以包括固定逻辑处理设备,例如被配置为带有由可使处理器210执行在此描述的功能的指令或逻辑(例如数据包标记/检测逻辑218)构成的固件的专用集成电路(ASIC)或者数字信号处理器。因此,WAAS模块200可采用任何各种形式,以便例如用同定逻辑或者可编程序逻辑(例如由处理器执行的软件/计算机指令)编码到ー个或多个有形组件中来执行,并且任何处理器都可以是可编程处理器、可编程数字逻辑(例如,现场可编程门阵列)或者包括固定数字逻辑的ASIC或者它们的组合。一般来说,任何处理逻辑都可包含在被编码有带由处理器执行的指令的处理器可读介质中,这些指令当被处理器执行时可操作以使处理器执行在此描述的功能。为了能够与网络基础结构连接,还可以提供网络接ロ单元230。应注意的是,假定路由器被部署在节点的边缘处,对于分立的WAAS模块200的在此描述的功能也可以直接在路由器中实现。仍參照图2,WAAS模块200包括数据包标记和检测逻辑218。该“标记”逻辑在原始SYN-ACK传输返回到发送SYN数据包的节点期间以及随后数据包被传输到之前记录的目的地节点期间被使用。该“检測”逻辑被WAAS模块200用来检测(SYN)数据包中的IP目的地址并将标记了的(SYN)数据包向TCP选项字段中标识的WAAS模块重定向。图3示出了包括选项字段中标记的WAAS标识符的简化的TCP SYN-ACK数据包。在这种情况下,该WAAS模块的ID为200b,其对应于看见或检测到由服务器118b发送的SYN-ACK数据包的第一 WAAS模块。这个相同的标记将在后续(SYN)数据包被发送到相同的服务器118b时被分支机构110中的WAAS模块200a添加。图4不出了根据ー个实施例的不例表格(或者更一般地为存储的数据),该表格可由WAAS模块200c (或者任何WAAS模块)维护以标记传出的数据包(包括TCP SYN数据包)。如图所示,IP地址3XX. 3XX. 3X. 3,即服务器118b的IP地址与WAAS模块200b相关联。因此,当去往IP地址3XX. 3XX. 3X. 3的SYN数据包被WAAS模块200c看见时,该模块访问其缓存表(可能存储在存储器215内)以确定该TCP SYN数据包的目的IP地址是否被列出。若是,这意味着ー个SYN-ACK数据包之前曾从那个目的地址被接收。并且,因此,为了检测和处理不对称,WAAS模块200c用WAAS模块ID200b来标记新传出的SYN数据包。然后,当那个标记的SYN数据包被数据中心A 140中的WAAS模块200a检测到时(假定该SYN数据包是向数据中心A 140路由),WAAS模块200a能够根据TCP数据包的选项字段将该数据包直接重定向到WAAS200b。图5示出了标记由服务器,例如服务器118b生成的SYN-ACK数据包的示例步骤序列。在步骤502中,SYN-ACK数据包在例如一个网络节点的边缘的WAAS模块处被接收,并且在步骤504中,SYN-ACK数据包被标记有例如第一个“看见” SYN-ACK数据包的WAAS模块的标识符。然后该数据包被传递到路由器以被返回到WAN从而被传送到发送了 SYN-ACK数据包对其作出响应的SYN数据包的设备,例如计算机。
图6示出了根据ー个实施例的更新由WAAS模块用来标记随后传出的TCP SYN数据包的表格的示例步骤序列。如图所示,在步骤602中,标记的SYN-ACK数据包被接收。这样的数据包可以由例如分支机构110中的WAAS模块200c接收。在步骤604中,该SYN-ACK数据包被解析以得到标记了那个数据包的WAAS模块的标识符,然后将IP地址和WAAS模块标识符相关联的表格(如图4中所示出的)被更新。然后该SYN-ACK数据包被允许继续前往其预定目的地,即,例如客户端112。图7示出了根据ー个实施例的标记传出的数据包(包括TCP SYN数据包)的示例步骤序列。在步骤702中,连接请求或SYN数据包在例如WAAS处被检测到。在步骤704中,SYN数据包的目的IP地址被获得并且与存储在例如将IP地址和WAAS模块相关联的表格中的IP地址相比较。在步骤706中,假定目的IP地址在表格中被列出,该SYN数据包用与目的IP地址相关联的WAAS标识符标记。然后该标记的SYN数据包被传递到路由器从而路由到WAN。本领域的技术人员应理解的是,一旦在节点之间建立了连接,WAAS模块就不断地以这种方式标记在会话中涉及的后续传出数据包,从而提高了 TCP层的连接效率。图8示出了根据ー个实施例的将标识的TCP SYN数据包(以及其他这样标记的数据包)从ー个WAAS模块重定向到另ー个WAAS模块的示例步骤序列。在图I所示的实施例中,这ー系列步骤将由WAAS模块200a执行。在步骤802中,数据包被检测到或“看见”。然后步骤804中确定该数据包是否被标记。假定该数据包被标记有WAAS模块标识符,该数据包在步骤806中就以隧道方式被传输(tunneled)至带有那个标识符的WAAS模块。隧道技术可通过前面提到的GRE或者通过任何其他适当的方法实现。此处描述的方法可以实现一些事情。例如,WAAS模块能够对称地看见TCP连接,因此能够使WAN效率提高。另外,此处描述的方法能够最小化或消除由于路径选择/转发而导致的额外的等待时间。进一歩地,对于优化的连接可以保留网络路径亲和性(affinity)。通过使例如远程分支机构中的WAAS模块能够确定ー远程数据中心中的哪个设备应是其对等设备,并且使第一个看见SYN-ACK (与例如第一个看见SYN相对)的WAAS模块成为连接的“所有者”,来实现前述内容。因此,在此处描述的实施例中,远程分支WAAS模块參与识别不対称的通信流量并通过与数据中心WAAS模块交互作用来确定其应该与哪ー个数据中心WAAS模块为对等以优化给定的连接。此外,对于ー数据中心WAAS模块的连接所有权是由第一个接收用于连接的SYN-ACK数据包(与接收SYN数据包相对)来決定的。此处描述的示例实施例能够提供某些优点。例如,该方法不需要控制在地理位置上分散的WAAS模块之间的平面广告或查询。即,WAAS模块能够平衡TCP握手并且增加选项/标记以相互发送信号而不通过控制平面独立地进行通信。进ー步地,没有因优化连接而导致的额外的等待时间,这是因为基于SYN-ACK选择数据中心中的连接所有者确保了在优化的和非优化的连接之间保留了网络路径亲和性。更进一歩地,对于优化的连接保留了网络路径亲和性。这保留了现有网络基础结构的路由选择策略,这能够简化解决方案的复杂性以及运营支撑影 响。对于不使用此处描述的技术的连接,即可以被认为是非优化的(S卩,通过的)连接的连接而言,不会导致额外的等待时间,因为那些连接可简单地不被影响。此外,如果/当底层路由拓扑发生变化,则WAAS模块就自动调整以适合新的拓扑。也就是说,因为这些技术平衡了连接握手,所以毎次新的连接被建立时,相应地表格都可被更新并且后续的数据包可被标记。因此,此处描述的方法可涉及多个WAAS模块或WAN设备,其中ー个WAN设备是这样的ー种设备例如该设备将多个LAN或者其他节点相互连接,使得从用户的角度来看,从ー个LAN到另ー个LAN的通信看起来就奸像该通信是在相同的LAN上发生的。在一个简化的系统中,该方法可包括三个WAN设备,第一 WAN设备被部署在第一位置,第二 WAN设备被部署在第二位置,并且第三WAN设备被部署在第三位置,其中这些WAN设备中的每ー个在逻辑上分别位于第一、第二和第三位置的WAN的边缘处,这样,从ー给定位置到该WAN的数据在进入该WAN之前经过ー WAN设备,从该WAN到ー给定位置的数据在离开该WAN之前经过一 WAN设备。在操作中,第一 WAN设备被配置为检查响应于之前发送的SYN数据包而接收的SYN-ACK数据包。当该SYN-ACK数据包包括被标记有例如第三WAN设备的标识符的选项时,第一 WAN设备更新与第三WAN设备的相应标识符一同存储了例如SYN数据包被定向到的服务器的目的地址(例如IP地址)的本地存储单元或者表格。第三WAN设备被配置为以可被第一 WAN设备检测的方式标记SYN-ACK数据包。在后续的操作中,当第一 WAN设备检测到前往存储在其表格中的目的地址的SYN数据包时,第一 WAN设备用第三WAN设备的标识符标记该SYN数据包。当所标记的SYN数据包被例如第二 WAN设备接收时,第二 WAN设备被配置为检测第三WAN设备的标识符并且进ー步配置为将SYN数据包直接重定向到第三WAN设备。第三WAN设备被配置为然后将该SYN数据包传递到例如与该SYN数据包的目的地址相对应的服务器。随后的数据(即,不与例如TCP握手相关联)以相同的方式被处理。 通过使WAN设备以这种方式拦截通信,能够更有效地管理和优化WAN拓扑。尽管所述系统和方法在此处如ー个或多个具体示例中实施的那样进行了说明和描述,然而并不g在局限于所示细节,因为可以在不脱离所述装置、系统和方法的范围并且在权利要求书的等同形式的范围内在其中进行各种修改和结构变化。因此,适当的是,所附权利要求书应该被宽泛地理解并且以如下所述的装置、系统和方法的范围一致的方式理解。
权利要求
1.一种方法,包括 在广域网(WAN)的边缘部署的第一 WAN设备处,检测经过第一 WAN设备并且离开与第一 WAN设备相关联的节点前往连接到所述WAN的另一个节点的数据包; 通过第一 WAN设备识别所述数据包被定址到的网络目的地址; 从第一 WAN设备可访问的存储器获得与所述网络目的地址相关联的另一个WAN设备的标识符;以及 用所述标识符标记所述数据包以生成标识了所述另一个WAN设备的标记的数据包。
2.如权利要求I所述的方法,其中所述数据包为传输控制协议(TCP)同步(SYN)数据包,并且标记包括标记TCP SYN数据包中的选项字段。
3.如权利要求I所述的方法,还包括通过第一WAN设备检测从所述WAN接收的标记的数据包,并且根据通过所述WAN接收的标记的数据包中的信息来更新所述存储器。
4.如权利要求3所述的方法,还包括将来自WAN的标记的数据包中彼此相关联的因特网协议地址和WAN设备标识符增加到所述存储器中。
5.如权利要求3所述的方法,其中来自所述WAN的标记的数据包是从连接到所述WAN的节点接收的同步-确认(SYN-ACK)数据包。
6.如权利要求I所述的方法,还包括向与所述WAN通信的路由器传递所述标记的数据包。
7.一种被编码有指令的处理器可读介质,所述指令在被处理器执行时使所述处理器执行以下处理 在广域网(WAN)的边缘部署的第一 WAN设备处,检测经过第一 WAN设备并且离开与第一 WAN设备相关联的节点前往连接到所述WAN的另一个节点的数据包; 通过第一 WAN设备识别所述数据包被定址到的网络目的地址; 从第一 WAN设备可访问的存储器获得与所述网络目的地址相关联的另一个WAN设备的标识符;以及 用所述标识符标记所述数据包以生成标识了所述另一个WAN设备的标记的数据包。
8.如权利要求7所述的处理器可读介质,还包括在被所述处理器执行时使所述处理器执行以下处理的指令 从所述WAN接收标记的数据包;以及 根据所述WAN接收的标记的数据包中的信息来更新所述存储器。
9.如权利要求7所述的处理器可读介质,还包括在被所述处理器执行时可使所述处理器执行以下处理的指令 将通过所述WAN接收的标记的数据包中存在的因特网协议地址和WAN设备标识符增加到所述存储器中。
10.如权利要求7所述的处理器可读介质,还包括在被所述处理器执行时可使所述处理器执行以下处理的指令 向路由器传递所述标记的数据包。
11.一种方法,包括 检测被传输到广域网(WAN)的传输控制协议(TCP)同步-确认(SYN-ACK)数据包; 通过用第一个检测到所述TCP SYN-ACK数据包的WAN设备的标识符标记所述TCPSYN-ACK数据包中的选项字段来生成标记的TCP SYN-ACK数据包;以及 将所述标记的TCP SYN-ACK数据包传递到所述WAN从而传送到所述SYN-ACK数据包所响应的网络节点。
12.如权利要求11所述的方法,还包括 在所述WAN设备处从另一个WAN设备接收标记的数据包,其中所述数据包最初是被路由到包括所述另一个WAN设备的节点的。
13.如权利要求12所述的方法,还包括 将所述标记的数据包传递到生成了所述TCP SYN-ACK数据包的服务器。
14.如权利要求13所述的方法,还包括 在将所述标记的数据包传递到所述服务器之前,从所述标记的数据包中移除封装信肩、O
15.—种方法,包括 在第一广域网(WAN)设备处接收数据包,所述数据包包括第二 WAN设备的标识符;以及经由与所述数据包被接收所经由的通信链路不同的通信链路将所述数据包重定向到第二 WAN设备, 其中第一和第二 WAN设备被部署在WAN的边缘。
16.如权利要求15所述的方法,其中重定向包括经由网络隧道向第二WAN设备发送所述数据包。
17.一种装置,包括 网络接口 ;和 处理器,被配置为 在广域网(WAN)的边缘部署的第一 WAN设处,检测经过第一 WAN设备并且离开与第一WAN设备相关联的节点前往连接到所述WAN的另一个节点的数据包; 通过第一 WAN设备识别所述数据包被定址到的网络目的地址; 从第一 WAN设备可访问的存储器获得与所述网络目的地址相关联的另一个WAN设备的标识符;以及 用所述标识符标记所述数据包以生成标记的数据包。
18.如权利要求17所述的装置,其中所述处理器还被配置为 从所述WAN接收标记的数据包;以及 根据从所述WAN接收的标记的数据包中的信息来更新所述存储器。
19.如权利要求17所述的装置,其中所述处理器还被配置为 将从所述WAN接收的标记的数据包中存在的因特网协议地址和WAN设备标识符增加到所述存储器中。
20.如权利要求17所述的设备,其中所述处理器还被配置为 向路由器传递所述标记的数据包。
全文摘要
在一个实施例中,一种方法包括在广域网(WAN)的边缘部署的第一WAN设备处检测经过该第一WAN设备并且离开与该第一WAN设备相关联的节点前往连接到该WAN的另一个节点的数据包;通过该第一WAN设备识别该数据包被定址到的网络目的地址;从该第一WAN设备可访问的存储器获得与该网络目的地址相关联的另一个WAN设备的标识符;以及用该标识符标记该数据包以生成标记的数据包。标记的数据包然后被一WAN设备接收,该WAN设备检测标识符,并且将标记的数据包传递给所标识的WAN设备。在一实施例中,与该网络目的地址相关联的WAN设备是第一个检测到同步-确认(SYN-ACK)数据包的WAN设备。
文档编号H04L29/08GK102845034SQ201180019191
公开日2012年12月26日 申请日期2011年4月5日 优先权日2010年4月16日
发明者艾瑞武·玛尼·拉玛萨米, 扎卡里·A·塞勒斯, 迪帕克·S·克翰诺卡尔, 乔治奥·瓦伦蒂尼, 斯瓦米纳坦·桑卡尔 申请人:思科技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1