专利名称:Wlan环境下改进ga优化的anfis室内定位方法
技术领域:
本发明涉及一种模式识别和人工智能领域中的室内定位方法,具体涉及基于改进遗传算法优化的WLAN室内ANFIS定位方法。
背景技术:
随着基于IEEE802. 11协议族的无线射频网络的飞速发展,出现了许多与定位相关的技术和应用,特别是在情境感知应用方面。无线定位将是下一代移动通信的关键技术, 同时也是无线局域网(WLAN)的重要应用之一。随着通信业务呈现出多样性,无线定位越来越受到人们重视,并且在社会公共服务方面有着重要的应用意义。适用于局域网络的定位系统称为地面无线定位技术,目前使用比较广泛的地面无线定位系统包括四种方法应用到达时间(TOA)或到达时间差(TDOA)来定位移动台; 应用到达角度(AOA)来定位移动台;利用接收端接收的信号强度RSSOteceived Signal Strength)的变化来定位移动台;最后一种方法是基于无线电地图的定位方法。其中,基于 RSS的WLAN室内定位技术在各种支持802. 11协议的网络中,都可以在移动终端获取到各个接入点APbccess point)的信号强度,由于位置指纹定位算法具有定位精度高,能充分利用现有设施,不需改变移动设备硬件,系统升级和维护对用户影响小等优势,得到了广泛的应用。指纹识别型室内定位算法分为离线和在线两个阶段。离线阶段建立指纹定位系统并采用训练样本对其进行训练,在线阶段利用离线阶段生成的指纹定位系统进行实时定位。为提高定位精度,学者们提出了不同的指纹识别算法,如K近邻法(KNN)、神经网络算法 (ANN)、自适应神经模糊推理系统(ANFIS)等。ANFIS将Takagi-Sugeno型模糊推理系统的计算简单、利于数学分析的优点同神经网络有效的学习机制有机地结合起来,能精确拟合输入输出特性,非常适合应用于缺乏专家经验的室内定位系统中。ANFIS的应用开拓了室内定位算法的新发展。ANFIS的学习算法通常采用反向传播(BP)算法,但BP算法存在着收敛速度慢,容易陷入局部极小的问题,限制了定位精度的提高。为此,遗传算法(GA)被应用到网络学习算法中。但是遗传算法的早熟、后期进化缓慢的问题制约了算法的性能的进一步提升。
发明内容
本发明的目的是为了解决现有BP算法的收敛速度慢、容易陷入局部极小的问题和遗传算法中的早熟、进化速度慢的问题,提供一种WLAN环境下改进GA优化的ANFIS室内定位方法。WLAN环境下改进GA优化的ANFIS室内定位方法,它包括具体步骤如下步骤一、在WLAN室内定位环境中布置若干个接入点AP,确保所述环境中任意一点被两个或两个以上的接入点AP发出的信号覆盖;步骤二、在室内环境中设置N个参考点,选取一个参考点为原点建立直角坐标系,
5获得N个参考点在该直角坐标系中的坐标位置,并在每个参考点上利用信号接收机采集来自每一个接入点AP的信号强度值,得到ANFIS的训练样本,建立参考点实际坐标与其接收到接入点AP信号强度的对应关系,即无线电地图;步骤三、建立X方向和Y方向的ANFIS定位子系统;每维坐标方向上生成的ANFIS 定位子系统为一阶单输出的Takagi-Sugeno模糊模型;其输入为不同接入点AP信号的个数,输出为相应的X或Y坐标;步骤四、利用改进的遗传算法训练X方向和Y方向的ANFIS定位子系统,进而获得满足要求的网络结构参数;步骤五、将测试点获取的信号强度RSS值经过预处理后导入ANFIS定位系统,获得所述测试点的定位坐标,实现对测试点的定位。本发明具有1、传统的全球定位系统(GPQ定位和蜂窝网定位技术的定位信号不能有效覆盖室内环境,且受到室内复杂环境和多径效应的影响,不能达到所需的定位精度; 本发明利用WLAN信号强度作为定位依据,方法简单,成本低廉,定位精度高;2、利用自适应模糊神经推理系统作为指纹定位系统的核心,ANFIS将 Takagi-Sugeno型模糊推理系统的计算简单、利于数学分析的优点同神经网络有效的学习机制有机地结合起来,可精确拟合输入输出特性,非常适合应用于缺乏专家经验的室内定位系统中。3、本发明通过在遗传算法中引入BP算子的ANFIS定位系统混合学习算法,利用遗传算法的全局收敛性在整个空间搜索可能的极值,将BP算法作为遗传算法中的一个算子, 从而充分发挥了遗传算法的全局搜索能力和BP算法的局部搜索能力,并通过采用自适应变异和移民机制等先进技术,加快了误差的收敛速度,快速了全局优化,最后构建出RSS信号与物理位置的映射关系。测试结果表明,本发明的方法的定位精度比现有方法提高20 30%。
图1为本发明定位方法的流程示意图,图2为本发明中改进遗传算法的流程示意图,图3为具体实施例中所述的实验场景示意图,图中眷为参考点,O为测试点。
具体实施例方式具体实施方式
一结合图1说明本实施方式,本实施方式包括具体步骤如下步骤一、在WLAN室内定位环境中布置若干个接入点AP,确保所述环境中任意一点被两个或两个以上的接入点AP发出的信号覆盖;步骤二、在室内环境中设置N个参考点,选取一个参考点为原点建立直角坐标系, 获得N个参考点在该直角坐标系中的坐标位置,并在每个参考点上利用信号接收机采集来自每一个接入点AP的信号强度值,得到ANFIS的训练样本,建立参考点实际坐标与其接收到接入点AP信号强度的对应关系,即无线电地图(Radio Map);步骤三、建立X方向和Y方向的ANFIS定位子系统;每维坐标方向上生成的ANFIS 定位子系统为一阶单输出的Takagi-Sugeno模糊模型;其输入为不同接入点AP信号的个数,输出为相应的X或Y坐标;
步骤四、利用改进的遗传算法训练X方向和Y方向的ANFIS定位子系统,进而获得满足要求的网络结构参数;步骤五、将测试点获取的信号强度RSS值经过预处理后导入ANFIS定位系统,获得所述测试点的定位坐标,实现对测试点的定位。
具体实施方式
二 结合图2说明本实施方式,具体实施方式
一中步骤三所述的改进遗传算法的具体步骤为步骤A 初始化种群,设置种群规模即种群中的个体数量及最大遗传代数;将 ANFIS网络中待调整的参数用实数编码形成码串,作为遗传算法中个体的基因;每个坐标方向上的ANFIS定位子系统中,有三类参数需要调整第一类为网络第四层的规则后件参数,第二、三类可调整的参数分别是模糊化层中高斯型隶属函数的均值和标准差;每个待调整的参数对应于基因码串中的一位;每个基因码串对应于种群中的一个个体;步骤B:计算个体适应度值,选取训练误差的倒数遗传算法的适应度函数,若有P 组训练样本,则训练误差E如下所示
权利要求
1.WLAN环境下改进GA优化的ANFIS室内定位方法,其特征是它包括具体步骤如下步骤一、在WLAN室内定位环境中布置若干个接入点AP,确保所述环境中任意一点被两个或两个以上的接入点AP发出的信号覆盖;步骤二、在室内环境中设置N个参考点,选取一个参考点为原点建立直角坐标系,获得 N个参考点在该直角坐标系中的坐标位置,并在每个参考点上利用信号接收机采集来自每一个接入点AP的信号强度值,得到ANFIS的训练样本,建立参考点实际坐标与其接收到接入点AP信号强度的对应关系,即无线电地图;步骤三、建立X方向和Y方向的ANFIS定位子系统;每维坐标方向上生成的ANFIS定位子系统为一阶单输出的Takagi-Sugeno模糊模型;其输入为不同接入点AP信号的个数,输出为相应的X或Y坐标;步骤四、利用改进的遗传算法训练X方向和Y方向的ANFIS定位子系统,进而获得满足要求的网络结构参数;步骤五、将测试点获取的信号强度RSS值经过预处理后导入ANFIS定位系统,获得所述测试点的定位坐标,实现对测试点的定位。
2.根据权利要求1所述WLAN环境下改进GA优化的ANFIS室内定位方法,其特征在于步骤三所述的改进遗传算法的具体步骤为步骤A 初始化种群,设置种群规模即种群中的个体数量及最大遗传代数;将ANFIS网络中待调整的参数用实数编码形成码串,作为遗传算法中个体的基因;每个坐标方向上的 ANFIS定位子系统中,有三类参数需要调整第一类为网络第四层的规则后件参数,第二、 三类可调整的参数分别是模糊化层中高斯型隶属函数的均值和标准差;每个待调整的参数对应于基因码串中的一位;每个基因码串对应于种群中的一个个体;步骤B 计算个体适应度值,选取训练误差的倒数遗传算法的适应度函数,若有P组训练样本,则训练误差E如下所示五=(去 χ)全=[去 χ-Α)2]全P P=IP P=I其中Tp为第P组样本对应的网络实际输出,Op为第P组样本对应的网络目标输出,4 为第P组样本的误差,则遗传算法的适应度函数如下/ = 1/Ε = [-^(Τρ-Ορ)ψ;P P=I步骤C:采用BP算子对种群中的每一个个体进行处理,处理后结果作为新的个体替代种群中的原有个体;步骤D 选择个体并交叉,根据适应度值,采用轮盘赌方选择方法选择父代个体,第i个个体被选择的概率Pi为P1=各YJ1i=\其中A为第i个个体的适应度值,i为正整数,N为种群个体总数;采用单点交叉方式, 即随机选择一个基因码串的节点,然后交换两个父代节点右端部分来产生子代;设置交叉概率P。= 0.6 0.9之间;步骤E :自适应变异,动态确定变异的概率,采用自适应的动态变异概率,在前期进化阶段,变异概率Pm = 1/N, N为种群中个体数量,早熟判断依据取M(U) = YXf1- fmeJ INi=l其中为i代种群的适应度均值;当M小于某个阈值或连续三代无变化时,则认为种群的进化陷入了局部最小,这时相应地设置Pm = 0. 1,进化则以变异为主,遗传为辅;步骤F 使用移民机制,采用如下移民机制,至少每隔一定进化代数种群能补充一定数量的优秀个体 Mod (t/G) = 0式中,t为当前进化代数,该式的意义是每个G代进行一次移民操作;移民数量计算公式为
3.根据权利要求1所述WLAN环境下改进GA优化的ANFIS室内定位方法,其特征在于步骤四所述的BP算子的实现方法为首先得到训练误差,然后根据BP算法获得ANFIS网络误差负梯度方向修正权值,所述的具体过程为在L层ANFSI网络中,若第k层上有nk个节点,且训练样本集中有P组输入、输出数据, 定义第P(1 ^P ^P)组数据对应的目标函数为均方根误差,如下
全文摘要
WLAN环境下改进GA优化的ANFIS室内定位方法,涉及一种模式识别和人工智能领域中的室内定位方法,具体涉及基于改进遗传算法优化的WLAN室内ANFIS定位方法,解决了BP算法的收敛速度慢,容易陷入局部极小的问题和遗传算法中的早熟、进化速度慢的问题,它包括具体步骤如下步骤一、确保环境中任意一点被两个或两个以上的接入点AP发出的信号覆盖;步骤二、建立参考点实际坐标与其接收到接入点AP信号强度的对应关系;步骤三、建立X方向和Y方向的ANFIS定位子系统;步骤四、利用改进的ANFIS定位子系统,获得网络结构参数;步骤五、实现对测试点的定位。用于WLAN室内ANFIS定位。
文档编号H04W64/00GK102395194SQ20111024702
公开日2012年3月28日 申请日期2011年8月25日 优先权日2011年8月25日
发明者张成文, 徐玉滨, 王嘉胤, 赵洪林, 马琳, 魏守明 申请人:哈尔滨工业大学